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ABSTRACT

The paper computed small yet representative sets of reasonable paths in a multi-modal transportation

scenario involving cars, walking, and transit. Traditional route planning systems typically optimize for a

single mode of transportation, but TNT aims to offer diverse and practical path combinations without pre-

selecting a specific mode.

Using Pareto sets with multiple optimization criteria like duration, transfer penalty, and car duration, the

method captures diverse routes. However, not all Pareto-optimal paths are reasonable, so the authors define

three types of reasonable paths based on relative durations: only car, mixed transit with limited car and

walking, and much transit with walking. Thresholds filter unreasonable paths and extract concise results.

Speed-up techniques include extending dominance by early results, rounding transfers to full minutes, and

using implicit walking duration. Experimental results across cities like New York demonstrate that TNT

effectively reduces query times to about one second on average while maintaining high result quality. The

work emphasizes generating manageable, representative route options rather than strictly optimal ones,

enhancing usability in real-world applications.
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1. Introduction

We aim to effectively calculate small but representative collections of feasible routes in a multimodal environment

(car, walking, public transit). Most existing route planning systems focus on determining optimal paths for a
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specific mode of transport. If someone opts to drive, they typically use a navigation application. Conversely, for

public transportation, optimal routes can be sourced from platforms like Google Maps. Both scenarios require

users to select their mode of transport in advance. In instances where individuals prefer not to make this decision

beforehand, we seek to provide them with a compact yet representative set of viable routes. Additionally, we

permit optimal paths that incorporate various modes of transport. Furthermore, in urban settings such as New

York, our computations should be swift enough to facilitate interactive queries. For road infrastructures, leading

algorithms can address shortest path inquiries in mere milliseconds [9]. However, public transportation networks

present greater challenges, as many algorithms applicable to road systems do not translate well [1]. The task of

calculating optimal routes grows more intricate, as not only is the quickest connection sought, but the number of

transfers also significantly impacts the quality of a route, potentially resulting in several optimal paths. When

integrating road and transit networks, this further complicates matters, leading to numerous similar routes.

Common variations include: “take a bus for 30 minutes, then a taxi for 9 minutes,” “take a bus for 32 minutes,

then a taxi for 8 minutes,” and so on, with variations like “take a bus for 42 minutes, then a taxi for 3 minutes.”

To establish a small yet representative collection of feasible paths, filtering is essential, which presents its own

set of challenges. In the following sections, we will introduce a strategy to tackle these issues.

1.1 Contribution

We propose Types aNd Thresholds, an approach to efficiently compute small yet representative sets of reasonable

paths in a multi-modal scenario (car, walking, transit). To obtain diverse sets of paths, we use Pareto sets [11]

with multiple optimization criteria. Taking into account properties (velocity, availability, costs) of the various

means of transportation, we argue that not all Pareto optimal paths are reasonable. We carefully define types of

reasonable paths and propose a two-stage filtering procedure. In the first stage, all unreasonable paths are

removed. In the second stage, a small yet representative subset of the remaining paths is determined. To achieve

average query durations of roughly one second, we make use of properties of the types and propose a relaxation

of the model and a (close to optimal) heuristic. We confirm query durations and quality with experimental

results.

2. Related Work

When considering road and transit networks separately, many algorithms exist for both networks. Next, we give

a brief overview. For road networks several variants of the famous Dijkstra algorithm exist. An outstanding one

is Contraction Hierarchies [9], which after a brief precomputation enables to quickly answer queries, even for

large areas (e.g., Europe on the order of milliseconds). Fast routing on transit networks requires other approaches

and algorithms. Among them are a multi-criteria generalization of Dijkstra’s algorithm [8], relaxed Pareto

dominance [13] and Round-Based Public Transit Routing [6]. One state-of-the-art algorithm is to compute transfer

patterns [2] between all pairs of stations. A transfer pattern is the sequence of stations where vehicle changes

occur on an optimal path. For each pair of stations these are few and allow to answer queries efficiently. However,

the computation of patterns is time-consuming.

