
 26 International Journal of Information Studies Volume 10 Number 1 January 2018

PPO - An Approach to Personalized Web Acceleration

Shailesh Shivakumar, P.V Suresh
Indira Gandhi National Open University
India
shailesh.shivakumar@gmail.com

ABSTRACT: A responsive web page plays critical role in the overall success of the online channels. It directly impacts user
experience and also influences the search engine rankings. Most of the web systems use personalized web to provide relevant
and contextual information to web users.

Personalized web provide content, data and functionality based on various personalization parameters such as user interests,
user preferences, user profile attributes, location, device, user navigation patterns, purchase behavior and such. Personalized
web is a key business enabler to drive the user traffic and keep the web users engaged by providing useful information. One
of the main side effects of personalized web is on the performance. Traditional performance optimization techniques cannot
be scaled and reused for personalized web due to the dynamics of the personalized content and due to security/privacy
concerns. In addition to relevant content, web users would also expect good performance in personalization scenarios. Web
architecture needs to design for optimal performance in personalization scenarios for long-term success of web systems.

In this paper we have tried to address this crucial issue by discussing various aspects of personalized performance optimization
algorithms.

We have discussed a novel approach using “Personalization performance Optimization” (PPO) framework that has resulted
in 30% increase in page response times and 35% increase in cache hit ratio during our experiments.

Keywords: Web Performance, Caching Strategy, Performance Engineering, Personalized Web Acceleration, Web Performance
Optimization

Received: 2 September 2017, Revised 4 October 2017, Accepted 10 October 2017

© 2018 DLINE. All Rights Reserved

Nomenclature

Following abbreviations are used in this paper:

• WPO: Web Performance Optimization

 International Journal of Information Studies Volume 10 Number 1 January 2018 27

• URL: Universal Resource Locater

• AJAX: Asynchronous JavaScript and XML

• SEO: Search Engine Optimization

• RWD: Responsive Web Design

• SDLC: Software Development Life Cycle

• SLA: Service Level Agreement

• JSON: JavaScript Object Notation

• CDN: Content Delivery Network

• DR: Disaster Recovery

• CMS: Content Management System

• DAM: Digital Asset Management

• DBMS: Database Management System

1. Introduction

As web is becoming a greater influence on the community, there are various initiatives to enhance the web experience. Web
pages are now made highly responsive, interactive and personalized and it is available on all mobile devices.

With increase in complexity, the page is stuffed with heavier images, has multiple scripts and style sheets that impact the page
performance. This also has an impact on the mobile version of the pages.

Addressing the performance issues is a complex issue as it involves multiple layers and systems. We need to look at all the
components involved in the delivery pipeline of the web page. Bulk of the existing literature covers the performance optimization
of public web scenarios as part of Web performance Optimization (WPO). WPO involves best practices and techniques to
increase the speed of web pages [1]. It impacts customer churn [2], Site traffic [3] and other factors.

Performance optimization would be even more challenging for personalized web. For personalized web, content/data varies
based on user role and the context. As a result the performance optimization techniques for public web content cannot be
effectively used. To address this key challenge we propose a novel Personalized Performance Optimization (PPO) framework and
develop the algorithms to automatically pre-fetch the content/asset for personalized scenarios. We will look at the detailed
examples of PPO and its constituent algorithms and the results of using PPO on a sample application.

1.1 Brief Introduction about Personalized Web
Personalization is an inevitable part in modern web systems. Most of modern web architectures adopt personalization to some
extent.

As the paper majorly discusses the performance improvements for personalized web, let us look at the prominent features of
personalized web. In order to serve the most relevant content and drive enriching and engaging experiences, web systems are
designed to “personalize” the web experience. Majority of B2C web sites in e-commerce and retail domain use personalization
as a key value differentiator and as a main revenue generator. Personalization is an umbrella term that would involves multiple
flavors such as location-based personalization, role based personalization, context-based personalization, device-based
personalization and such. All personalization techniques use relevant factors (such as location, user role, access device, user
transaction history, user navigation history, user content rating and such) to serve the most relevant content in most suitable
form for the web user. Here are some of the personalization scenarios in web:

1. Users would see different web content based on their user roles or based on their profile attributes.

2. Content within a page section varies based on explicitly specified user preferences.

3. Content would be rendered in user’s language.

 28 International Journal of Information Studies Volume 10 Number 1 January 2018

4. Product recommendations would vary based on user’s purchase history or user’s past ratings.

5. Page layout would vary based on user’s access device.

6. Search results are based on user’s location.

7. The page content would be served based on explicitly mentioned user preferences.

8. The page functionality and services vary based on user’s roles and security privileges.

Anonymous personalization: Though majority of personalization techniques need user login, it is possible to personalize based
on other anonymous factors such as demographics, location, access device etc. that do not require user login.

