
Print ISSN: 2278 – 6481
Online ISSN: 2278 – 649X

JDP 2025: 15 (2)
https://doi.org/10.6025/jdp/2025/15/2/51-58

DLINE JOURNALS

 51 dline.info/jdp

 Journal of Data Processing

Enhancing Constraint Solver Efficiency with Self-Learning Genetic
Algorithms

Hu Xu1 and Karen Petrie2

1Computing School

QMB 1.10, University of Dundee. UK

huxu@computing.dundee.ac.uk

2Computing School

QMB 2.10, University of Dundee. UK

karenpetrie@computing.dundee.ac.uk

ABSTRACT

This paper explores an automated approach to tuning constraint solvers using genetic algorithms (GAs). In

traditional constraint programming, selecting preprocessing parameters is a manual process that requires

expertise, creating a barrier for novices. The authors propose a self-learning genetic algorithm (SLGA) that

leverages knowledge from minor problem instances to guide the search for optimal preprocessing in larger

instances.

SLGA begins by solving small-scale constraint satisfaction problems to identify effective preprocessing strat-

egies. These strategies then form the starting population for the GA when applied to larger problems, replac-

ing the standard random initialization. Two strategies are tested: Learning from Best (LFB) and Learning

from Genetic (LFG), with LFB utilising the best-known methods and LFG employing those derived from

previous GA runs.

Experiments on benchmark problems (BIBD, N-Queen, Golomb, and Langford's number) show that SLGA

outperforms standard GAs in both efficiency and solution quality. Particularly, LFG consistently finds better

preprocessing settings, even when exhaustive search is infeasible. The paper concludes that SLGA is a prom-

ising tool for automating configuration in constraint solving, and future work will explore its application to

more complex and large-scale problems.

Keywords: Constraint Solver Efficiency, Self-Learning Genetic Algorithms, Learning from Genetic models

Received: 18 October 2024, Revised 20 January 2025, Accepted 3 February 2025

Copyright: with Authors

dline.info/jdp 52

 Journal of Data Processing Volume 15 Number 2 June 2025

1. Introduction

The selection of a suitable preprocessing levels for a given constraint problem is an important part of constraint

programming(CP). Efficiently tuning a constraint solver will shorten the search time and reduce the running

cost. The key to increasing the search speed for a constraint solver is partially due to tuning the solvers

parameters [9]. Currently the job of tuning the parameters is done by hand. The skilled researchers picks up

the most suitable preprocessing method using previous experience from similar classes of problems. In most

cases the best preprocessing method in similar classes of problems provide a useful clue to aid the researchers

selection. However this learning curve could be a barrier to novice user in learning how to efficiently use a CP

solver.

Genetic algorithms are a classic global optimization method posed by John Holland [7], which mimic the

competition of organisms in nature and the mechanisms of evolution. Genetic algorithms are usually

implemented in a computer simulation in which a population of abstract representations of candidate solutions

to an optimization problem evolves toward better solutions. In the field of configuration tuning, Carlos [10]

has posed a gender-based genetic algorithm for the automatic configuration of algorithms. In this paper

Figure 1. The Distribution of the Effect of Preprocessing for Various of Constrained Satisfaction

Problems

genetic algorithms are chosen to select preprocessing method for constraint satisfaction problems. There are

two main reasons to choose genetic algorithms to optimize preprocessing selection. One is that genetic

algorithm have a powerful ability to tackle optimization problems which lack auxiliary information [1]. Another

is that genetic algorithm do parallel search rather than linear search [4]. Each chromosome races against

another in each generation. Therefore the idea of combining genetic algorithm and constraint programming

seems worth exploring. Automatic tuning will lead to improvements over manual tuning by researchers

themselves. Param ILS and CALIBRA [8] have shown the efficiency and possibility of automatic configuration

for constraints solver. However, the general framework of combing genetic algorithm and constraint

programming and the exploration of parameter sensitivity of genetic algorithm to any problems, has not been

achieved. Regrading this situation we proposed a genetic based automatic method [12] for tuning minion [3]

(method refered to as GACM) which is one of the most efficient constraint solver in the world. In the constrained

problem and their preprocessing obey the normal (or Gaussian) distribution [5]. In most time the distribution

of the best preprocessing methods wouldn’t changed or slightly changed in the same classes of the constraint

satisfaction problems. Fig 1 shows that the best prepossessing could also gradually move with the increase of

dline.info/jdp 53

 Journal of Data Processing Volume 15 Number 2 June 2025

preprocessing method within a acceptable running time. Those preprocessing methods will provide a cue for

searching for a good preprocessing methods in large scale problems. Before the experiments the working principle

of standard genetic algorithm for selecting preprocessing level will be introduced.

