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ABSTRACT: Mobile agent based systems are so complex  that the usage of formal tools for simulation and prototyping to
facilitate the modelling of such systems is of great interest. Improved methods are needed to insure their correctness. In
particular predefined patterns seems to give suitable solution to deal with complexity of formal methods and to enable
reusability and consistency. In another hand executable specification are a powerful technique to prototype and analyse
complex systems The aim of this paper is to propose a number of patterns sin MAUDE language to model mobile agents
itineraries and to ease their analysis and/or their model checking through MAUDE based executable specification.
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1. Introduction

Mobile agents are programs that, with varying degrees of autonomy, can move between hosts across a network. Mobile agents
combine the notions of mobile code, mobile computation, and mobile state. They are location aware and can move to new
network locations through explicit mobility operations. Mobile agents realize the notion of moving the computation to the data
as opposed to moving the data to the computation, which is an important paradigm for distributed computing. Mobile agents are
effective in operating in networks that tend to disconnect, have low bandwidth, or high latency [18].

Mobile agents systems exhibit a high degree of complexity so that the use of formal tools seems to be mandatory, design
patterns are predefined model structures that can ease the use of formal tools.

2. Mobile Agents Based Systems

Agent systems  consist of several autonomous entities, each of them possibly developed independently, and with capabilities
to communicate in order to achieve a common goal, they have has some important characteristics, such as distribution,
autonomy, interaction and openness, which are helpful to transform  traditional architectures into a distributed and cooperative
architecture in  intelligent  systems [12] .  Using agents to build complex system functions is an emerging field where researchers
are exploring the ability of agents to improve process integration, interoperability, reusability and adaptability.

Agent mobility reinforce performances of complex systems: A mobile agent can autonomously migrate from one  platform to
another to interact with other agents and to do specific tasks; it can for example, perform local processing, or retrieve information
and bring back the results. Mobile agents are advantageous in particular in mobile environments where there is intermittent
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connectivity, low bandwidth and limited local storage; and for information retrieval in heterogeneous networks. According to
[13]. there are seven good reasons to use mobile agents: They reduce the network load; they overcome network latency; they
encapsulate protocols; they execute asynchronously and autonomously; they adapt dynamically; they are naturally
heterogeneous, and finally they are robust and fault tolerant, Furthermore, many works proved that agent technology in general
outperforms client server technology [21]. and that mobile-agents systems can in most conditions outperform static agent
systems [19].

3. Executable specification and design patterns

A theoretical model of a system allows formal reasoning about the system. Formal reasoning can be used to establish guarantees
about the behaviour of the system. Understanding the semantics of mobile computation is essential for reasoning about mobile
agents. Reasoning about mobility can, in turn, yield guarantees about the correctness of mission critical software.

Agent-based models (ABMs) try to capture both the essential characteristics and the complete detail to a agent based systems.
In particular pattern based modelling (POM) is  a promising  techniques  dealing with such challenges [11], (POM) is a set of
strategies for using patterns observed in the systems to ensure that an ABM captures the right “essence” of the system. POM
starts with identifying multiple patterns of behaviour in the real system and its agents that seem to capture the essential internal
mechanisms for the problem being modelled. These patterns are then used as submodels to build more complex models. In
another hand [18]   the use of executable specification seems gaining the interest of numerous researchers. Agents are generally
specified using a logical description and then this description is directly executed in order to implement the agent’s behaviour.
a logical description of an agent provides an unambiguous and (if appropriate logics are chosen) concise specification of the
agent’s behaviour [8].

4. Related works

In literature, only few works dealing with formal specification of mobile agents migrations can be found: In [15]. the authors
discuss how mobile agent enabled interorganizational workflows can be usefully modelled using advanced Petri Net techniques
such as Interorganizational Workflow Nets. This model provides a means to verify the correctness (and, so the viability) of the
itineraries of agents used in enacting interorganizational workflows. The authors used  a special class of Petri nets, called
Workflow nets (WF-nets) [27]. In [5].  the paper presents results of a performance comparative study of the three mobile agents
design patterns presented in [6] the Itinerary, Star-Shaped and Branching migration patterns were investigated as solutions to
a distributed information retrieval system. The itinerary assumes the migration of the agent over a sequence of hosts to do a
given job and then return back to the source agency. In the Star-Shaped pattern, the agent migrates to the first destination
agency in the list, executes the relevant job and comes back to the source agency, the agent repeats this cycle until the last agency
on its list is visited. In the Branching pattern, the agent clones itself according to the numbers of agencies in the defined itinerary;
each clone  migrates to one agency, executes its job and notifies the source agency when the job is completed. The three solutions
were modelled with timed Coloured Petri Nets.