At a high level, personalization happens for following types of web site information: Content (web site content/information
personalized for user), data (database information personalized for user) and function/services (web site functionality personalized
for the user).

Based on the trigger for personalization, we can classify the personalization as implicit (automatic personalization by the web
site based on user attributes and past history) and explicit (based on the explicitly specified user preference attributes).

Scope of the paper: In this paper we mainly discuss performance optimization techniques for content and data personalization
for both implicit and explicit scenarios.

As such other personalization scenarios such as page layout customization is not covered in this paper.

1.2 Performance Challenges in Personalized Web
We are exploring personalized web from the performance prism. Traditional caching and content pre-fetching techniques fall
short of effectively addressing performance challenges of personalized web. Basic reason for this is due to the fact that web-
caching techniques treat all content uniformly and assumes that all users would use it. In personalized web scenario the content
would vary based on various user attributes. Hence it would not be possible to use the cached content uniformly across all user
sessions.

Second problem related to performance web is about caching personalized content. It would simply be not possible to cache the
content used by all users in cache; this model would quickly become unmanageable due to memory restrictions and cache size
limitations. On similar lines, user-based content pre-fetching would not be scalable with increase in users. Another challenge
with personalized caching is related to privacy and security concerns.

In summary the variation in content types (web content, images and other personalized content), variation in user types and
potential explosion of user base would pose challenges in adopting pre-fetching and caching techniques used for public
scenarios.

In this paper we discuss a novel personalized performance optimization system consisting of various algorithms to address this
problem.

1.3 Paper organization
In this paper we discuss related work in section 2. We then look at main performance optimization techniques and best practices
for public web scenarios in section 3. In section 4 we discuss performance optimization of personalized web in greater detail. In
this section we would also elaborate personalized performance optimization framework and algorithms for access graph and
dependency graph construction along with pre-fetch and caching techniques. Conclusion and results are summarized in section
5. Scope for future work is discussed in section 6.

2. Literature Review & State of the Art

WPO concept was pioneered by Steve Souder’s in 2004. There is good literature [5] [6] [10], which describe generic best
practices, and rules that need to be followed to speed up the public web pages. There are also online resources [7] [8] [9] which
provide thumb rules for optimizing web. The books and the online resources provide rich information about various optimization

 International Journal of Information Studies Volume 10 Number 1 January 2018 29

techniques that can be carried out for page components.

As far pre-fetching techniques is concerned, there are various techniques discussed in the literature. File-based pre-fetching
algorithms use references [14], correlation between file accesses for automatic pre-fetching [15]. For pre-fetching in web
scenarios, papers [12, 28] discuss pre-fetching using users’ browsing behavior to predict future accesses, access history and
web log mining is discussed in paper [16] and [18]; paper [19] uses fetch probability using the objects lifetime and popularity.
Weighted graph [13] and partial match prediction [20] and semantic techniques [21] are other pre-fetching techniques used. The
technique discussed in [24] segregates static and dynamic content for pre-processing and pre-fetching. The paper [25] discusses
some of the problems with dynamic and personalized content generation and briefs dynamic content delivery models such as
location based cache, object cache. PPM method discussed in [27] builds a history tree to predict target URLs.

Most of the existing techniques pre-fetch the content based on these conditions:

• Create a navigation graph based on access patterns.

• Attach the access probability in the nodes based on the access frequency.

• Pre-fetch the resource based on access probability in the graph.

The technique is effective for file pre-fetching and web page pre-fetching. For personalized web, most of the techniques use
popularity and log analysis as main criteria to predict the resource that needs to be pre-fetched.

An architecture proposed in [22] proposes user management agent at web proxy layer to analyze user profiles and create HTTP
response based on it.

Existing WPO Techniques
State of the art techniques focus majorly on public web scenarios. Some of the key web optimization techniques are Asset
optimization techniques (minification of web assets, image compression), page compression techniques, asynchronous data
loading, caching methods (data caching, content caching, page caching), CDN usage and minimization of HTTP requests (using
on-demand/lazy loading).

Scope of Improvement to Current Techniques
The dynamics of personalization needs more sophisticated pre-fetching and caching techniques in order to make it more
effective. Here are the high-level gaps we have noticed with existing techniques with respect to personalized web:

3. Personalized Performance Optimization (PPO)

So far we have seen the state of the art techniques in WPO for public web. The techniques discussed in previous sections would
work well for public user scenarios. Web applications are increasingly offering personalized presentations. Personalized web
provides most relevant contextual information, content and services based on various factors such as user attributes,
demographics, pre-configured user preferences, user’s social activities, user transaction history, user access device etc. The
main intention of the personalized web is to provide a more engaging experience to the end user with useful content.