Also for multi-modal networks several approaches exist. However, many of those are quite limited with respect

to the extent of their multi-modality. For instance, [5] limits car usage to the beginning and end of journeys.

Other approaches [12] compute a single optimal path by combining multiple criteria to one, but this results in

missing reasonable paths (see [3] for an example). Further approaches [16, 7] expect the user to specify a hierarchy

of modes (e.g. between train usage, car is forbidden). The problem is that one has to know the constraints in

advance, which in practice is often not the case.
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A less restricted approach focussing on computing multiple optimal paths in a multi-modal scenario similar to

ours was presented in [4]. To not miss reasonable paths, multiple criteria with Pareto sets [11] are used. As this

leads to numerous optimal paths, fuzzy filtering is used to rank them according to scores. For the found set of

paths P = {p
1
, . . . , p

n
}, the score of p

i
 is dependent on P and a measure for fractional dominance between a path

p  P and the paths in P\{p}. However, for the measures used in [4], the set of the top-k paths is not necessarily

representative when k is small, and no experiments are provided on this quality aspect in [4]. In short, it is not

clear if and how small yet representative sets of optimal paths can be determined with this approach.

3. Preliminaries

In this section, we describe how to model a multi-modal network and discuss the necessity for multiple optimality

criteria. We briefly recapitulate Contraction Hierarchies as a speed-up technique and explain how to use existing

algorithms to compute optimal paths in our setting.

3.1 Modelling

In the following we describe separate models for road and transit networks and how to combine them to a multi-

modal model. To model the static road networks (car, walking), we use the common approach of one node per

location (given as longitude, latitude) and time-independent arcs annotated with the duration to travel from one

node to the other. For simplicity, we ignore turn restrictions and assume that all roads can be traveled in both

directions by car and by foot. That is, the car and walking network have the same structure.

To model the transit network, we decided for a variation of the train-route model as explained in [15]. In the

following we provide basic definitions and describe the model. A transit connection starting at a specific time at

a specific station and ending at some station is called a trip. Trips sharing the same stop sequence and not

overtaking each other are grouped as a line. For each stop, a station arrival and a station departure node are

created. For each line, for each of its stops, a line arrival node and a line departure node are created. The nodes

of a line are connected according to their stop sequence and the durations of the arcs are time-dependent. When

boarding a line, the transfer buffer is added (we chose 5 minutes). Station arrival and station departure nodes

are connected with their geographically closest car and walking node. We call these nodes link nodes. That is,

each station arrival node has outgoing arcs to the closest car and walking node and they have outgoing arcs to

the station departure node.

Unlike the model used in [4], our model prohibits to change from car to walking (and vice versa). The intention

is that when going to a station by car, one does not stop on the way and walk the rest (or the other way around).

Instead, to reach a station one either takes the car or walks. We consider this reasonable, since taking the car and

walking is possible from and to all stations in our model. In practice, walking a short distance to or from a car is

no problem, as we can consider this part of the transfer buffer. Note that car usage is not limited to the beginning

and end of a journey, but is also allowed between taking two public transportation vehicles. We chose this model,

because we consider it the most efficient in terms of query duration. Note that our filtering approach, which we

describe in Section 4, is independent of the used model.

3.2 Optimality Criteria

In the following we explain the necessity for multiple optimality criteria to compute diverse sets of paths in our

multi-modal scenario. When referring to duration, we mean the duration to reach the target, given a fixed



dline.info/jdp 94

 Journal of Data Processing Volume 15  Number 3 September 2025

departure time. Using duration as a single criterion would result in exactly one path. Therefore, we use multiple

criteria with Pareto sets. Each criterion corresponds to one entry in a tuple. For tuples t1, t2, tuple t1 is said to

dominate t2 if t1 is at least as good as t2 with respect to all criteria. Two tuples are called incomparable if none

of them dominates the other. A Pareto set is a maximal set of non-dominating tuples. A label contains such a

tuple and is associated with a predecessor label. In a multi-criteria Dijkstra, each node contains a Pareto set of

labels.

