
 52 Electronic Devices Volume 3 Number 2 September 2014

Junyan TAN1, Virginie FRESSE2, Frederic ROUSSEAU3

1Hohai University
College of the Internet of Things Engineering
200 JinLin Road 213000, Changzhou,China
2Hubert Curien Laboratory UMR CNRS 5516
18 Rue du Professeur Benoît Lauras
42000 Saint-Etienne, France
3TIMA Laboratory, UJF/CNRS/Grenoble INP

SLS Group 46, Avenue Félix Viallet
Grenoble, France
tanjy@hhuc.edu.cn, firstname.surname@univ-st-etienne.fr, frederic.rousseau@imag.fr

ABSTRACT: Experimental approaches used for architecture exploration and validation are often based on configurable
logic device such as FPGA. NoC architectures require multi-FPGA platforms as the resources of a single FPGA are not big
enough. Partitionning a NoC on multi-FPGA requires special techniques for allocating communication channels, physical
links and suitable resource allocation scheme. We present a scalable emulation platform and its associated design flow based
on a multi FPGA approach that allows quick exploration, evaluation and comparison of NoC solutions. The efficiency of our
approach is illustrated through the deployment of the Hermes NoC and its exploration on several FPGA platforms.

Keywords: FPGA platforms, Networks on Chip, Chip architecture, multi-FPGA platform

Received: 18 June 2014, Revised 29 July 2014, Accepted 3 August 2014

© 2014 DLINE. All Rights Reserved

1. Introduction

Networks on Chip (NoCs) have emerged as a viable option for designing scalable communication architectures for SoC and
MPSoCs for signal and image processing applications [1]. However, the design of NoC means making several architectural
choices, just like buffer sizing, flow control policies, topology selection. These choices must be made at the design time keeping
in mind that the final NoC must stratify a set of critical constraints which depend on the target application such as: latency,
energy consumption, design time. The design space being very wide, automation of the design flow and automatic architecture
exploration must be considered to ensure a rapid evaluation and test of each solution. Mathematical and experimental approaches
are used to accelerate the architecture exploration. Experimental approaches use simulation or emulation with different abstraction
levels. FPGA devices are commonly used for emulation and test. Today, several NoC architectures have successfully been
implemented on mono FPGA platforms [1] [2] [3]. One single FPGA device usually does not offer enough resources any more to
support a complete large Network/ System on Chip architecture. Such large systems need to be partitioned over several

From Mono-FPGA to Multi-FPGA Emulation Platform for NoC Performance
Evaluations

 Electronic Devices Volume 3 Number 2 September 2014 53

reconfigurable devices, most of time on multi-FPGA platforms for emulation. Existing tool target the mono FPGA platform and
there is no any development tool proposed for the multi-FPGA implementation. In Erreur ! Source du renvoi introuvable. a NoC
specific multi-FPGA technique is proposed. The major drawback of this work is that the platform was tested with synthetic traffic
generators, and authors have not studied the impact of time accuracy loss on real world applications.

Porting a NoC on multi-FPGA platforms means that designers have to manually adapt the architecture with a manual partitioning
and to manually integrate inter- FPGA communication blocks. Such adaptations lead to a significantly increased design time.

The aim of this work is to propose a generic design flow for the emulation of large NoC-based MPSoCs on multi FPGA platforms.
This design flow integrates a tool that automatically builds the NoC architecture that is partitioned and ready for the multi FPGA
implementation. The tool also includes logic blocks to handle the inter-FPGA communications, and all necessary logic required
for emulation.

2. Design Flow for The Generation of the Multi-FPGA Emulation Platform

A new design flow must be proposed to generate the emulation architecture to multi-FPGA platforms. The design flow takes as
inputs 1) the NoC architecture, 2) parameterized adaptation blocks: a description of the multi-FPGA platform: the number of
available FPGA chips, the type (resources) of FPGA and the physical links used for inter-board communications, 3) emulation
blocks: traffic generator and traffic receptors.

2.1 NoC architecture
Network on Chip (NoC) are communication architectures with high scalability, high performance and energy efficient customized
solution. NoC architecture is composed of Network Interface (NI), Switch, Links and Resources. These basic elements are
connected using a topology to constitute the NoC architecture.

Data transmitted in NoC architectures are sent through messages. Several data can be sent with one message and one data can
be sent with several messages. One message is a set of packets and a packet is a set of flits (Flow Control Unit). The flit is the
basic element transferred by a NoC. Packets are sent with idle times specified with data injection rate. Data injection rate is
defined as the ratio of the amount of receiving data on its ability to carry data. A 50% data injection rate indicates that the packets
use 50% of the bandwidth.