In [24]. An agent itinerary specification language is defined; the specification language is basically inherited from those of
existing process algebras, e.g., CCS and  π - calculus, because, according to the authors, they provide well-studied foundations.
In [16]. Another itinerary language, MAIL, is introduced to model the mobile behaviour of proactive agents. The language is
structured and compositional so that an itinerary can be constructed recursively from primitive itineraries. Special constructs to
support the specifications of different kinds of itineraries are provided: sequential, conditional, concurrent, and loop itineraries.
The operational semantics of the language is defined in terms of a set of inference rules.  MAIL is amenable to formal methods
to reason about mobility and verifies correctness and safety properties.

In [29]. The authors present a new approach to ensure the secure execution of itinerary-driven mobile agents, in which the
specification of the navigational behaviour of an agent is separated from the specification of its computational behaviour.  Each
host is empowered with an access control policy so that the host will deny the access from an agent whose itinerary does not
conform to the host’s access control policy. A host uses model checking algorithms to check if the itinerary of the agent
conforms to its access control policy written in µ -calculus.

In [22].  The goal was to provide both a specification language to model and support reasoning about the coordination of mobile
agent systems, and an executable language to control their deployment and operation at runtime. Agents can migrate and thus
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“hop” from host to host in order to perform distributed computations. This is modelled through the p-calculus notion of channel
mobility.

Another work [9] presents a State charts-based development process for mobile agents which allows for a seamless transition
from the specification of mobile agent behaviour to its implementation.  [10] Proposes a method aiming to optimize MA itineraries.
In [3] a high-level language for mobile agents with timed interactions and explicit locations is presented. Authors in [4] introduce
and study process algebra able to model the systems composed of processes (agents) which may migrate within a distributed
environment comprising a number of distinct locations.

5. Theoretical background: the rewriting logic

The rewriting logic [17] is a powerful unifying paradigm for most of formal models of concurrency. It   is a computational logic
that can be efficiently implemented and that has good properties as a general and flexible logical and semantic framework, in
which a wide range of models of computation can be represented. In particular, for programming language semantics [25].

5.1 Rewriting logic semantics
In rewriting logic the rules are similar to those of equational logic but have a completely different significance [17].  A rule T
T’ do not mean any more T equal  T’ but T  becomes T ’. The rule is a basic action allowing the transition of the system from one
state to another.  The rewriting logic describes the changes of the system so that the state is represented by an algebraic term;
the transition becomes a rewriting rule and the distributed structure, an algebraic structure modulo a set of axioms E.

Syntax in rewriting logic is given by a signature (Σ, E) where Σ is a  set  of functions and  E a set of axioms. A rewriting theory
T= (Σ, E, L, R) in rewriting logic is composed of a signature (Σ, E) and by a set of labelled rules R with labels in L. These rules
describe the behaviour of the system and the rewritings are performed on the classes of equivalences of the terms modulo the
axioms E. The states of the system are specified as algebraic data types, the basic changes which may occur in the system and
in parallel are specified by rewriting rules, the set of axioms E capture the structural properties of the system, a possible state of
the system is represented by an equivalence class [ t ]of a term t modulo the structural axioms E.

Given a rewrite theory R, we say that R entails a sequent [ t ] [ t’ ] and write R |- [ t ] [ t’ ]  if and only if  [ t ] [ t’ ] can be
obtained by finite application of the following rules of deduction:

(1) Reflexivity
[ t ]  ∈ TΣ, E (X)         [ t ] [ t’ ]

(2) Congruence

For each  f  (function symbol)  ∈ Σn  n ∈ IN

[ t ] [ t’ ] ...[ tn ] [ t’n ]

f [ t1 ,...,tn ] f [ t’1 ,...,t’n ]
(3) Replacement

For each rewrite rule

r : [t (x)] [t’(x)]   We have- -

[ w1 ] [ w1’ ] ...[ wn ] [ w’n ]

[ t (w / x) ] [ t’ (w’ / x’)]-- -

(4) Transitivity

[ t1] [ t2] [ t2] [ t3]

[ t1] [ t3]

(1)

(2)

(3)

(4)
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Notice that equational logic is obtained by adding the next symmetry rule, this rule has no meaning in rewriting logic because
changes in time are irreversible.