Performance optimization techniques for the public user scenario would not be fully useful in personalized web scenarios. The
fundamental reason for this being the variance in content from user to user. It would not be possible to pre-fetch or cache all
possible variations of content and assets for potentially huge number of users.

 30 International Journal of Information Studies Volume 10 Number 1 January 2018

Hence in order to address this challenge we will present a novel performance optimization framework for personalized web
scenario in this section.

3.1 Public vs Personalized Scenarios
Before presenting the framework, let us look at the main differences between the public and personalized scenarios applicable
for performance optimization:

Table 1. Public vs. Personalized Scenarios

As we can see from the above table, personalized web offers its own layer of complexity for performance optimization exercise.

3.2 Personalized Performance Optimization Framework
We have proposed a novel performance optimization framework as depicted in figure 1.

Given below are the key functions of various modules of PPO. We would be discussing the working of each of these modules
in greater detail while discussing PPO algorithms:

• Monitoring Services: Various modules in this category track logged-in user actions. These services are mainly implemented
using web analytics software to track user’s social activities, page performance, user’s navigation patterns and user’s transactions.
They would feed this information to PPO for building access graphs and for user grouping.

• Resource grouping module would group web resources (web content, images) based on similarity of their tagged metadata.

• User grouping module would dynamically construct user groups based on their similarity in access paths.

 International Journal of Information Studies Volume 10 Number 1 January 2018 31

Figure 1. Personalized Performance Optimization Framework

• Access Graph Module would construct user access path based on information obtained from monitoring services.

• Dependency Graph Module would identify the associated content ids using their tagged metadata.

• Personalized Pre-fetch Module would pre-fetch the related web resources using access graph and dependency graph.

• Personalized Cache Module would cache various content ids belonging to resource groups.

The PPO framework addresses the challenges we discussed in previous section through various components. Let us look at the
way PPO works by looking at a user journey as described in Figure 2.

Figure 2. PPO usage in a user journey

When the user logs into a private web page, a valid user session is created. The user session consists of (at a minimal) user
profile attributes, user roles and user preferences. User would access the content, data and navigates to various pages as a part
of user journey.

As mentioned earlier, static content/asset caching cannot be used for personalized scenarios due to its dynamic nature. To
address this, PPO groups users based on their navigation patterns and uses personalized caching to cache content ids. The

 32 International Journal of Information Studies Volume 10 Number 1 January 2018

underlying assumption is that users belong to same user group would be interested in same content and assets. Also the
navigation paths used by users belonging to same group would be same. With this assumption it would be possible to create
a manageable cache that can be used across various users.

PPO has various monitoring services which tracks and monitors various user actions such as click action, downloads, path
traversals, social activity, user transactions and page performance. These monitoring services play a vital role in “understanding”
user behavior and the insights are used to cache the information.

Using these monitoring services, PPO builds the map of personalized content/asset usage through these actions:

• User groups and access graph is constructed based on user navigation patterns.

• Dependency graph is constructed for various web resources.

Using dependency graph and access graph, PPO accelerates the performance of personalized web by pre-fetching and caching
the content ids belonging to resource groups.

The information stored in personalized cache would be used throughout user journey. Content ids of various resource groups
are also used for other users belonging to similar user group.

3.3 Experiment Design
We have implemented PPO in an application with 30 pages. The web application was created for e-commerce domain with 30
pages spanning across 6 hierarchy levels. Top level pages such as landing page, home page have an average page size of 700KB
and average size of other levels are 500KB. There are 5 distinct user groups (buyer, admin, reseller, guest and seller) who can
access the application. Each user group has a distinct navigation pattern. For instance a typical buyer would navigate across 6-
level page hierarchy as follows: login page, home page, search page, product details page, shopping cart page and check out
page. Similarly each user role has a distinct navigation pattern.

Custom monitoring service was developed to track the user navigation on the server side. The monitoring service would track
the navigation based on user group. The identified navigation pattern information and dependency graph would be used to pre-
fetch the content from subsequent pages cache it in personalized cache for a specific role.

We created five distinct user groups (roles) and each group had 20 users. The navigation behavior and URL/resource access
pattern for each user group was varied.

The experiment was conducted on 4 node-cluster with each node running 8GB RAM and 2.4GHZ CPU. In-built cluster-wide
cache replication was used for this experiment.