2.2 Adaptation Blocks for Inter - FPGA Communication
Both parallel links and serial links can be used for the intercommunication between FPGA. The high-speed serial link is used as
inter-FPGA communication medium in this paper but any other serial or parallel communication can be inserted with the identical
methodology. FPGA giants Xilinx and Altera integrate high-speed serialiser/deserialiser (SerDes) [3]. High-speed SerDes are
made of two functional blocks: the Parallel in Serial out (PISO) block and the Serial In Parallel Out (SIPO) block.

Figure 1. Parameterized IP Block for Inter-FPGA Communications

FIFO-Out

FIFO-In

Adaptor 1

Adaptor 2

FIFO-Out

FIFO-In

De-Multiplexing

Multiplexing

FIFO-Out

FIFO-In

 54 Electronic Devices Volume 3 Number 2 September 2014

Parameterized adaptive blocks are designed for connecting links of the NoC inside the FPGA to IP blocks dedicated to external
high-speed serial links. The partitioning depends on the number of physical links (NPL) and the number of inter-FPGA (NIF)
links specified.

Two scenarios may exist:

1. N
PL

 >= N
IF

: One inter-FPGA link uses one physical link. Adaptations consist in inserting FIFO to adapt frequencies. FIFOs are
designed to store one packet.

2. N
PL

 < N
IF

: One inter-FPGA link uses several physical links. In this case, multiplexers, de-multiplexers and FIFOs blocks are
inserted between the serial link and the NoC architecture.

Two VHDL parameterized adaptive IP blocks are designed (Figure 1) and inserted in library of the design flow. Adaptor1 contains
parameterized FIFOs and is used for scenario 1). Adaptor2 contains parameterized FIFO, multiplexer and de-multiplexer blocks
required for scenario 2). These blocks are automatically parameterized according to external and internal frequencies, size of
data, number of serial-links and size of NoC.

2.3 Traffic Generators
For the emulation of the NoC, IP blocks connected to the NoC are replaced by deterministic traffic generators (TG). These traffic
generators simulate the traffic flow between IP blocks inside the NoC with a stochastic traffic distribution to reproduce the
behavior of a real IP block. Several traffic generator models have been proposed but none of them are suitable for image and
signal processing applications. For example the source address is not given, the number, position and type of data to send either.
The proposed TG contains respectively the address of the initiation core, address of the destination cores, the size of transmitted
packet, the number of packets to be sent to the destination core, the number of inter-FPGA link crossed.

Several emulations are proposed:

• First emulation explores timing performance according to the data injection rate. The data injection rate is automatically and
dynamically generated from a 0% to a 100% load.

• Second emulation is based on a given data injection rate (specified by the designer as a constant value).

2.4 Traffic Receptors
The traffic flow generated by traffic generators is sent through the NoC and then received by traffic receptors. Traffic receptors
analyze received packets and extract transmission performances of the NoC. Two types of traffic receptor exist: the statistics
from traffic receptor and the trace traffic receptor. Both type of traffic receptors are parameterized VHDL blocks inserted in the
design flow.

2.5 Design Flow
The design flow depicted in Figure 2 automatically generates the emulation architecture for mono-FPGA or multi-FPGA platform.
The design flow is based on the existing NoC architecture implemented on a mono-FPGA platform.

The designer can insert at the input of the design flow any existing NoC as long as the HDL description is available. From the
classical NoC architecture, the designer manually selects the number of FPGAs, the number of external serial links and the

partitioning of the NoC with a text file containing several fields. The designer associates switches to the target FPGA in the

partitioning field. He indicates how to connect the switches together in the connection field. Then the inter-FPGA communication
using aurora blocks are associated to switches in the specifying field. In the example depicted in Figure 3, switches (0, 0) (0, 1)

are implemented on FPGA_0 and other nodes on another FPGA. Switch (0, 0) from the first FPGA is connected to switch (0, 2)

with one aurora communication block. Based on Lex and Yacc, this text file is analyzed, and then, the tools remove the internal
connections (links between switches) of the NoC description, inserts parameterized adaptation blocks detailed in 2 and serial

blocks generated by the development tool associated to the FPGA from the libraries of the design flow. Adaptation blocks

integrate mux-demux blocks and FIFOs that are automatically parameterized according to the size and number of flits to transmit.
The partitioning selected implies that the node is associated to its switch. Both cannot be implemented on two devices. It is the

reason why the text file contains only information about the switches, not about nodes anymore. The design flow generates a

 Electronic Devices Volume 3 Number 2 September 2014 55

Figure 2. Design flow for the generation of the emulation platform

Figure 3. Example of partitioning specified in the design flow

new NoC architecture with multi-FPGA capabilities according to the designer requirements. At this step only the communication
architecture is generated. Without any text file, the NoC is not partitioned and is implemented onto one FPGA only. In this case,
The design flow directly goes to step Emulation block insertion presented later.