[ t’ ] [ t ]
[ t ] [ t’ ]

5.2 The MAUDE Language
MAUDE [7]. is a fully reflective programming language and development environment based on  rewriting logic and its equational
logic sublanguage to specify formal executable environments. Full MAUDE is an object-oriented formal language derived from
MAUDE. In Full MAUDE a class defines the structure of an object, and objects are specific instances of a class.

A class consists of a class identifier (Cid), which is a sort, and a list of attributes that are sorts, including class or object
identifiers. Classes also support multiple inheritance with subclasses that inherit all the attributes of parent classes.

class C | attribute
1
: Sort

1 
, … , attribute

n 
: Sort

n 
.

< Oid_Name : C | attribute
1
: variable

1
, … , attribute

n
: variable

n 
>

msg syntax : Oid Sort
1 
Sort

n 
-> Msg .

Each object has an object identifier (Oid), a class identifier, and a list of attributes. Each message type has a name and a list of
arguments. Rewrite rules in Full MAUDE transition the system from a configuration of objects and messages to a new configuration
of objects and messages, so that they define all the possible transitions for the concurrent system.

In MAUDE, the general form required of rewrite rules used to specify the behaviour of an object-oriented system is as follows:

m1,..., mn < O1: C1 / atts1 >  ...  < Om: Cm / attsm > =>

< Oi1: Ci1 / attsi1 >  ...  < Oik: Cik / attsik >

< Q1: D1  / 1
"atts  > … < Op: Dp  / p

"atts  > 1
'

q
'm m,...,  if  C

where the m1,…,mn  are message expressions,

O1,…,On ; Oi1, … ,Oik  and Q1,…, Qn are objects such as
          {Oi1, … ,Oik}  {O1,…,On }

C is the rule’s condition. A rule of this kind expresses a communication event in which n messages and m distinct objects
participate. The outcome of such an event is as follows:

• The messages m1,. . . , mn disappear;

• The state and possibly even the class of the objects Oi1, … ,Oik may change;

• All other objects  vanish;

• New objects Q1,…, Qn are created;

• New messages m’1 ,..., m’q  are sent.

6.1 Algebra of itineraries for mobile-agents
This proposition is based on the algebra of itineraries proposed in [15]. modified and  enhanced with an operational semantics
in term of  rewriting logic rules :

Let {A{i}*}  where {i}* denotes strings of integers identifying an agent or a clone of an agent  be a finite set of mobile agents. For
generating names for agents and their clones the following assumption is done: When an agent A{i} is cloned k  times, its clones
are named A{i}1, …  , A{i}k   and  let A ={a1,a2 , … ,an} be a finite set of activities and S ={s1,s2 , … ,sn} a finite set of sites to be
visited. Itineraries (denoted by I ) are  formed as follows representing the null activity, atomic activity, parallel, sequential,

(5)
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nondeterministic, conditional nondeterministic behaviour, and have the following syntax:

• The null activity : 
• The atomic activity,  As

 which means the agent A moves to site s and executes the action a
• The parallel behaviour :  I  Π  I’  which means the itinerary I in parallel with the itinerary I’ 
• Sequential behaviour : I  I’  which means itineray I then the itinerary I’ 
• Nondeterministic behaviour : I  | I’  which means  I or I’ 

• Conditional nondeterministic behaviour :         which means if condition C is true  then  I else  I’ , C is a Boolean expression.

6.2 Formal patterns for Mobile agent based systems
One approach that can simplify and improve the development of complex systems based on mobile agents are the use of design
patterns similar to those proposed in [1] ,[2], [5], [20], [26].

In [15]. It is shown that itineraries are associative with an element identity , so it is easy to  conclude that itineraries are a
special case of strings rewriting theory modulo a set of axioms E=AI.

Under these considerations we can propose a rewriting logic based operational semantics in term of MAUDE rules.The
configuration is in this case a set of agents and messages, messages will be used to mark important steps of the itinerary  such
as the achievement of activities.

a

I  | I’
c

nil, s0

a1, s1

a3, s3

a2, s2

a4, s4

a6, s6 a7, s7
a5, s5

a9, s9

a8, s8

Figure 1. An example of a mobile agent  itinerary
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Figure 2. Verification in MAUDE of a mobile agent itinerary

Additionally two sets (Site) for places to be visited by the mobile agent and (Activity) for the activities to be performed by the
mobile agent are assumed to be predefined.