It should be noted that pre-fetching and caching would cause slight overhead initially based on the amount of data to be pre-
fetched (we are going to look at this overhead in section 3.5).

3.4 PPO Algorithms
In this section let us look at various algorithms used in PPO. We mainly discuss 4 algorithms in this section: Access Matrix
algorithm which constructs and manages access matrix; dependency graph algorithm to develop content/asset dependency
tree; personalized pre-fetch algorithm which is the core algorithm for pre-fetching content ids and personalized cache algorithm
for managing personalized cache.

Terminologies used in Algorithms
Firstly let us look at some of the common terms used in the PPO algorithms:

• Content chunk: It is the content fragment that is rendered on the page section. A content chunk is modular, independent and
reusable content piece.

• Popularity: Key metrics to determine content and asset popularity are number of views, number of downloads and number of
shares. Metrics is mainly obtained from monitoring services.

 International Journal of Information Studies Volume 10 Number 1 January 2018 33

• Metadata: They are the tags which are associated with content and images which provide more information about the content.

Concepts used for Pre-fetching and Caching

We will introduce two main concepts used by PPO algorithms below:

• Content Ids: These are the content chunks or content fragments within a web page which form the basic caching unit. In
personalized scenario, it makes little sense to cache the entire page as such cache would be least likely be used across different
users (due to huge variation in content). Hence we identify the content chunks/fragments, images which stay static across user
sessions. When we decompose the personalized page into its constituent sections, we could identify the page sections that
would stay common for various users; we term such common static content as content ids. For example in a product details page,
we have product brief description chunk, product specifications chunk, product image and product promotion chunk. Out of
these 4 content chunks, first three chunks (product brief description chunk, product specifications chunk, product image)
would remain same across various users. A special metadata (such as contentIdFlag) would be tagged with the content so that
pre-fetch algorithm would use it as marker during pre-fetching content ids for a specific resource group. Content of product
promotion chunk based on user loyalty points specific for a given user. Hence first three chunks would be ideal candidates for
caching. Besides reusability other main reason for not caching user specific information (such as product promotion chunk) is
due to security and privacy reasons.

• Resource Groups: For optimization purposes we group the content ids into “resource groups”. Resource groups are mainly
indicated by the URL pattern. For example resource group “products” is represented by URL pattern “/home/products/”
Products resource group would include all content Ids with this URL pattern such as /home/products/productdetails/
main_chunk.html, /home/products/mainimage.jpeg and such. Intuitively resource groups provide a logical grouping of content
which would be accessed by users with similar information needs and interests. For example users who access product pages
would also access product detail pages. Resource grouping module would map all the content ids for a given resource group
offline.

• User Groups: This represents clusters of users who have similarity in their navigation patterns. User group is determined
dynamically. Monitoring services feed the access patterns of various users to PPO and PPO dynamically calculates the similarity
and groups the users. The navigation patterns are at resource group level we will discuss this in more details in next section.

Figure 3. PPO High Level Steps

 34 International Journal of Information Studies Volume 10 Number 1 January 2018

Using content ids, we could create a manageable cache in personalized scenario that could be reused across various users.
Content ids would also help us achieve balance between performance (achieved through caching) and dynamic nature of
content (achieved through partial cache refresh and using non-cached personalized content). Resource groups help us to create
an optimized pre-fetch strategy. Creating a second level of abstraction for web resources and users would provide us following
benefits:

• Keep the pre-fetching frequency manageable.

• Provide efficient caching techniques.

• Addresses the problem of content variety and user variety.

High level steps in the PPO framework are depicted in Figure 3.

Dependency Graph Construction

A dependency graph is used mainly for identifying associated/dependent content ids. For instance in product details page, a
product thumbnail image has a hard dependency on the full-size product image (as the user is most likely going to see the full-
size image when they do a mouse-over or click the product thumbnail image). We can notice here that the dependency relationship
is irrespective of the user role (all users are going to view the same thumbnail and full-size image). On similar lines we could
establish dependency relationships between product specification content chunk and product specification document.

Dependency graph is mainly constructed based on relationship established through tagged metadata. Unlike the relationship in
access matrix (where the access patterns and probability are calculated dynamically), the dependency relationship is static. The
metadata tagged with content and assets is used by the algorithm for matching and identifying the dependent content. Degree
of metadata matching would be the main criteria for identifying dependency relationship. Table 2 is subset of metadata for
product thumbnail image and product full-size image:

Table 2. Metadata for thumbnail and full size image

In the above example we can see that the metadata values for “product family”, “product line” and “site page” are exactly same
for both product thumbnail image and product full-size image and only the “Asset Type” metadata is different. This results in
high degree of matching and the algorithm creates an association relationship between these two assets. In such scenarios if
any one of the associated assets are fetched, other associated assets will be “marked” for pre-fetch.

