
Print ISSN: 0976-416X
Online ISSN: 0976-4178

IJCLR 2025: 16 (3)
https://doi.org/10.6025/ijclr/2025/16/3/91-98

DLINE JOURNALS

 International Journal of
Computational Linguistics Research

Exploring Ambiguity in Context-Free Grammars through
Randomized Search

Naveneetha Vasudevan1 and Laurence Tratt2

1Informatics, King’s College London

Strand, London, WC2R 2LS. United Kingdom

naveneetha@yahoo.com

2Informatics, King’s College London

Strand, London, WC2R 2LS. United Kingdom

laurie@tratt.net

ABSTRACT

Ambiguity detection in context-free grammars (CFGs) is critical for parsing programming languages, yet it is

undecidable in the general case. Traditional methods, such as exhaustive search and approximation techniques,

either struggle with scalability or risk false positives. This paper introduces a novel search-based approach,

embodied in the prototype tool SinBAD, for detecting ambiguity in context-free grammars (CFGs). SinBAD

employs random search techniques to generate sentences from a given grammar and uses an Earley-based

parser to identify ambiguous parses. The tool’s architecture supports configurable backends that influence

sentence generation strategies. An extensive experiment compares SinBAD against existing tools—ACLA

(approximation-based) and AmbiDexter (hybrid)—on two datasets: randomly generated CFGs and manually

altered ambiguous grammars from real programming languages (Pascal, SQL, Java, C). Results show that

SinBAD detects more ambiguities in random grammars within shorter time frames and performs comparably

on programming language grammars. The study highlights the strengths of random search in exploring diverse

parts of the search space, though results vary across runs. The paper concludes with a discussion on the

limitations of the random grammar generator. It suggests future directions, including expanding experiments

to larger, real-world grammars and exploring additional search-based techniques.

Keywords: Context-Free Grammars, Randomized Search, Grammar Generators, Search-based Approach

Received: 12 April 2025, Revised 10 June 2025, Accepted 19 June 2025

Copyright: with Authors

1. Introduction

Context-Free Grammars (CFGs) are extensively utilized for defining formal languages, including those used in

dline.info/ijclr 91

dline.info/ijclr 92

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

programming. The complete range of CFGs encompasses ambiguous grammars—those capable of interpreting

inputs in multiple manners. This ambiguity leads to both conceptual and efficiency challenges, resulting in most

parsing algorithms being able to handle only a limited subset of CFGs, thereby steering clear of ambiguity

altogether. However, this comes with drawbacks: the restricted subsets exclude beneficial operations like grammar

composition. The premise of this paper is that parsing with the entire set of CFGs is a valuable endeavor. Ambiguity

poses a significant challenge for languages processed by machines, such as programming languages. When an

input can be interpreted in two different ways, which interpretation should be chosen? Regrettably, it is known

that it is not feasible to statically determine whether a given CFG is ambiguous or not [6].

Over the years, therefore, there has been a steady stream of work trying to uncover ambiguity in arbitrary CFGs.

Exhaustive methods such as AMBER [9] systematically generate strings to uncover ambiguity, but even medium

sized grammars quickly lead to unmanageable huge state spaces. Approximation techniques, on the other hand,

sacrifice accuracy for termination. For instance, ACLA [5] is an approximation method where the original language

of the grammar is extended into an approximated language that can be expressed with a regular grammar.

Since all the strings from the original language are also included in the approximated one, there are no false

negatives reported. However, the approximated language may contain strings that may not be part of the original

one, and therefore the method can report false positives. Noncanonical Unambiguity (NU) Test is another

approximation technique, where the original grammar is converted to a bracketed grammar by adding two

terminals – a derivation (d
i
) and a reduction (r

i
), where i is the

Figure 1. SinBAD architecture

number of the production – at the front, and at the end of every grammar rule respectively. The introduction of

these two terminals makes the bracketed grammar unambiguous. The challenge then, is to find two bracketed

strings from the approximated grammar that map to a string in the original grammar. However, this method

does not scale well for large grammars [3].

Hybrid approaches – where an approximation method is combined with an exhaustive method – increase the

chances of detecting ambiguity. Basten’s hybrid approach [4] – based on grammar filtering – applies an

approximation method (NU Test) to filter out the unambiguous portions of the grammar, and then runs AMBER

on the resulting smaller grammar to detect ambiguities. In principle, Basten’s approach can be extended to

other tools: ACLA, an approximation method, can be combined with CFG Analyzer [1], an exhaustive method, to

search for ambiguous strings of bounded length. However, such hybrid approaches still rely on an exhaustive

search although on a relatively smaller state space.