The first step of a genetic algorithm (GA) is called the encoding which is to construct the suitable chromosome

for the optimization problem. Encoding in genetic algorithm is to transfer solutions of optimization problem to

the chromosomes. Each chromosome presents one possible solution. The optimal or best solution will be gained

by competing chromosomes. In our self-learning genetic algorithm, each preprocessing method was encoded as

a chromosome.

Fitness describes the ability of an individual to reproduce in biology. The Fitness function is the function which

evaluates the difference between the desired result and the actual result. In problem optimization, GA uses a

fitness function to evaluate each individual and provide the information to the evolution.

the scale of the constraint satisfaction problem. Therefore the best prepossessing method of a specific problem

could learn from others in the same class of problems. Meanwhile the search ability of genetic algorithm can

improve by narrow the starting population domain [4].Therefore this paper will propose a new self-learning

mechanism which is based on a new starting population and our pervious work.

2. Self-Learning Genetic Algorithm

Before self-learning genetic algorithms, Standard genetic algorithms will be introduced. In Standard Genetic

Algorithms, the starting population is randomly generated because the search domain is unknown and the

random chromosomes keeps the variety of the population to prevent early convergency in evaluation. However

if the search domain is limited to a specific area it will improve the search speed for evaluation. We can use this

by creating a good starting popluation. The self-learning genetic algorithm is based on this idea. When we solve

small scale constraint satisfaction problem it is easy to find the best or good

dline.info/jdp 54

 Journal of Data Processing Volume 15 Number 2 June 2025

The Selection in genetic algorithm is a strategy which allows the perfect parents (with high fitness) to have

more of a chance to be selected to generate the next generation. In our genetic configurator, the selection is

the roulette wheel selection. Roulette wheel selection is a way of choosing individuals from the population of

chromosomes in a way that is proportional to their fitness. Roulette does not guarantee that the fittest member

goes through to the next generation, merely that it has a very good chance of doing so.

Crossover can improve the whole population fitness quickly by mating parents to produce an offspring. It is a

very important operator in genetic algorithms. Single point cross over is the basic and most common crossover

in genetic algorithms because it can be easily understood and realized. Mutations which change one or more

genes in an individual is another operator used in GA. Mutation can help genetic algorithms escape the local

maximum

state by creating a new gene string. As with crossover, mutation also has a mutation rate to control the amount

of mutation in the recombination of each generation. The mutation rate is the probability of a mutation

happen. According to the mutation rate, any bit in each chromosome has the chance to do a mutation.

Generally machine learning makes predictions by training, validation and testing itself existing data [11]. Self-

learning genetic algorithm (refered to as SLGA) is the algorithm

Figure 2. The Efficiency of Self-Learning Genetic Algorithm in Solving Lanford Number Problems.

The X axis is the generation number of genetic algorithm to find the best preprocessing for Lanford

Number problem

The Y axis is the running time for finding a solution of Lanford Number problem with relative preprocessing

setting.The left graph shows the efficiency comparison between standard genetic algorithm and self-tranning

genetic algorithm which learn the experience from the pervious evolutionary result for small instance. The

right graph in Figure 2 shows the efficiency of two different strategies of self-learning genetic algorithm in

solving the Landford number problem. which help to make the preprocessing prediction by using the previous

experience on the same classes of constraint satisfaction problem. Self-Learning genetic algorithm improve

the search speed by defining the specific starting population instead of the normal random starting population.

dline.info/jdp 55

 Journal of Data Processing Volume 15 Number 2 June 2025

All from http://www.csplib.org

The starting population of a Self-Learning genetic algorithm is gained from the data training of the same class

of small instance problems.There are two strategies to realize the Self-Learning mechanism. Learning From

Best (refered to as LFB) strategy is to define the starting population with the best preprocessing which was

gained by solving small instance with whole preprocessing possibility. Learning From Genetic algorithm

(refered to as LFG) strategy is to define the staring population with the suggested preprocessing which was got

by solving small instance with our pervious genetic method.