Access Graph Construction

The algorithm for access matrix is a variation of Grioen and Appleton algorithm used for OS files [11]. There are many differences
in the way the relationship is established in our algorithm:

• The algorithm uses monitoring services to track user actions and feed the information to server for construction of access

 International Journal of Information Studies Volume 10 Number 1 January 2018 35

graph. This is required in order to understand the user access done on client side.

• Using the access information obtained from the monitoring services, users are grouped using cosine similarity algorithm.

• The algorithm create access matrix consisting of resource path, user cluster, next best resource and next best resource
probability.

We have seen in earlier sections that one of the key problems in personalization space is that of variety in content and users. It
would not be possible to efficiently pre-fetch and cache the data at a user level, as it would result in frequent pre-fetch activity
and quickly reaches cache size limitations.

User Grouping based on Similarity of their Access Paths: We create user groups using the similarity in their access paths using
cosine similarity algorithm. To start with, historical user access data will be used for calculating similarity. User grouping would
be continuously updated based on user access thereby improving the efficiency of the algorithm.

Let us see how we group the users with a small example. Table 3 given below are navigation frequency for three users. Number
in each cell represents the access frequency to that resource group; for example user 1 had accessed the web resources in
account resource group 3 times on an average in the session and accessed resources in product resource group twice on an
average.

Table 3. User Navigation frequency based on Resource groups

With this matrix we will use the cosine similarity which is given by formula

Similarity is calculated based on angle between the vectors.

Cosine similarity of user 1 and user 2 is calculated as follows

Cosine Similarity (user 1, user 2) = dot(user 1, user 2) / || user 1|| || user 2||

dot(user 1, user 2) = (2)*(1) + (3)*(2) + (1)*(4) = 12

|| user 1|| = sqrt((2)^2 + (3)^2 + (1)^2) = 3.74165738677

|| user 2|| = sqrt((1)^2 + (2)^2 + (4)^2) = 4.58257569496

Cosine Similarity (user 1, user 2) = 12 / (3.74165738677) * (4.58257569496) = 12 / 17.1464281995 = 0.699854212224

Similarly cosine similarity of user 1 and user 3 is 0.9686 and cosine similarity between user 2 and user 4 is 0.9258.

Based on cosine similarity we group user 1 and user 3 into one group and user 2 and user 4 into second group.

Access Graph Creation: Once user groups are created we would model the access graph from user group to resource group.

sim (a, b) =
→ → a . b

⎪a⎪* ⎪b⎪

→ →

→ →

 36 International Journal of Information Studies Volume 10 Number 1 January 2018

Figure 4. Access Graph based on user group and resource group

The access graph is constructed based on monitoring the navigation patterns of users in various groups. Weights on the edge
between user group and resource group in the directed graph indicates the navigation probability. For a given user group, when
the user accesses a web resource, monitoring service would record the user access pattern. Monitoring component at the server
end would track the access requests within a given time window to determine the probability. Next fetch probability is continuously
updated with each user request. Matrix representation of access graph is given in table 4.

Table 4. Access Matrix

The matrix indicates that for user group 1, content ids in account resource would be most likely be used (with access probability
70%). Hence the pre-fetching algorithm would pre-fetch and cache the identified content ids within account group.

Personalized Pre-fetch Algorithm

Pre-fetch and caching algorithm is the core algorithm of PPO which anticipates and pre-fetches next-best resource and caches
it. The personalized pre-fetch algorithm is given below:

The personalized pre-fetch algorithm uses the access matrix and dependency graph to automatically pre-fetch the information
at the server end at run time. Pre-requisites for the algorithm are as follows:

• User groups are created based on resource access pattern similarity.

• Access graph and access matrix are constructed.

• Dependency graph is constructed.

High-level steps of the algorithm are as follows:

Figure 4 provides this representation.

 International Journal of Information Studies Volume 10 Number 1 January 2018 37

1. When the web user logs in, the pre-fetch algorithm determines the user group to which the logged in user belongs. Then it
would look up in access matrix for determining the next-best resource group for the corresponding user group.

2. If the content ids of the next-best resource group are already present in the personalized cache, then the algorithm exits. If the
resource group content ids are not cached, it would pre-fetch the content ids for a given resource group. Content ids could be
retrieved from back-end database, content management systems (CMS) or from digital asset management (DAM) systems. All
pre-fetched content ids would be cached using multi-level cache. We will look at the cache structure shortly.