This paper is the first to explore a random search-based approach to grammar ambiguity detection. Given a

dline.info/ijclr 93

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

grammar, our approach generates random strings, which are then parsed to detect ambiguity. In section 2.1 we

describe our prototype tool: Search-Based Ambiguity Detection (SinBAD). In section 3 we set out the objective of

our experiment, and then explain the choice of various data sets used for our experiment. In section 4 we compare

and analyse our results. In section 5 we highlight the threat to validity of our random grammar generator, and

finally in section 6 we conclude our experiment and provide future directions of our work.

2. Search-based Ambiguity Detection

Search-based techniques seek to find ‘adequately’ optimal solutions for problems that have no algorithmic solution

and whose search space is too big to exhaustively scan. Such techniques have been applied to a wide range of

problems including software itself (see e.g. [7]). Search-based techniques are either purely random or

metaheuristic (such as hill climbing and genetic algorithms). Whereas in a random search the search space of

candidate solutions is scanned randomly, in a metaheuristic search, a fitness function – to distinguish between

a good and a poor solution – is used to guide the search. Since, this is the first paper to explore search-based

techniques to ambiguity detection in CFGs, we have chosen the simplest search-based technique – a pure random

search – for our experiment.

2.1 SinBAD framework

In this paper, we apply search-based techniques to ambiguity detection. We do so using a new tool, SinBAD,

which allows us to experiment with different search-based approaches. Figure 1 shows SinBAD’s architecture.

Given a grammar and a lexer, the Sentence Generator component generates random sentences using a backend

instance. A backend, in essence, is an algorithm that governs how sentences are generated. For instance, a backend

can use a unique scoring mechanism to favour an alternative when expanding a nonterminal, or one that can

generate sentences of bounded length. The generated sentence is then fed to an Earley-based parser to check for

ambiguity. The search stops when an ambiguity is found or when a time limit is exceeded. SinBAD can be

downloaded from https://github.com/nvasudevan/sinbad.

2.2 Definition and Notations

A CFG is a four-tuple N, T, P, S where N is the set of nonterminals, T is the set of terminals, P is the set of

production rules over N × N  T and S is the start symbol of the grammar. V is defined as N  T. A production

rule A: is denoted as P [A] where A  N, and is V*. We define a sentence of a grammar as a string over T*. For

a rule P[A], P[A]
alt

 denotes an alternative, and P[A]
alt

 denotes all its alternatives. The number of alternatives

for a rule and the number of tokens in a rule are denoted as (P[A]) and (P[A]
alt

) respectively. Notation (L,

n) indicates n items chosen randomly from a list L, and [m.. n] indicates a number chosen randomly between

m and n.

2.3 Search-based backends

Given a grammar, Algorithm 1 describes how a sentence is generated. The function START is initialised with a

grammar (G), the start time (ts), the time duration (T) of search, and the threshold depth (D). To generate a

sentence, we start deriving the start symbol S of the grammar by invoking the function GENERATE-SENTENCE

recursively. To derive a nonterminal we randomly select one of its alternatives (line 11). We keep a note of when

we have entered a rule and when we have exited. When the depth of the recursion exceeds a certain threshold

depth, we start favouring alternatives (lines 8, 9).

dline.info/ijclr 94

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

Algorithm 2 shows how an alternative is favoured for the Dynamic1 backend. When invoked for a rule, the function

FAVOUR-ALTERNATIVE uses a scoring mechanism to favour an alternative. The score for an alternative is

calculated as follows: terminal symbols are given a score of zero; for nonterminal symbols, the score is based on

the ratio of their number of derivations that haven’t been fully derived yet to the total number of derivations (line

8). One of the alternatives with a minimum score is then favoured.

3. Experiment

The objective of our experiment is to understand how well our search-based approach uncovers ambiguity. Since

ambiguity is inherently undecidable, it is impossible to evaluate such a tool in an absolute sense. Instead, we

evaluate our approach against two other tools – ACLA and AmbiDexter [2] – and on two sets of grammars: 1000

grammars that we have randomly generated1; grammars for Pascal, SQL, Java and C that have been manually

altered to be ambiguous2.