The pseudo code of self-learning genetic algorithm introduces SLGA’
s
 woking principle and the way of applying

those two strategies for different problems. It shows that the self-learning genetic algorithm firstly evaluated

the running time of Solving some constrained satisfaction problems with small instance. If it is possible to find

the best processing for small instance problem, the starting population for large instance problems will be

initialized with the best processing for small instance problems or else the optimal processing gained by GACM

for small instance problems. According to the suggested starting population from pervious experience, the

standard genetic algorithm will be applied to find the best or optimal processing for large instance problem.

The standard genetic algorithm will explore better processing generation by generation. The evolutionary

search loop will stop when he best preprocessing is found or the searching time is out of time expected.

3. Experiment Design

To prove the efficiency of the self-learning genetic algorithms, two different starting populations were chosen

which were mentioned in the methodology part. One starting population is the top few of the best preprocessing

of all the possible preprocessing combinations, another one is the top preprocessing gained from standard

genetic algorithm. The efficiency of those two strategies (LFB and LFG) will compared with each other and with

standard genetic algorithm as well (GACM). In this paper the optimization problems chosen are the BIBD, the

N-queen problem, Golomb and the Landford’s number problem1. These four classical constraint problems

were chosen as optimization problem for testing the self-learning genetic algorithm. The computational

complexity of N-Queen problem depend on one variable. The complexity of Open Stack Problem is up to the

instance provided and the complexity of Langfords Number Problem depends on multi-variables. From the

definition description of problems, it shows that those four constraint problem are very different to each other

. We hope that the self-learning genetic algorithm could be applicable to different constraint satisfaction

problem. Following the David’s Micro GA Settings [2], the crossover rate is 0.5 and the mutation rate is 0.04

in all experiments. Each trial was run 10 times and we observe the average of the minimums.

4. Experimental Results

Figure 2 shows the efficiency of self-learning genetic algorithm to solve the Landford problem. There are three

curves in the left graph: Best, LFG and GACM. The best curves is the minimum running time for solving

Landford number problem with best preprocessing. The GACM curve is the efficiency of using genetic algorithm

to find better preprocessing for optimisation problems. The LFG curve shows the self-learning genetic algorithm

that learn experience from pervious genetic algorithm evolution for the same class of problems. Its shows a

standard genetic algorithm can gradually approach the best preprocessing methods after a few generations.

dline.info/jdp 56

 Journal of Data Processing Volume 15 Number 2 June 2025

Table 1. The Efficiency of Self-Learning Genetic Algorithm in Solving Different Problems by

comparing Standard Genetic Algorithm

 BIBD Lang N- Golomb

 ford Queen

GA 5.3 s 0.266 s 0.33 s N/A

LFG 4.5 s 2.1 s 0.04 s 8.7 s

Best 3.2 s 0.01 s 0.04 s 6.6 s

 But It clearly shows that the LFG can more easily and quickly approach the best result by inheriting the useful

information from others similar small instances.

There are three curves in the right graph: Best, LFG and LFB. The best curves is the minimum running time

same as in the left figure. The LFB curve shows the self-learning genetic algorithm that learn experience from

the best processing for the same class problems. The LFG and the LFB curves both shows the efficiency of the

self-learning genetic algorithm to search for the best preprocessing method. The LFB selects the best

preprocessing setting of all possibility of small scale problem as the starting population. The LFG chooses good

preprocessing methods as a starting population which is gained from solving small scale problems with a

standard genetic algorithm. They both approach the best preprocessing setting step by step as we expected.

Although the approach speed of LFG is faster than LFB, LFB still has better solutions due to the advantage in

the starting population which we can find from the definition of LFB and LFG.

To convince the correction and efficiency of Self-tanning genetic algorithm for other problems, it was applied

to solve the other three problems: BIBD [6], N-Queen problem and Golomb problem. In reality it is not always

possible to gain all possibility of preprocessing combination from optimized problem which uses small instance

due to the complexity of preprocessing. Therefore only the lFG strategy of self-learning genetic algorithm was

applied to solve three optimization problems.