For transit networks, duration and transfer penalty (= number of boarded vehicles) are two commonly used

Pareto criteria. However, in our setting this almost always leads to exactly two optimal paths: walking the whole

way and using the car for the whole way. The reasons are: Taking a car is very fast and in our model is available

everywhere and boarding it once yields a transfer penalty of one, therefore it usually dominates all paths which

include transit usage. Walking the whole way is incomparable to using the car, because it is slower and has zero

transfers.

Therefore, we use car duration as another Pareto criterion, leading to a diverse set of optimal paths. However,

solutions then become too numerous and many of them are similar. A typical variation is the one mentioned in

the introduction, where paths differ only slightly in the car duration. In one of the scenarios from [4], they use

arrival time (equivalent to our duration), number of transfers, walking duration, and taxi cost as Pareto criteria.

3.3 Contracting the Road Networks

As the majority of nodes are car and walking nodes (see Table 4 for details), optimizing the routing on the road

network is important to reduce computation times. A well-known speedup technique applicable to road networks

is Contraction Hierarchies [9]. During shortest path queries it allows to skip many nodes, hence unnecessary

propagation of labels is avoided. Recently, a variant [4] for a multi-modal scenario similar to ours was introduced,

we refer to this as contracting the road network. Next, we summarize its most important properties. After an

efficient precomputation, all nodes in the road network have a rank. There exists a core of nodes which comprises

all link nodes and the rank of these nodes is infinity. For queries from all road network nodes the following holds:

when ignoring arcs to nodes with lower rank, distances to all link nodes are equal to those in the original road

network. As a special case distances between all pairs of link nodes are preserved. In the next section, we describe

how to use these properties to efficiently compute shortest paths.

3.4 Computing Multi-Criteria Optimal Paths

In the following we explain how to perform location-to-location queries. We call the graph with inverted arc

directions backwards graph. Given the road network is contracted as mentioned above (one contraction for

usage by car, and one contraction for usage by walking), location-to-location queries are performed in two steps.

First, a query from the source to all nodes and a query (in the backwards graph) from the target to all nodes are

performed. Recall that during the contraction process road network nodes were assigned a rank. For both queries,

arcs to nodes with lower rank are ignored. We call the duration of walking (taking the car) from the source to the

target, pure walking (car) duration.

Second, a multi-criteria Dijkstra initialized with the labels of the link nodes reached from the source is run.

Temporary arcs with the previously computed durations from the link nodes to the target are added. Again, arcs

to nodes with lower rank are ignored. The Pareto set of pure car and walking duration and the labels at the target
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forms the result. Dominance by early results and label forwarding [8] are used to accelerate query computation.

Note that this is essentially one of the query algorithms proposed in [4].

4. Types and Thresholds

In this section we describe the concept of Types aNd Thresholds (TNT) to obtain small but representative sets of

reasonable paths. We present speed-up techniques to reduce query times towards practical usage. We start by

introducing the idea of discretization which leads to TNT.

4.1 Discretization

Using duration, transfer penalty and car duration as Pareto criteria leads to numerous optimal paths, among

which many are similar. To filter out a more concise subset, we examine the post-processing step of discretizing

Duration               Transfer penalty           Car duration           Discretized car duration

0:28:57                                   1                                  0:28:57                                        0:30:00

                                                                                         . . .

1:43:43                                   3                                   0:16:35                                         0:20:00

1:44:01                                   3                                   0:16:26                                        0:20:00

1:44:09                                  3                                   0:16:04                                        0:20:00

1:44:34                                  5                                    0:11:07                                        0:20:00

1:44:36                                  3                                    0:15:56                                        0:20:00

1:45:12                                 4                                      0:15:51                                       0:20:00

                                                                                            . . .

7:06:00                               0                                             0                                             0:00:00

Table 1. Excerpt of the tuples of the optimal paths of an example query using duration, transfer

penalty and car duration as Pareto criteria. Green tuples are still Pareto optimal after the

discretization, gray ones are not

car duration to certain blocks (for example, ten minutes). Table 1 shows an excerpt of the results of a query on

New York.