3. For each of the content id pre-fetched in step 2, the pre-fetch algorithm would also pre-fetch the dependent content ids using
dependency graph. Dependent content ids would also be cached in personalized cache.

4. Multi-level personalized cache would be used for subsequent requests.

For all subsequent requests, server renderer would first check in personalized cache before making back end calls.

Personalized Cache Structure

Cache hit is one of the key metrics that determines the success of PPO. Hence cache should be designed to maximize cache hit
ratio. Personalized cache is essentially a two-level hierarchical object cache for efficient management of cache operations.

We have used two level cache to efficiently manage the cached content ids:

• First level cache maps the resource groups to content ids.

• Second level cache maps the content id to actual content.

A sample first level and second level cache structure is depicted below:

 38 International Journal of Information Studies Volume 10 Number 1 January 2018

Table 5. First Level Cache

Table 6. Second Level Cache

As mentioned earlier no user-specific information would be cached due to security and privacy concerns. A web page is a mix
of static and dynamic content. We could take the complete advantage of the static nature of the content through this two-level
cache.

Usage of personalized cache: Personalized pre-fetch algorithm determines the user group (based on access pattern) and
determines the next-best resource group to be fetched. At this time, all the content ids belonging to the next-best resource group
would be retrieved from first level cache and using these content ids actual content objects would be fetched from second level
cache.

Popular Content Caching: Besides content ids belonging to various resource groups, we would also cache the popular public
content (such as most viewed public image, most popular public content fragment and such). These public content would again
be cached with their content id. These public content ids could be used for public pages (such as user registration page,
welcome page, FAQ page and such).

Cache Invalidation: When we say the content as “static”, it only means that it is less frequently updated than its dynamic
counterpart. In order to ensure that we minimize the stale content, we need to devise appropriate cache invalidation procedures.
One naïve approach is to set a constant time out value for each of the cached items (like the way we discussed in public web user
scenario). This requires a good understanding of update frequency of the underlying content to achieve good balance between
performance and content freshness. Even the best cache time out value would have some amount of freshness lag. Hence PPO
uses on-demand cache invalidation. When the content is updated in underlying data sources (such as DBMS, CMS or DAM),
the content update activity would trigger a cache invalidation service which removes the cache entry corresponding to the
content being updated. This forces PPO to reload the cache with fresh entry.

3.5 Definition and Measurement of Performance Metrics
For assessing the performance impact of PPO we mainly use three metrics: page response time, time to first byte and cache hit
ratio.

Page response time is the overall time taken for rendering the page DOM. Time to first byte (TTFB) is the time taken for first byte
of the response to reach user agent (browser). Cache hit ratio indicates the utilization of cache for web requests. We study and
compare these metrics with earlier scenarios at various user loads.

For analyzing and quantifying the impact of PPO, we monitored and measured the web pages that meet following criteria:

• Content of page (web content and static content) is based on the user role. This is to ensure that personalized cache is used
for a given user session.

• Each page has mix of text content and non-text content. Textual content is mainly web content fetched from content management
system (CMS) and static assets (image, video, and document) is retrieved from Digital Asset Management system (DAM). A mix
of content types would prove the effectiveness of PPO for various content types.

We loaded the system using Apache JMeter and we took the average value of the metric at various loads. Except for the user

 International Journal of Information Studies Volume 10 Number 1 January 2018 39

load other parameters such as system configuration, data volume and server configuration was kept constant. With all these
factors being made constant we take the readings of page response time (total page load time) for the identified pages before and
after using PPO.

Impact on Page Response Time

The main metric captured is the page response time measured by total page load time in seconds. This metric is chosen as it
includes DNS lookup time, TCP connection time, time for first byte, full DOM load time and render time and hence gives the
complete picture of impact of PPO. Page metrics could be measured through various tools such as Firefox Network monitor,
Fiddler and various other browser extensions and plugins.

Each entry in the following table is the average of page load times for the candidate pages and we take average if 3 readings at
each user load before and after PPO. We hypothesize that the mean page load times has decreased after PPO and we use paired-
t test to prove our hypothesis:

Table 7. Page Load times before and after PPO

We could notice an obvious decrease in the page load time. The average page load time after using PPO is 1.707 seconds as
compared to earlier 2.44 seconds which brings about 30% improvement in average page response time. With δ δ δ δ δ mean= -0.733, μ
0=0 and mean standard deviation Sδ δ δ δ δ = 0.5998 degree of freedom as 9, we use following formula to get the t-statistic:

We get t-statistic as 3.863 and we could prove our hypothesis with 99.81% probability.