Then for mono-FPGA or multi-FPGA platforms, traffic generators and traffic receptors are connected to all nodes of the NoC in
the Emulation block insertion step according to the type of emulation detailed in section 3. This step inserts to all switches TG
and TR (by instantiating components declared in the package) whatever the traffic required. The complete emulation architecture

Classical NoC architecture

Multi-FPGA platform?

Adaptation Blocks

Inter-FPGA
Communication

Blocks

Traffic receptors
Traffic generators

Emulation platform
(VHDL synthesizable)

Emulation block insertion

New NoC architecture with multi FPGA
capablities

Interconnection and partitioning
specifications

no
yes

* * Partitionning
Switch (0, 0) = FGPA_0
Switch (0, 1) = FGPA_0
Switch (0, 2) = FGPA_1
Switch (0, 3) = FGPA_1
* * Connections
Switch (0, 1) =Switch (0, 2)
* * Spoecifying aurora
Aurora _0_in = Switch (0, 1)
Aurora _0_out = Switch (0, 2)

 56 Electronic Devices Volume 3 Number 2 September 2014

on multi-FPGA platform is then generated in HDL description language. This system is synthesized and implemented using
existing commercial tools for Synthesis and Place and Route tools inserted in the design flow. The designer implements the
complete emulation platform without any hardware requirements.

3. Design Flow for the Hermes Noc on Xilinx FPGA Platforms

The design flow previously presented is adapted to the Hermes NoC on Xilinx Virtex 5 platforms. Xilinx ISE 10.1 with all
integrated tools is used.

3.1 Hermes NoC and ATLAS tool
Hermes is a NoC created by the Catholic University of Rio Grande do Sul [1]. This NoC is a 2D packet switched Mesh using
mainly the XY routing algorithm. The Hermes switch has routing control logic and five bidirectional ports Hermes generated by
ATLAS development tool.

3.2 Reconfigurable FPGA board for emulation
The multi-FPGA platform used for the NoC emulation is the ML506 evaluation board. Each platform contains a Virtex 5 XC5VSX50
FPGA. The ML506 offers the ability to create high speed serial designs utilizing the RocketIO™ GTP transceivers [6]. RocketIO
transceiver with Aurora protocol is used in our emulation platform. It requires a limited design effort to integrate it into an
existing design as Xilinx development tools automatically generates the IP blocks dedicated to the serial interface.

3.3 Criteria for emulation on multi-FPGA
The experimental study is mainly based on the average latency, the number of LUTs and registers.

3.4 Emulation platforms of Hermes NoC
The emulations platforms generated by the design flow are based on a 4*3 Mesh. Previous exploration showed that the
maximum number of nodes on a single Virtex5 FPGA is 64 nodes. We deliberately use a small NoC to compare results with the
mono-FPGA platform. For the multi-FPGA platforms, the design flow splits the NoC, inserts the adaptors blocks and the Xilinx
RocketsIO IP blocks. The time for the multi-FPGA emulation platform is several minutes only (depending on the PC and tools
used).

Figure 4 and Figure 5 presents the emulation platform on a multi-FPGA architecture with respectively N
PL

 = N
IF

= 3 and

(N
PL (= 1)

 < N
IF (= 3)

). The resources used for all emulation platforms (including the mono-FPGA platform) are depicted in Table 1.

Figure 4. Emulation platform generated by the proposed design
flow for the multi-FPGA implementation (scenario 1: N

PL
 = N

IF
)

TG

TG

TG

TG

TG

TG TR

TR

TR

TR

TR

TR
TG

TG

TG

TG

TG

TG

TR

TR

TR

TR

TR TR

01

00

12

11

10

22

31

30

32

21

20

A
daption

blocks1
A

daption
blocks1

A
daption

blocks1

A
da

pt
io

n
bl

oc
ks

1
A

da
pt

io
n

bl
oc

ks
1

A
da

pt
io

n
bl

oc
ks

1

A
ur

or
a

in
te

rc
on

ne
ct

io
n

A
ur

or
a

in
te

rc
on

ne
ct

io
n

A
urora

interconnection

A
ur

or
a

in
te

rc
on

ne
ct

io
n

A
urora

interconnection
A

urora
interconnection

02

 Electronic Devices Volume 3 Number 2 September 2014 57

Figure 5. Emulation platform generated by the proposed design
flow for the multi-FPGA implementation (case 2: N

PL
 < N

IF
)

8% (5796/65280)

8% (2898/32640)

10% (6882/65280)

16% (5260/32640)

On one FPGA
Multi-FPGA 2
Version2

On one FPGAMulti-FPGA 1
Version1

Mono- FPGA

Gain of Slice LUTsSlice LUTsGain of Slice Registers

10%

− 45%

30%

−34%

 X

15% (10098/65280)