Discretization was also introduced in [4], however, it was used as a heuristic during query time to reduce
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computation complexity. Our motivation is different: given that many Pareto optimal solutions are similar, we

use it to choose a representative subset.

Although discretization allows to reduce the number of Pareto-optimal solutions remarkably, unreasonable paths

can remain. Consider the example in Figure 1. It is not very meaningful to walk a long distance and then take a

taxi for a short distance. We argue that, in practice, one would either walk the whole way, walk and take a train

or use the car for the whole way. In the following we propose a new approach to filter out such unreasonable

paths, and then to obtain a small representative subset of the remaining paths.

Figure 1. An example for a path which we consider unreasonable
4.2 Types

With the example in Figure 1, we illustrated that some Pareto optimal solutions can be unreasonable. To justify

why certain types of paths are unreasonable, we analyze triples of transit, walking and car duration with respect

to their relative durations (RD). We classify each possible triple as either reasonable or unreasonable. As relative

durations we use the abstract terms zero , little  and much , hence RD := . In Section 4.3 we

provide concrete definitions. We assume the natural order of  . For example, the triple  represents

paths with much transit usage, zero walking and little car usage.

Our rationale behind this (rather coarse) classification is as follows. Small differences in duration are of little

practical concern to users, little is little. However, there is a difference between little and zero, because using a

particular mode of transport at all incurs a tangible overhead (organizing a car/taxi, dealing with the

circumstances of public transportation).

Once a certain mode of transportation is used more than little, it is reasonable to assume that one is willing to use

it as much as is necessary to obtain an optimal solution. For example, if one is willing to use the car for one hour,

one might as well use it for the whole trip if that is the fastest way. This is not necessarily true for walking (one

might be willing to walk 1 hour but not 10 hours), however, that is not a problem in practice, because optimal

paths rarely comprise very much walking (with the exception of the trivial walk-everything solution, which is

always computed in our model).

As  and  can be distinguished with respect to the total duration only if both occur in a triple, the set of all

triples containing  but not  is equivalent to the set of triples containing but not . Moreover, the triple

without  and, that is ( ), does not exist for real paths. Therefore, we call a triple valid iff at least one

component is .

Consider the properties of our model and of the different modes of transportation:

Public transit is limited to stations and schedules, medium-fast and medium-expensive.

Walking is possible everywhere at all times, slow and cheap.

Cars (taxis) are available everywhere at all times, fast and expensive.
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Table 2. All combinations of relative durations (zero= , little= , much=  ) for transit, car and walking

duration with the classifications and violated axioms. White background indicates a relative duration triple

is not valid. From the remaining triples, the ones classified reasonable are green, the others are red

Given these properties, we claim the following axioms should hold for all reasonable paths:

A1: Much car usage implies zero walking and zero transit usage.

A2: Much walking implies zero car usage.

From the axioms we deduce which triples of relative durations are reasonable. Table 2 contains all triples,

annotated with the classification as reasonable or unreasonable .

The classification is consistent in the sense that for each triple classified as reasonable, each valid component-

wise smaller triple is classified reasonable, too. This can be inferred from Table 2. For instance, triple ( , , )

is valid and triple ( , , ), too. Finally, we determine three types incorporating all triples classified as

reasonable:

1. Only car.

2. Much transit, much walking, no car.

3. Much transit, little walking, little car.

Here, the attributes much and little should be thought of to include the smaller relative durations. The types are

complete to the effect that all relative duration triples classified as reasonable are included. This can again be
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deduced from Table 2. For practical purposes, relative durations need to be defined concretely. In the following,

we introduce such definitions.