Table 1 describes the efficiency of the self-Learning genetic algorithm in solving different problems by comparing

standard genetic algorithm. Each value in the table represents the running time of finding solution with the

best found preprocessing. In all the optmization problems the LFG could find better solution than the standard

genetic algorithm. Especially in Golomb problem the LFG could find the better solution but GA can’t. It is

obvious that the LFG has stronger ability than GA on searching for the best preprocessing method. The curves

in fig. 2 and table 1 shows that the self-learning genetic algorithm can quickly approach the best preprocessing

within a few generations no matter which starting population strategy is chosen. The LFB is quicker than the

learning LFG, but the approaching speed is slower. It means that the LFB strategy could be considered for self-

learning genetic algorithm when the running time for small instance is small. When the searching time of

optimized problem is unknown the LFG strategy is a better idea.

dline.info/jdp 57

 Journal of Data Processing Volume 15 Number 2 June 2025

5. Future Work

The results show the self-learning genetic algorithm are efficient methods on the preprocessing selection of

solving constraint satisfaction problems . However there are a few challenges we need to face in the future. In

this paper four classic problems were picked up to verify the efficiency of self-learning genetic algorithm on

medium size scale problem. More and larger scale problems such as car sequence problem will be chosen to

explore the efficiency and the limitation of self-learning genetic algorithm. Currently the best model to solve

a constraint satisfaction problem is selected by hand by a researcher in the field. The next step is to apply self

learning genetic algorithms to find the best model for a constraint satisfaction problem.

References

[1] Ansótegui, C., Sellmann, M., Tierney, K. (2009). A gender-based genetic algorithm for the automatic

configuration of algorithms. In Principles and Practice of Constraint Programming—CP 2009: 15th Interna-

tional Conference, CP 2009 Lisbon, Portugal, September 20–24, 2009 Proceedings (p. 142). Springer.

[2] Carroll, David L. (1996). Chemical laser modeling with genetic algorithms. AIAA Journal, 34, 338–346.

[3] Gent, Ian P., Jefferson, Christopher, & Miguel, Ian. (2006). Minion: A fast scalable constraint solver. In

Proceedings of the 17th European Conference on Artificial Intelligence (ECAI’06) (pp. 98–102).

[4] Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning (1st ed.).

Addison-Wesley Longman Publishing Co., Inc.

[5] Gomes, Carla P., Selman, Bart., Crato, Nuno., Kautz, Henry. (2000). Heavy-tailed phenomena in satisfiability

and constraint satisfaction problems. Journal of Automated Reasoning, 24, 67–100. https://doi.org/10.1023/

A:1006314320276

[6] Hnich, Brahim., Kiziltan, Zeynep., Walsh, Toby. (2002). Modelling a balanced academic curriculum prob-

lem. In Proceedings of CP-AI-OR-2002 (pp. 121–131).

[7] Holland, John H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence.

[8] Hutter, Frank., Hoos, Holger H., Stützle, Thomas. (2007). Automatic algorithm configuration based on

local search. In Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 2, AAAI’07

(pp. 1152–1157). AAAI Press.

[9] Kotthoff, Lars., Miguel, Ian., Nightingale, Peter. (2010). Ensemble classification for constraint solver con-

figuration. In CP’10 (pp. 321–329).

[10] Lambert, Tony., Castro, Carlos., Monfroy, Eric., Riff, María., Saubion, Frédéric. (2005). Hybridization of

genetic algorithms and constraint propagation for the BACP. In Lecture Notes in Computer Science (Vol.

3668). Springer Berlin / Heidelberg.

dline.info/jdp 58

 Journal of Data Processing Volume 15 Number 2 June 2025

[11] Rogers, Simon., Girolami, Mark. (2011). A First Course in Machine Learning (1st ed.). Chapman & Hall/

CRC.

[12] Xu, Hu., Petire, Karen., Edwards, Keith. (2011). Genetic based automatic configuration for minion. In

Doctoral Program at 2011 International Conference on Principles and Practice of Constraint Programming

(pp. 91–96).