The three tools differ in their approach: ACLA uses an approximation technique; AmbiDexter uses a hybrid

approach; and SinBAD uses a search-based approach. We evaluate these three tools for both sets of grammars

for varying time limits – 10, 30, 60, and 90 seconds – to understand how long each tool takes to uncover reasonable

quality results. For

1Available at https://github.com/nvasudevan/sinbad/tree/master/experiment.
2Taken directly from [4].

Algorithm 1. Algorithm for generating a sentence

dline.info/ijclr 95

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

the (generally much larger) programming language grammars, we also evaluate the tools for extended periods

(180 and 300 seconds) as the number of production rules is much higher than for our random grammars.

We evaluate AmbiDexter for two versions of a grammar—unfiltered and filtered (with SLR1). AmbiDexter

provides an option for generating filtered versions of a grammar. For random grammars, we generate the

filtered version, and for the altered programming language grammars, we take it directly from [4]. We evaluate

SinBAD with the Dynamic1 and Dynamic2 backends for two threshold depths (D), 10 and 30. We have chosen

these two values for depth to uncover reasonably long ambiguous fragments. Our experiment was performed

on an Intel Core2 Quad Q9450 2.66GHz machine with 4 GB of memory. The maximum JVM heap size for ACLA

and AmbiDexter was 2048Mb.

3.1 Random Grammar Generation Algorithm

Algorithm 3 outlines the algorithm for our random grammar generator. We initialise nonterminal and terminal

sets with equal numbers of symbols. To generate an alternative, a token is picked randomly from set V. Each

rule can have 1 or more alternatives, and each alternative can have 0 or more symbols. The maximum number

of alternatives for a rule and the maximum number of tokens in an alternative is controlled by the MAXalts and

MAXtokens parameters respectively. The MAX controls the maximum number of empty alternatives.

All the grammars the algorithm generates are syntactically valid, though there is no guarantee that they

resemble ‘real-world’ grammars. For example: a grammar with a start rule S: x can’t be derived further; a rule

A: A with no other alternatives never terminates.

Algorithm 2. Algorithm for favouring an alternative for Dynamic1 backend

dline.info/ijclr 96

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

4. Comparison and Analysis

Table 1 displays the results of our experiment. We now present a brief analysis of some of the most interesting

parts.

Given a grammar, ACLA will report it to be ambiguous, unambiguous, or possibly ambiguous (that is, it is unsure

if the grammar is ambiguous). For both sets of grammars,

10 81 355 356 357 15 499 26

30 201 373 371 499 57 634 55

60 316 376 371 545 54 631 80

90 360 378 376 554 72 629 82

10 14bc 16ab 16ab 20 18b 16ac 17ab

30 14bc 16ab 16ab 20 18b 16ac 18ab

60 14bc 16ab 16ab 20 18b 16ac 18ab

90 14bc 16ab 16ab 20 19a 16ac 19a

180 15bc 18ab 19b 20 20 16ac 19a

300 15bc 18ab 19b 20 20 16ac 20

Random CFGs

Altered
real-world
CFGs

 Time

(seconds)

 ACLA

 Unfiltered SLR1 D=10 D=30 D=10 D=30

 - - Dynamic1 Dynamic2

 AmbiDexter SinBAD

Table 1. Number of ambiguities detected for random and programming language grammars

a) Ambiguity not found for at least one of: Java.1, Java.3, and Java.4

b) Ambiguity not found for at least one of: C.1, C.2, C.4, C.5

c) Ambiguity not found for at least one of: Pascal.3, Pascal.5

ACLA performs better when we increase the time limit. For random grammars, ACLA did not report any grammar

to be unambiguous. For the altered programming language grammars, Pascal.3 and Pascal.5 were reported to

be possibly ambiguous. Analysis for the (large) C grammars – C.1, C.2 and C.4 – did not complete within a time

limit of 300 seconds.

AmbiDexter fared better than ACLA for both sets of grammars. For random grammars, increasing the time limit

does not lead to a significant increase in the number of ambiguities found. This is because AmbiDexter searches

for ambiguity based on increasing sentence length. Therefore, for grammars with a short ambiguous fragment,

AmbiDexter is quick to find it. However, when the ambiguous fragment is long, AmbiDexter struggles. For the

altered programming language grammars, the results were slightly better for the filtered version set. This is

dline.info/ijclr 97

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

because in filtered grammars, production rules that do not contribute to ambiguity are filtered out, thus resulting

in a smaller state space. Further, we noted that for larger grammars (such as C), increasing the time limit lead to

better results.