4.3 Thresholds

To practically use the types defined above, we propose to use threshold values for the relative durations. The

following definitions reflect that zero signifies a transportation mode is not used, little depends on the mode and

much means unlimited usage of a mode (durations in minutes):

zero(*) := 0 min

little(walking) := 10 min

little(car) :=        0 min,                                                              if pure car duration < 20 min

 much(*) :=  min

Note that we defined the thresholds for a metropolitan setting. The definition for much is natural, since it

represents everything which is greater than little. One can observe that the definition of little(car) is only relevant

for paths belonging to type 3. Moreover, a path of this type is only interesting if it significantly differs from the

path of type 1 (using the car for the whole way) in terms of car usage, otherwise one could just choose the path of

type 1. Therefore, we chose 25% of its duration as upper bound but at least 10 minutes in order to avoid enforcing

absurdly low car durations. For little(walking) we decided for a fixed threshold in order to allow nearby stations

to be reached but avoiding journeys where walking significantly exceeds car usage. We consider a fixed threshold

reasonable, as paths of type 3 have a duration of at most a few hours (in a metropolitan setting). If we chose

little(walking) dependent on this maximal duration, it would be bounded from above by an absolute value

anyway. However, we want to stress that the types can be used with other definitions of thresholds as well.

4.4 Filtering

We introduce a post-processing procedure to obtain small yet representative sets of reasonable paths from Pareto

sets. Given the above defined types and (arbitrary) thresholds, we explain how to use them to remove unreasonable

paths and how to obtain small yet representative paths in a second step. We call the whole concept Types aNd

Thresholds (TNT).

We say a path belongs to a type if none of the type’s thresholds is exceeded. For instance, assuming a pure car

duration of 15 minutes, the path of Figure 1 belongs to none of the three types. To remove all unreasonable paths,

the ones belonging to no type are removed. Note that for optimal results, walking duration must be considered as

a Pareto criterion, too. That is, Pareto criteria are duration, transfer penalty, car duration and walking duration.

After removing the unreasonable paths, we drop walking duration as a Pareto criterion. This removes undesired

(minor) variation in the result set with respect to walking duration. Potentially, this can lead to the loss of

interesting (reasonable) optimal paths. However, that is unlikely because it is unlikely that a path with higher

walking duration dominates a path with lower walking duration in all other criteria.

 max(10 min, 0.25 · pure car duration),      otherwise
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duration        transfer          walking            car                type

                             penalty         duration         duration

0:29:17                       1                    0:00:00            0:29:17              1

                                                                 . . .

1:52:11                        4                   0:07:33                0:13:35            none

1:56:10b                     4                  0:04:18                  0:09:52            3

1:56:10                       5                     0:06:54              0:09:35             3

                                                               . . .

2:08:49                     3                   0:02:17                 0:09:43             3

2:42:13                        3                 0:48:42                0:00:00            2

2:57:49                     2                   0:54:38                0:00:00             2

3:37:10                       1                   2:23:07                0:00:00            2

6:02:3                        1                  0 6:02:31               0:00:00          2

To determine a small and representative subset from the remaining paths, we propose to transform all car

durations according to their relative durations:

Table 3. Excerpt of the tuples of the optimal paths for an example query for Dallas. Pareto criteria are

duration, transfer penalty, car duration and walking duration. Green tuples remained after filtering with

TNT, gray ones did not. Before filtering, there were 66 Pareto optimal paths, after filtering only 7 reasonable

paths remain

rd(car duration) :=  0,        if car duration = zero(car)

Note that this coarse discretization is in sync with our coarse classification of travel times into three categories
(zero, little, much) argued for in Section 4.2. The Pareto set of the transformed labels constitutes the result, now
indeed a small yet representative subset of the reasonable Pareto-optimal solutions. Table 3 shows an excerpt of
the results of a real query for Dallas.

Influence of Thresholds on the Results: The choice of fixed thresholds obviously restricts the space of
possible paths, but one does not want to miss significantly better paths which do not severely exceed the thresholds.

Next, we explain how this can be achieved.

 1,        if zero(car) < car duration —little(car)

 2,        if little(car) < car duration < much(car)
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An advantage of our system is that lowering the thresholds can never lead to better paths with respect to duration

and transfer penalty. To avoid missing significantly better paths which are not severely above the thresholds we

propose to offer the user an outlook  of how the paths improve with a higher threshold. One way to achieve this is

to compute the difference in duration of the fastest paths for two significantly different thresholds. This enables

the user to decide if she wants to run another query with modified threshold values.