Note:

1. We noticed that initial page load time has increased slightly (from 2.75 seconds before PPO to 3.15 seconds after PPO). This
is due to the time spent in pre-fetching and populating personalized cache for a given user role.

2. For the first time user access, we did not notice significant improvement before and after PPO. This observation can be

 40 International Journal of Information Studies Volume 10 Number 1 January 2018

attributed to the construction of access matrix, user grouping and personalized cache population

Impact on Time to First Byte (TTFB)

TTFB is a measure of efficiency of server side computation. Table 8 is the measure of TTFB:

Table 8. TTFB before and after PPO

Impact on Cache Hit Ratio

Cache hit ratio is the ratio of objects found in cache to total cache lookups. It is a measure of cache effectiveness and how well
the cache was used for a given application scenario. We compared the cache hit ratio of personalized cache with a regular cache;
regular cache was constructed by loading the full page content on demand for specific user with LRU cache invalidation criteria.
The usefulness of regular cache was limited only to particular user that too for limited time period. As regular cache had the
entire page content, entire cache entry had to invalidate even if one of its constituent elements changed. Figure 5 compares
cache hit ratio at various user loads for personalized cache with regular cache.

Figure 5. Cache Hit Ratio of personalized cache vs regular cache

We tested the PPO framework at varying user loads and measured the cache hit ratio. We compared the same user load with
traditional cache and its cache hit ratio.

The graph clearly indicates a marked improvement in cache hit ratio of personalized cache created by PPO as compared to regular

 International Journal of Information Studies Volume 10 Number 1 January 2018 41

cache. The cache hit ratio for personalized cache is about 75% on average whereas it is about 40% on an average for regular
cache. There is an average improvement of 35% in terms of cache hit ratio.

We tested the PPO for maximum 100 users who formed 6 user groups and 5 resource groups. Each resource group cached an
average of 100MB of content ids in personalized cache.

3.6 Comparison of PPO with Existing Algorithms
One of the papers [26] discusses the real-time evaluation of prefetching algorithms. Good number of predictive pre-fetch
algorithms uses web log analysis to model user’s navigation behavior [16] [18]. Other popular pre-fetch algorithm is PPM
detailed in [27]. However both log analysis method and PPM are mainly based on access history which is somewhat different
from personalization scenarios.

We compared these two methods with PPO using “Cache hit rate” and “overhead rate”. Table 9 provides the comparison:

As per the documented analysis, Log-based analysis adds 6% additional overhead for the network traffic.

The main reason for PPO to achieve a high cache hit rate is due to the fact that it factors the personalized user behavior and user
group behavior as compared to generic user behavior. Additionally it employs personalized cache for caching the data efficiently.

3.7 Threats to Validity
The hit ratio and overhead rate was calculated for the application with 30 pages. Though 30-page applications reflect a medium-
sized real-world application, PPO should be tested on a large web application which typically consists of more than 100 web
pages and associated web resources. The scalability, resource utilization and performance of PPO needs to be validated for large
web applications. We used 5 user groups with total of 100 distinct users. As the personalized cache is mainly based on user
group, we need to test PPO with large user group and a large set of distinct users.

Finally the behavior of PPO needs to be examined on infrastructure with lower configuration.

6. Conclusion and Experiment Results

In this research paper, we have proposed a novel personalized performance optimization framework for enhancing the performance
of personalized web. As part of PPO we have also presented following algorithms.

• Dynamically group the users based on similarity in their access paths.

• Develop access path graph and dependency graph for user access path and web resources respectively.

• Pre-fetch the relevant and personalized resources using access path graph and dependency graph.

• Design of personalized cache for efficiently caching web resources.

We tested the PPO for personalized scenarios and measured the metrics related to average page response time and cache hit
ratio:

• Average page response time improved by 30% on an average for personalized scenarios

• Cache hit ratio was measured against traditional caching and there was an improvement of 35% in cache hit ratio on an average.

References

Table 9. Second Level Cache

 42 International Journal of Information Studies Volume 10 Number 1 January 2018

[1] Web performance optimization: http://en.wikipedia.org/wiki/Web_performance_optimization

[2] For Impatient Web Users, an Eye Blink Is Just Too Long to Wait: http://www.nytimes.com/2012/03/01/technology/impatient-
web-users-flee-slow-loading-sites.html?_r=2

[3] Akamai Report: http://www.akamai.com/html/about/press/releases/2009/press_091409.html

[4] Speed Is A Killer – Why Decreasing Page Load Time Can Drastically Increase Conversions: http://blog.kissmetrics.com/
speed-is-a-killer/.