15% (5094/32640)

16% (10712/65280)

16% (5356/32640)

27% (8831/32640)

14%

− 42%

 21%

 − 39%

X

Slice Registers

Total

Total

10% (3441/32640)

Table 1. Utilization of resource on FPGA for different NoC implementations

Figure 6. The average latency according to 3 implementation solutions

Data injection rate (%)

0% 20% 40% 60% 80% 100%

1800

1600

1400

1200

1000

800

600

400

200

0

Mono FPGA

Multi FPGA with one AURORA

Multi FPGA with threeAURORAA
ve

ra
ge

 L
at

en
cy

 (N
um

be
r

of
 c

yc
le

s)
 TG TR TG TR

 TG TR TG TR

 TG TR TG TR

A
daptation blocks2

A
urora Interconnection

TG TR TG TR

 TG TR TG TR

 TG TR TG TR

A
ur

or
a

In
te

rc
on

ne
ct

io
n

A
da

pt
at

io
n

bl
oc

ks
2

 01 11

 00 10

 02 12 22 32

 21 31

 20 30

 58 Electronic Devices Volume 3 Number 2 September 2014

The multi-FPGA version1 emulation platform requires 30% more registers and 21% more LUTs than the mono- FPGA emulation
platform. The number of registers increases with a factor of 10% and the number of LUTs 14% for version 2 compared to the
mono-FPGA emulation platform. With both emulation platforms, the size (number of nodes) of the NoC can be easily extended
as the number of resource required for the inter-FPGA communication islow. We assume that the number of nodes depends on
the number of FPGA * 64 nodes. Moreover, the number of resources for a reconfigurable logic device and for an application
specific device can be predicted from multi- FPGA platforms. The most precise evaluation (with 10- 15% of resources removed)
is from the N

PL
 = 1 scenario.

The timing evaluation is then based on the sending of 50 packets. Figure 6 presents the average latency for all implementations.
For the mono-FPGA scenario, the traffic receptor receives 15 flits with the average latency of 92 cycles below the saturation
point.

The saturation points can be extracted. This point corresponds to the saturation of the architecture. The saturation points are
identical for the mono-FPGA and the platform in version1. Multiplexing data for the inter-FPGA communication (version2)
changes the position of the saturation point. As the number of inter-FPGA crossed is extracted and specified for each packet, the
 iming performance can be extracted from case 1. Timing for transmitting packet through the aurora protocol (t

aurora
) takes 24

cycles for initialization and 1 cycle/flit. FIFOs at the input (t
FIFO_in

) and output (t
FIFO_out

) take 2 cycles for controlling and 1
cycle/flit. Therefore it is possible to obtain the timing performance on the mono FPGA by removing these three latencies. For the
experiment, the added latency for the inter-FPGA communication is 478 cycles. By removing this time, the end to end latency
obtained from case 1is very close to the mono-FPGA implementation by few cycles. The precise timing exploration and the
saturation point extraction can be made when N

PL
 = N

IF
. Timing evaluations are more difficult when N

PL
 <> N

IF
 .

4. Conclusion

A fast and automatic design flow for the implementation of NoC on multi-FPGA platform is proposed. The emulation platform
generated is based on a synthesizable code of an existing NoC architecture, high speed serial links and multi-FPGA platforms.
This design flow is an “open” design flow: all inputs (NoC, inter-FPGA links or multi-FPGA platform) can be changed or updated.
From a partitioning given by the user, the design flow automatically splits the communication architecture, inserts adaptation
blocks and emulation blocks and generates the code of the multi-FPGA architecture. Several implementations can be used for
resource and timing evaluations.

References

[1] Moraes, F., Calazans, N., Mello, A. (2004). HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks
on Chip, Integration, The VLSI Journal, 38 (1) 69–93. Oct.

[2] Zeferino, C. A., Susin, A. A. (2003). SoCIN: A Parametric and Scalable Network-on-Chip, In: Proc. 16th Symposium On
Integrated Circuits and System Designs, p. 169-174.

[3] Hilton, C., Nelson, B. (2005). PNoC: a flexible circuit-switched NoC for FPGA-based Systems, in Field Programmable Logic,
Aug. p. 24–26.

[4] Kouadri, A., Senouci, B., Petrot, F. (2007). Scalable Multi-FPGA Platform for Networks-On- Chip Emulatio, Application -
specific Systems, Architectures and Processors, ASAP. IEEE International Conf. on, p.54-60, 9-11 July.

[5] Dave, L. SerDes Architectures and Applications. Technical Report of National Semiconductor Corporation.

[6] http://www.xilinx.com/