4.5 Speed-up Techniques for Faster Query Answering

Each additional Pareto criterion enlarges the set of optimal paths significantly, resulting in infeasible query

times for large datasets. To speed up query computation we introduce an optimality preserving extension, a

relaxation of the model and a heuristic.

4.5.1 Extended Dominance by Early Results

To prune labels during query computation dominance by early results was introduced in [8]. All labels dominated

by the target labels can be discarded, since they and all their extensions can not become Pareto-optimal at the

target. For TNT, this can be extended to labels not belonging to any type. Extensions of such labels can not

belong to any type and can therefore be discarded. Therefore, for the multi-criteria Dijkstra, dominance by early

results can be extended to ignore labels for which the following holds:

walking duration > little(walking) and car duration > zero(car) or

car duration > little(car)

Recall that little(car) depends on pure car duration, which is computed in the first step of the shortest-path

computation described in Section 3.4. Hence, it is available for the (timeconsuming) multi-criteria Dijkstra.

Note that this optimization is applicable independent from the threshold definition.

4.5.2 Rounding on Transfers

As we exemplified in Table 1, many Pareto optimal paths are similar. The table indicates that many solutions

differ only by seconds. In our implementation, arc durations are stored with a resolution of one second. This is

enough to avoid the accumulation of rounding errors (which for a resolution of, say, one minute, would tangibly

impact result optimality). For road networks, we calculate durations depending on distances and speed, leading

to an accuracy of seconds. The GTFS data [10], which we use to model the transit network, provides durations

in seconds.

However, public transportation in practice rarely provides accuracy by seconds and the speed of humans in

terms of walking and car usage varies, too. Inspired by discretization, we propose to relax the model and to

round up durations to full minutes immediately before transfers. Compared to rounding at each node, this

restricts error accumulation sufficiently. Moreover, it can be interpreted as a coarse transfer buffer. With respect

to reality, we consider this an optimality preserving technique.

Arc relaxations will happen for less labels, and less comparisons have to be performed when inserting a label to

the set of labels attached to a node. Therefore, we expect rounding during query time to notably speed-up

computation time.
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4.5.3 Using Implicit Walking Duration

As mentioned in Section 4.4, when filtering labels to their types, walking duration has to be a Pareto criterion to

obtain optimal results. Nevertheless, when walking duration is not a Pareto criterion, we expect the difference to

the optimal results to be minor. Therefore, we propose the heuristic of using implicit walking duration by keeping

it in a hidden variable, which is not used as Pareto criterion. The priority queue order is chosen such that in case

of tie-breaking the label with less walking duration is released earlier from the queue. For labels with equal

Pareto criteria the one with less walking duration is kept. It is worth noting that using implicit walking duration

does not affect the quality of type 1 (only car) and type 2 (much transit, much walking, no car) paths. For type 1,

this is clear since the optimal path is computed separately using only duration as criterion. As labels of type 2

(that is, with car duration = 0) cannot be dominated from labels with car duration > 0, we can ignore car duration

when proving the optimality for labels of type 2 in the following lemma.

 Lemma 1: Let L
A
 be the label set at a node u V after termination of the Pareto-Dijkstra run considering the

criteria D(uration), T(ransfer) P(enalty) and W(alking) D(uration). Also let L
B
 be the respective label set for a

Pareto-Dijkstra run regarding only the criteria D and TP. We claim that .

Proof: Let L
A
 be the label with TP( ) = TP(l) and minimal duration. Obviously when neglecting walking

duration and following the same path that lead to the creation of  at u, the label  |(D,TP) is a possible candidate

for being in L
B
. Hence it must exist a label L

B
 with . Therefore it holds

To see that paths of type 3 are not necessarily optimal, consider the following tuples which are incomparable

with Pareto criteria duration, transfer penalty, car and walking duration: (40 min, 2, 10 min, 5 min) and (30

min, 2, 10 min, 6 min). Using implicit walking duration, only the latter would be optimal. However, assuming an

extension by 5 minutes of walking, the latter tuple would belong to no type and hence be filtered out, whereas the

former would not.