SinBAD, for random grammars, performs better for a lower value of threshold depth (D=10) than for a higher

value (D=30). This is because, for case D=10, sentence generation is quick whereas for case D=30, sentence

generation takes much longer. Generating sentences quicker allows the search to try a greater number of

sentences possible, thereby increasing the chances of detecting ambiguity. Further, Dynamic2 – which has a

better mechanism to converge sentence generation than Dynamic1 – performs better. For the altered programming

language grammars, Dynamic1 performs better than Dynamic2. Dynamic1 uses a scoring mechanism that ensures

every alternative gets an opportunity to be selected for sentence generation. Dynamic2, however, uses a scoring

mechanism that focuses on converging the sentence generation. As a result, Dynamic1 covers a much wider area

of the search space than Dynamic2. As table 1 shows, SinBAD performs much better on random grammars than

the other tools, and performs at least as well on altered programming language grammars.

We also noted that whilst the number of ambiguities found for ACLA, AmbiDexter, and SinBAD’s Dynamic1

stayed the same or increased, Dynamic2 got slightly worse with increased time limits and D=30. This is because

both ACLA and AmbiDexter search through the state space systematically, and therefore the search space for

higher time limits is inclusive of the search space for lower time limits. SinBAD, however, randomly selects

points in the search space, and can give substantially different results from run to run.

5. Threats to Validity

The most obvious threat to validity is our random grammar generator. We have no easy way of being confident

that the CFGs it produces span the entire possible set of CFGs. Although we wrote the generator without any

particular ambiguity tool in mind, it may produce a subset of CFGs which unintentionally favour SinBAD’s

algorithms. In the future, we hope that a CFG equivalent of the work on random generation of automata [8] may

be developed. By using Basten’s set of manually altered real programming language grammars, we have some

confidence that SinBAD’s algorithms work well beyond our random grammars.

6. Conclusion

In this paper, we introduced the concept of a search-based approach to CFG ambiguity detection. Our experiments

show that simple techniques give promising results, detecting a larger number of ambiguities in random

grammars than previous tools, and executing in reasonable time. Our next step is to add more tools to the study

and perform a larger experiment with more real-world-esque grammars to see if these initial results apply to the

sort of CFGs that tend be to be used in practice.

References

[1] Axelsson, Roland., Heljanko, Keijo., Lange, Martin. (2008). Analyzing context-free grammars using an

incremental SAT solver. In: Proceedings of the 35th international colloquium on Automata, languages and

programming, Part II (ICALP’08) (pp. 410–422). Springer-Verlag.

dline.info/ijclr 98

International Journal of Computational Linguistics Research Volume 16 Number 3 September 2025

[2] Basten, Bas., van der Storm, Tijs. (2010). Ambidexter: Practical ambiguity detection. In Tenth IEEE

International Working Conference on Source Code Analysis and Manipulation (SCAM 2010), Timisoara,

Romania, 12–13 September 2010 (pp. 101–102). IEEE Computer Society.

[3] Basten, H. J. S. (2007). MSc. thesis (Master’s thesis).

[4] Basten, H. J. S., Vinju, J. J. (2010). Faster ambiguity detection by grammar filtering. In Proceedings of the

Tenth Workshop on Language Descriptions, Tools and Applications (pp. 5:1–5:9). ACM.

[5] Brabrand, Claus., Giegerich, Robert., Møller, Anders. (2010). Analyzing ambiguity of context-free grammars.

Science of Computer Programming, 75(3), 176–191.

[6] Cantor, David,. G. (1962). On the ambiguity problem of backus systems. (pp. 477–479).

[7] Harman, Mark. (2007). The current state and future of search based software engineering. In: FOSE, (pp.

342–357).

[8] Héam, Pierre-Cyrille., Nicaud, Cyril., Schmitz, Sylvain. (2009). Random generation of deterministic tree

(walking) automata. In: Proceedings of the 14th International Conference on Implementation and Application

of Automata (CIAA’09), volume 5642 of Lecture Notes in Computer Science, pages 115–124. Springer-Verlag,

July.

[9] Schröer, Friedrich Wilhelm. (2001). Amber, an ambiguity checker for context-free grammars. Technical

report. http://accent.compilertools.net/Amber.html.