A class MWorker (for mobile agents as mobile workers) with  two attributes : ‘site’ and ‘activity’ is also defined. A mobile agent
will be specified by the term < A:Mworker s:s0 , a:a0>  which at the right-side of a rule means : The mobile agent A moves to
the site s0 to perform the activity a0, and at the left-side of  a rule it means that the activity a0 is already performed by the agent

A in the side s0. The activity a0 is essentially built upon the invocation of a Web-process. Since the aim of the study is the
behavioural aspect of the itinerary enactment  and for the sake of simplicity,  the state of the agent is not taken into account. It can
be modelled in MAUDE easily by a set of additional attributes.

A particular itinerary enactment is performed by one agent and starts at a source  site  and ends at a target site, at intermediary
steps, the agent may clone itself to perform some parallel tasks so that the configuration may sometimes involve more than  one
agent. After achieving parallel tasks, clones have to declone themselves so that the itinerary terminate with only one agent
which is exactly the original one who launches the itinerary  at the source site. In what follows the different itinerary constructs
are modelled as MAUDE rules.
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(1) Agent basic Movement

Different cases have to be envisaged for agent movements:

The agent is in site s1 with no activities to perform here and has to move to site s2 to perform activity a1

<A: MWorker |s:s1, a: nil >=> < A: MWorker| s: s2, a:a1>

After achieving activity a1 in site s1, the agent moves to site s2 to perform activity a2

<A: MWorker| s1:site, a1: activity >=> < A: MWorker| s2:site, a2: activity>

The agent have to perform sequentially two activities a1 then a2 in the same site s1

<A: MWorker| s1:site, a1: activity >=> < A: MWorker| s1:site, a2: activity>

(2) Sequential behaviour.

The basic rule presented above can be used to specify a sequence of more than one activity, so that for n steps (n sequential
activities), n rules are necessary, for example an agent A  is in a site s0 and have to perform sequentially 3 activities (a1,a2, a3) in
three sites respectively s1,s2 and s3 ; this can be expressed as follows.

3
3

2
2

1
10

a
s

a
s

a
s

nil
s AAAA ⊕⊕⊕

This sequence can be modelled in MAUDE  like this

<A: MWorker| s:s0, a: nil>=>  <A: MWorker|s: s1, a: a1>
<A: MWorker| s:s1, a: a1>=>
                                     <A: MWorker|s: s2, a: a2><A: MWorker| s:s2, a: a2>
<A: MWorker|s: s3, a: a3>

(3) Parallel Composition.

a1, s1 a2, s2 a4, s4

a6, s6 a7, s7

a9, s9

a8, s8

nil, s0

Decloning Omitted

Figure 3. A wrong itinerary for a mobile agent
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Figure 4. Verification in MAUDE of a wrong  itinerary enactment

Two itineraries composed by “P” are executed in parallel. 2
2

1
1

a
s

a
s AA Π  means that the agent A  has to perform activities a1 in site

s1 and a2 in site s2 concurrently. Parallelism  imply cloning of agents. Since agent A has to perform actions at both s1 and s2 in

parallel. The agent A is assumed in site s0 and have to perform the itinerary )( 2
2

1
10

a
s

a
s

nil
s AAA Π⊕

The MAUDE  rules for this itinerary are as follows :

<A: MWorker| s:s0, a: nil> =>  <A1: MWorker |s:s1, a:a1><A2: MWorker |s:s2,a: a2>

<A1: MWorker| s:s1, a:a1><A2: MWorker| s:s2,a: a2> =>   <A: MWorker| s:s0, a:nil>

The second rule is the decloning rule, it may be used in different manners and to represent different situations, the clones can
before decloning themselves perform complex itineraries then declone themselves in a predefined  site from  where the rebuilt
agent  can continue its itinerary.

(4) Nondeterministic Behaviour.
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In this proposition the nondeterminism presented in [15]  is extended to more than two choices, since MAUDE has an interleaving
semantics, we can specify nondeterministic behaviour in a very natural manner.

As example we assume  this itinerary:

)( 3
3

2
2

1
10

a
s

a
s

a
s

nil
s AAAA ⎟⎟⊕

The MAUDE specification can be like this

<A:MWorker|s:s0,a:nil>=><A1: MWorker| s:s1, a:a1>
<A: MWorker|s:s0,a:nil>=><A1:MWorker| s:s2, a:a2>
<A: MWorker|s:s0,a:nil>=><A1:MWorker| s:s3, a:a3>

Executing any one of these three rules in a nondeterministic manner will disable automatically the two others.

(5) Conditional nondeterministic behaviour.