[5] Souders. S – Even Faster Web Sites: Performance Best Practices for Web Developers; O’Reilly Media, 2009

[6] Souders. S – High Performance Web Sites: Essential Knowledge for Front-End Engineers; O’Reilly Media, 2007

[7] Best Practices for Speeding Up Your Web Site: http://developer.yahoo.com/performance/rules.html

[8] Web Performance Best Practices: http://code.google.com/speed/page-speed/docs/rules_intro.html

[9] WPO – Web Performance Optimization: http://www.stevesouders.com/blog/2010/05/07/wpo-web-performance-optimization/

[10] Stefanov. S – Web Performance Daybook; O’Reilly Media, 2012

[11] Grioen, James., Appleton, Randy. (1994). Reducing File System Latency using a Predictive Approach, In: Proceedings of the
1994 Summer USENIX Technical Conference, Cambridge MA, (June).

[12] Padmanabhan, V. N., Mogul, J. C. (1996). Using predictive prefetching to improve World Wide Web latency. ACM SIGCOMM
Computer Communication Review.

[13] Gu, Peng., Wang, Jun., Zhu, Yifeng., Jiang, Hong., Shang, Pengju. (2010). A Novel Weighted-Graph-Based Grouping
Algorithm for Metadata Prefetching. CSE Journal Articles. Paper 44.

[14] Kotz, D., Ellis, C. S. (1993). Practical Prefetching Techniques for Multiprocessor File Systems, J. Distributed and Parallel
Databases . 1 (1) 33-51, Jan. 1993

[15] Lei, H., Duchamp, D. (1997). An Analytical Approach to File Prefetching, In: Proc. USENIX Ann. Technical Conf., (January).

[16] Lee, H., An, B., Kim, E. (n.d.). Adaptive Prefetching Scheme Using Web Log Mining in Cluster-Based Web Systems. 2009
IEEE International Conference on Web Services.

[17] Dahlan, A., Nishimura, T. (n.d.). Implementation of asynchronous predictive fetch to improve the performance of Ajax-
enabled web applications, In: Proceedings of the 10th International Conference on Information Integration and Web-based
Applications & Services - IiWAS ‘08.

[18] Yang, Q., Zhang, H., Li, T. (n.d.). Mining web logs for prediction models in WWW caching and prefetching, In: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ‘01.

[19] Venkataramani, A., Yalagandula, P., Kokku, R., Sharif, S., Dahlin, M. (n.d.). The potential costs and benefits of long-term
prefetching for content distribution. Computer Communications, 367-375.

[20] Bouras, C., Konidaris, A., Kostoulas, D. (n.d.). Predictive Prefetching on the Web and Its Potential Impact in the Wide Area.
World Wide Web, 143-179.

[21] Xu, C., Ibrahim, T. (n.d.). Towards semantics-based prefetching to reduce Web access latency. 2003 Symposium on
Applications and the Internet, 2003. Proceedings.

[22] Frelechoux, L., Kamba, T. (1997). An architecture to support personalized Web applications. Computer Networks and ISDN
Systems, 29. Chicago

[23] Reda, Azarias., Cutrell, Edward., Noble, Brian. 2011. Towards improved web acceleration: leveraging the personal web.
In: Proceedings of the 5th ACM workshop on Networked systems for developing regions (NSDR ’11). ACM, New York, NY,
USA, 57-62.

[24] Douglis, F., Haro, A., Rabinovich, M. (1997), December. HPP: HTML Macro-Preprocessing to Support Dynamic Document
Caching. In: USENIX Symposium on Internet Technologies and Systems p. 83-94.

[25] Ravi, J. (2009). A survey on dynamic Web content generation and delivery techniques. J Network Comput Appl.

[26]de la Ossa, B., Gil, J. A., Sahuquillo, J., Pont, A. (2007). Web prefetch performance evaluation in a real environment.

 International Journal of Information Studies Volume 10 Number 1 January 2018 43

In: Proceedings of the 4th international IFIP/ACM Latin American conference on Networking (LANC ’07). ACM, New York, NY,
USA, 65-73.

[27] Palpanas, T., Mendelzon, A. (1999). Web prefetching using partial match prediction, In: Proc. of the 4th International Web
Caching Workshop, San Diego, USA.

[28] Fan, L., Cao, P., Lin, W., Jacobson, Q. (1999). Web prefetching between low-bandwidth clients and proxies: potential and
performance. In: ACM SIGMETRICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