5. Experimental Results

In this section we evaluate the concept of using Types aNd Thresholds (TNT) and its speed-up techniques with

respect to result quality and query time.

5.1 Setup

Our implementation of the graph model and the optimal path algorithm, as described in Section 3, is written in

C++ and compiled with GCC 4.6.3 with the -O3 flag. Experiments were performed on a machine with 96GB of

RAM and two Intel Xenon E5649 CPUs with 8 cores, each having a frequency of 2.53 GHz (exactly one core was

used at a time). The used OS is Ubuntu 12.04, operating in 64-bit mode.

To instantiate the multi-modal networks we used publicly available OSM [14] and GTFS data [10]. Details on our

data sets can be found under http://ad.informatik. uni-freiburg.de/publications. We used the data of the first

available Monday. OSM data was chosen to cover the terrain corresponding to the GTFS data. The road network

graphs are symmetric and reduced to their largest connected component. For walking, we assumed an average

speed of 5 km/h. For the car network, average velocity was chosen depending on the road type, ranging from 5 to
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110 km/h. We evaluated our algorithm on the networks of Austin, Dallas, Toronto and New York City (in the

following abbreviated as just New York). Table 4 contains an overview of the most important properties of these

networks.

For each dataset, experiments were performed using 1000 queries between two random locations, each at most

1 km away from at least one transit station. We chose this restriction to avoid a significant amount of queries in

areas where transit is not available, in which case the only interesting solutions would be car-only and walking-

only. Departure times were chosen uniformly at random from the time range between 6:00 a.m. and 10:00 p.m.

5.2 Results

We evaluate the concept of TNT with respect to query time and quality of the found sets of paths. Experiments

were performed for the normal graph model (Section 3.1) and the model with rounding on transfers (Section

4.5.2). We refer to the latter as the relaxed model. For both models we compare the basic algorithm (Section 3.4)

and the heuristic of using implicit walking duration (IWD, Section 4.5.3).

Graph                                  Austin         Dallas       Toronto        New York

                        Nodes               0.7M               2.8M            0.9M              4.0M

                          Arcs               2.9M               12.0M          3.7M                17.3M

                      Stations              2.7K               11.6K            10.9K             16.9K

                      Nodes                 14.3K               49.0K        80.4K             118.6K

                      Arcs                    21.2K              73.0K          119.5K            175.9K

                     Lines                     235                  563              1120               1989

                     Trips                    6062             10849           40740              62824

Car              Nodes (core)       3.3K               20.8K           10.9K              28.1K

Walking     Nodes (core)      4.0K                20.2K          12.2K              32.5K

Transit

Complete

Table 4. Overview of important properties of the evaluated networks. Recall that the timeconsuming

step of the path computation operates on the cores instead of the whole road networks

Table 5 shows average query times for all of our four datasets.

It indicates that both, rounding on transfers and the IWD heuristic reduce query times. While the heuristic has

a stronger effect, the lowest query times (roughly one second) are achieved by applying both. It is noteworthy

that the speed-up increases significantly with the size of the network (roughly from factor 5 to factor 75). Query

times are comparable to those presented in [4].
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Model        Algo      Austin      Dallas      Toronto      New York

Normal       Basic            0.6s           3.7s              16.6s              108.0s

                     IWD              0.1s           0.8s               0.6s                 1.7s

Relaxed      Basic            0.4s           2.2s              4.0s                 18.0s

                     IWD             0.1s            0.8s              0.6s                  1.4s

Table 5. Average query times for all datasets

For the largest dataset (New York) we evaluate the basic algorithm and the IWD heuristic in more detail, for

both models and with respect to both result quality and query time; see Table 6. As quality measures of the

heuristic we use precision1 and recall2. It can be seen that (with the IWD heuristic in the relaxed model) for a few

outliers the query time rises up to seven seconds, but the majority of queries can be answered in roughly one

second. Precision and recall indicate that for both models the IWD heuristic leads to only a small fraction of non-

optimal results.