A conditional nondeterministic choice between two activities a1 and a2 can be for example expressed like this

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⎟
⊕

c
AA

A
a
s

a
snil

s

2
2

1
1

0

Since MAUDE rules are conditional this expression can be specified easily as  follows:

<A: MWorker| s:s0, a: nil> =>

                                     <A1: MWorker| s:s1, a:a1>  if  c

<A: MWorker| s:s0, a: nil> =>   <A1: MWorker| s:s2, a:a2> if  not c

We used Maude for windows under Eclipse, next listing (figure 2) is the source of the specification in MAUDE as an object
oriented module of this itinerary. MAUDE  offers a number of commands for verifying properties of the modelled system, the
most powerful are rewrite command and search command.

In this example we used the rewrite command to verify that an enactment of the itinerary of the previous example by a mobile
agent “Mos”  is correct i.e. the correct activities are performed in the right order and at the final stage we have the original mobile
agent that launched the enactment at the home site (s0). rewrite command causes a specified term to be rewritten using the rules
and  equations, in the given module. In figure 4 we tried  with a wrong specification (see figure 3 for the itinerary graph ) where
a decloning of two clones is omitted,  the itinerary is launched by a mobile agent ‘Sim’  but at the last stage not only some
activities are not performed but we end the itinerary with  two clones ‘Sim1’ and ‘Sim2’ rather than ‘Sim’ alone which is the
initiator of the itinerary.

7. Conclusion

This work tries to show how rewriting logic can be used as a powerful tool for verification and rapid prototyping of complex
systems such as mobile agents based systems, especially the MAUDE language is a  reflective language with very interesting
possibilities in complex systems modelling. This work is a part of a number of other ones dealing with algebraic specification of
complex systems and automated code generation from rewriting logic based formal models.

References

[1] Al-Shrouf, F. M. (2008). Facilitator Agent Design Pattern of Procurement Business Systems, 32nd Annual IEEE International
Computer Software and Applications Conference, compsac, p. 505-510.

[2] Aridor, Y., Lange, D. B. (1998). Agent design patterns: Elements of agent application design, In: Proceedings of the Second
International Conference on Autonomous Agents, ACM Press.

(6)

(7)



   28                                    Electronic Devices    Volume  1   Number  1    March   2012

[3] Ciobanu, G., Juravle, C. (2010). Mobile Agents with Timers, and Their Implementation . Essaaidi et al. (Eds.): Intelligent
Distributed Computing IV, SCI 315, p. 229–239. springerlink.com c_ Springer-Verlag Berlin Heidelberg  (ref5)

[4] Ciobanu1, G., Koutny, M. (2011). Timed Migration and Interaction with Access Permissions Butler, M., Schulte, W. (Eds.): FM
2011, LNCS 6664, p. 293–307.

[5] De Araújo Lima, E . F., De Figueiredo, J. C. A., Guerrero, D. D. S. (2004). Using Coloured Petri Nets to Compare Mobile Agent
Design Patterns,  Electronic Notes in Theoretical Computer Science  95, p. 287–305.

[6] De Araújo Lima, E. F., De Lima Machado, P. D., De Figueiredo, J. C. A., Sampaio F. R. (2003). Implementing Mobile Agent
Design Patterns in the JADE framework,  In: Special Issue on JADE of the TILAB Journal EXP.  

[7] Duran, F., Meseguer, J. (2007). MAUDE’s module algebra, Science of Computer Programming, 66 (2) 125-153.

[8] Fisher, M., Ghidini, C. (2010). Executable specifications of resource-bounded agents Auton Agent Multi-Agent Syst 21 p.
368–396.

[9] Fortinoa, G., Russoa, W.,  Zimeob, E. (2004). A statecharts-based software development process for mobile agents  Information
and Software Technology 46, 907–921.

[10] Gavalas, A.,  Politi, C. T. (2006). Low-cost itineraries for multi-hop agents designed for scalable monitoring of multiple
subnets  Computer Networks 50, 2937–2952.

[11] Grimm, V.,  Railsback, S. F. (2012). Designing, Formulating, and Communicating Agent-Based Models Heppenstall, A. J., et
al. (eds.), Agent-Based Models of Geographical Systems, 361.

[12] Guo, Q., Zhang, M. (2009). A novel approach for Multi-Agent-Based Intelligent Manufacturing System. Information
Sciences, 179 (18) 3079-3090.