To evaluate if the computed sets of paths are small and representative, Table 7 shows the distribution of paths

with respect to our types for the basic algorithm on New York. Paths of type 3 that also belong to type 2 were only

counted for type 3. For example, the table shows that around 15.8% of the queries lead to exactly one path of type

1, three paths of type 2 and one path of type 3. Note that for almost 50% of the queries there is no optimal path of

type 3. One reason for this is that if pure car duration is relatively small (below 20 minutes, see section 4.3 and

4.4), no path solely belonging to type 3 can exist.

To see how paths of type 3 improve when increasing the little(car) threshold, we experimentally evaluated the

                                          Time [s]                                             Precision                  Recall

Model          Algo          avg       50        90         99      avg     50    90   99     avg     50   90   99

Normal        Basic         108.0    32.7   289.0     865.0        1        1        1        1          1        1       1       1

                       IWD          1.7          1.0       3.3       10.0       0.99     1        1        1        0.96      1      1        1

Relaxed        Basic         18.0       8.8      40.0     140.0       1          1        1        1          1         1     1      1

                        IWD          1.4         1.0        2.5         6.6         0.99     1        1        1        0.96     1     1      1

Table 6. Query times and result quality for New York. For all measured variables we list average,

50-percentile, 90-percentile and 99-percentile values

maximal gain in time when extending the threshold by 10 minutes. For this, we considered queries which already

for little(car) had labels of type 3 and compared the fastest such label (= with the smallest duration) with the

1 Precision = |relevant-paths \ found-paths| /
2 Recall = |relevant-paths \ found-paths| / |relefvoaunntd—ppaatthhss|
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fastest label when using the extended threshold. Figure 2 shows the results for New York. For 42% of the queries,

increasing car travel time up to 10 minutes allows to reduce the total duration by 20-30 minutes. For practically

every query increasing little(car) leads to faster paths. As explained in Section 4.4, this information could be

communicated to the user (for the given query), with the option to relaunch the query with an accordingly modified

threshold value.

3          -             -           0.1%        1 .0%        0.2%        -          -

2         -           0.9%     5.6%        7.0%       2.2%     0.4%       -

1        -            1.2%      15.8%       14.4%     2.7%    0.3%     0.1%

0      1.6%     10.6%     20.9%       12.5%     2.4%    0.1%         -

           1               2                3             4            5          6              7

#type-2 paths

#type-3 paths

Table 7. Percentage of queries which lead to the different combinations of paths of type 2 and
type 3. For each query one path of type 1 was optimal

Figure 2. Maximal possible gain in time for labels of type 3, when allowing additional car travel

time of up to 10 minutes. The heat map shows the gain in time and respective additional car travel

time (with respect to little(car)) for the different queries

6. Conclusions and Future Work

We studied multi-modal route planning involving (almost) unrestricted combinations of walking, car, and transit.

The goal was to efficiently compute small yet representative sets of optimal paths. We illustrated that multiple

criteria are necessary to obtain diverse sets of paths. To remove unreasonable paths and to extract a small

representative subset of the remaining paths, we introduced a new approach of using Types aNd Thresholds

(TNT).

To reduce infeasible query times induced by multiple optimality criteria, we introduced an extension of dominance

by early results, a relaxation of the model (rounding on transfers) and a heuristic. We experimentally evaluated

TNT and the speed-up techniques. While the basic algorithm results in infeasible query times, relaxing the model
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and using the (almost optimal) heuristic reduces them to an average of roughly one second. Our experiments

confirmed that our result sets are indeed small and representative, at least from the point of view of our model.

Possible future work comprises examining other threshold definitions, extending the filtering step and considering

fare zones. Lowering query times when using TNT is a further challenge. For the latter, one possibility could be

to extend Transfer Pattern Routing [2] to our multi-modal scenario. Moreover, reliability and robustness (i.e., if

connections are missed, how good are the alternatives) are important issues to consider.

Acknowledgements: We want to thank an anonymous reviewer for his/her extensive feedback.
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