[13] Lange, D. B., Oshima, M. (1999). Seven Good Reasons For Mobile Agents,  Communication  of the ACM, 42(3).

[14] Ling, S., Loke, S.W. (2002). Advanced Petri Nets for modelling mobile agent enabled interorganizational workflows. Proceedings
of Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems,  ECBS’02  8-11,
p. 245 – 252

[15] Loke, S. W., Schmidt, H., Zaslavsky, A. (1999). Programming the Mobility Behaviour of Agents by Composing Itineraries. In:
Proceedings. of the 5th Asian Computing Science Conference on Advances in Computing Science,  p. 214 – 226. 

[16] Lu, S., Xu, C. ( 2005). A formal framework for agent itinerary specification, security reasoning and logic analysis. 25th IEEE
International Conference on Distributed Computing Systems Workshops,  June  6-10,  p. 580 – 586

[17] Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency, Theoretical Computer Science, 96 (1) 73-
155.

[18] Niranjan Suri, N.,Vitek, J. (2009). Mobile Agents  Book chapter, Encyclopedia of Complexity and Systems Science, p.5604-
5618 (ref6)

[19] O’Malley, A., Athie, L. S., Deloach, S. A.(2000).Comparing performance of static versus mobile multiagent systems, In
National Aerospace and Electronics Conference (NAECON) Dayton, OH, October 10-12.

[20] Ojha, A. C., Pradhan, S. K., Patra, M. R. (2007). Pattern-Based Design for Intelligent Mobile Agents , In: 4th International
Conference on Innovations in Information Technology, November 18-20,  p. 501-505.

[21] Patel, R. B., Garg, K. (2005). A Comparative Study of Mobile Agent and Client-Server technologies  in a Real Application, In:
11th International Conference on Management of Data (COMAD 2005), Goa, India.

[22] Peschanski, F., Darrasse, A., Guts, N., Bobbio, J. (2007). Coordinating mobile agents in interaction spaces, Science of
Computer Programming,  66, 246–265.

[23]  Garg, R. B.,  K. (2005).  A Comparative Study of Mobile Agent and Client-Server technologies  in a Real Application, In:11th
International Conference on Management of Data (COMAD 2005), Goa, India.

[24] Satoh, I. (2004). Selection of mobile agents,  Proceedings of. In: 24th International Conference on Distributed Computing
System, p. 484 – 493

[25] Serbanuta, T. F., Rosu, G., Meseguer, J. (2009). A rewriting logic approach to operational semantics, Information and
Computation, 207 (2)  305-340.



            Electronic Devices    Volume   1   Number   1    March     2012                          29

[26] Tahara, Y., Ohsuga, A. (2001). Behaviour Patterns for Mobile Agent Systems from the Development Process Viewpoint ,
Proceedings of the 5th International Symposium on Autonomous Decentralized Systems,  p. 239 – 242.

[27] Van Der Aalst, W. M. P. (1997). Verification of workflow nets. In: Proceedings of 18th International Conference on  Application
and Theory of Petri Nets, LNCS 1248, Springer-Verlag, p. 407–26

[28] Xu, D.,Wang, H. (2002). Multi-agent collaboration for B2B workflow monitoring, Knowledge-Based Systems, 15 (1)  485–491.

[39] Yang, Z., Lu, S.,Yang, P. (2006). Runtime Security Verification for Itinerary-Driven Mobile Agents. 2nd IEEE International
Symposium on Dependable, Autonomic and Secure Computing. p.177 – 186.

[30] Zhuge, H. (2003). Workflow and agent-based cognitive flow management for distributed team cooperation. Information and
Management,  40(1) 419–429.

Biographies

Faiza Bouchoul  is a lecturer in software engineering at Ferhat Abbas University  (Sétif – Algeria),  she
holds magister diploma at Mentoury university (Constantine – Algeria), and a doctoral thesis at
Ferhat Abbas university (Sétif – Algeria ), currently  preparing HDR  diploma and activates as a
research member in LRSD laboratory in Ferhat Abbas university, she’s working on paradigms and
tools for specification  and verification of complex systems.

Mohammed Mostefai is senior lecturer in automatism with the title of professor at Ferhat Abbas
university – Algeria. He holds engineer diploma in  Electronics in 1988  at Ferhat Abbas University,
the Masters and then the PhD of Automatic and Industrial Software  at Lille University– France in
1994. His research interests are in the area of monitoring of complex systems. He is currently  at the
head of the laboratory of Automatic and software engineering (LAS laboratory), he supervises many
doctorate  students and research projects


