
             Journal of Data Processing    Volume  5   Number  2   June   2015                              33

Discovery of Gathering Patterns of Moving Objects

ABSTACT: The increasing pervasiveness of location-acquisition technologies has embedded collection of huge amount of
trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviors can convey
valuable knowledge to a variety of critical applications. In this light we propose a concept, called gathering, which is a
trajectory pattern modeling various group incidents such as celebrations, parades, protests, traffic jams and so on. In this
work, we first develop a set of techniques to tackle the challenge of efficient discovery of gathering patterns on archived
trajectory dataset. For finding gathering firstly we have to find snapshot cluster, crowd and then super crowd. After getting
super crowd, gathering can be identified. Here we proposed an efficient algorithm for finding super crowd if cluster database
is given and algorithm for identify gathering after identifying the super crowd. Afterwards, since trajectory databases are
inherently dynamic in many real-world scenarios such as traffic monitoring, fleet management and battlefield surveillance,
we further propose discovery solution by applying a series of optimization schemes to handle the incremental data.

Keywords: Trajectory database, Pattern mining, Cluster, Crowd, Gathering Patterns

Received: 24 February 2015, Revised 20 March 2015, Accepted 28 March 2015

© 2015 DLINE. All Rights Reserved.

1. Introduction

The increasing availability of location-acquisition technologies including telemetry attached on wildlife, GPS set on cars,
WLAN networks, and mobile phones carried by people have enabled tracking almost any kind of moving objects, which results
in huge volumes of spatio-temporal data in the form of trajectories. Such data provides the opportunity of discovering usable
knowledge about movement behaviour, which fosters ranges of novel applications and services [1]. For this reason, it has
received great attention to perform data analysis on trajectories. In this paper, we move towards this direction and address one
particular challenge to do with discovering the so-called gathering patterns from trajectories in an efficient manner.

Informally, a gathering represents a group event or incident that involves congregation of objects (e.g., vehicles, people,
animals). A gathering is expected to imply something unusual or significant happening. As such, the discovery of gatherings
over trajectories can help in sensing, monitoring and predicating non-trivial group incidents in everyday life. However, discovering
the gatherings from trajectories is not an easy task, where challenges are two-fold. First, how to define the concept of gathering

Ravi Raj Gupta1, T. Ramakrishnudu2

1, 2Department of Computer Science and Engineering
National Institute of Technology
Warangal, A.P.-506 004. India



 34                                   Journal of Data Processing    Volume  5   Number  2   June   2015

appropriately such that it intuitively captures the properties of the above mentioned events, while being rigid from algorithmic
aspect in the mean time. Second, how to develop a solution that can discover gatherings from large scale trajectories efficiently,
and more importantly, handle new data arrivals in an incremental manner.

Let ODB = {o1, o2, o3, . . . . . . ., on} be the set of all moving objects in the database and TDB ={t1,  t2, t3, . . . . . . ., tm} be the time domain,
where each ti  is a time point. The trajectory of moving object during time interval [t1, tn ] is represented by o = {(p1, t1), (p2, t2), (p3,
t3), . . . . . . ., (pn, tn)}.  Where pi represents location of object at time ti. Here the user will input threshold distance d and an integer
value m, to find the snapshot cluster ct at any timestamp t. Then user will input a threshold value kc to find crowd. A crowd Cr
is a set of sequence of  snapshot cluster at  consecutive timestamp i.e. Cr = {cta, cta+1 , cta+2 ,. . . . . . ctb-1 , ctb }. A crowd Cr is called
a gathering if there exist at least mp participator in each snapshot cluster. A gathering is said to be closed if there is no super-
crowd of Cr that is also a gathering.

2. Methods

2.1 Discovering Snapshot Cluster
Object database and timestamp database are given. So Now we adopt the notion of density-based clustering [2][3] to define the
snapshot cluster[4][5], for this two threshold values will be needed i.e. threshold distance d and an integer value m. we will apply
the concept of d-neighbourhood, direct density reachable and direct density reachable. A snapshot cluster is a group of objects
with arbitrary shape and size, which are density-connected to each other at a given timestamp. This way we will generate cluster
database CDB.

If p be a point then d-neighbourhood of point p is defined as Nd = {q ∈ S | D (q, p) < d }. Here D ( , ) represents  Euclidean distance
between two points p and q. If Euclidean distance between two points p and q are less then threshold value d then p and q are
called directly density reachable with respect to threshold distance d and threshold value m. Same way p and q are called density
reachable with respect to d and m if there exist some point objects between p and q like p1, p2 , p3 , p4 , . . . . pn  such that each
consecutive pair between p and q including p and q are direct density reachable.

2.2 Discovering Crowd
A crowd Cr is a set of sequence of snapshot cluster at consecutive timestamp i.e. Cr = {cta, cta+1, cta+2 ,. . . . . . ctb-1, ctb}. Since a
snapshot cluster is essentially a set of points, we adopt the Hausdorff distance [6][7] to measure how far two clusters are from
each other For crowd we need lifetime threshold value kc, threshold distance δ. The lifetime of a crowd is denoted by Cr.and it
should not be less than threshold lifetime.

1) Time (b −  a + 1) should be greater than or equal to kc.

2) Distance between any consecutive pair of snapshot should not be greater than δ.

Dist (cti, cti + 1) < δ, ∀∀∀∀∀a <i <b – 1

One thing should be noted that no super set of Cr should be a crowd. Find the largest crowd at each time-stamp point. Each
cluster can contain at least m number of objects so for finding distance between two consecutive clusters we will the distance
between each pair of objects explained as

                                                                  Dist [ (oi)t, (oj)t + 1] , where i, j belongs to 0 to obj-1.

Select the lowest distance and then compare it with threshold distance δ. If distance between two consecutive clusters is found
to be less than threshold distance δ then both cluster will be a part of crowd.

Algorithm for Crowd: in two stapes

2.3 Discovering Gathering from Crowd
Till Now we have already found crowd [8] to find the gathering. All the crowd which have at least mp number of participator will
be a part of gathering.



             Journal of Data Processing    Volume  5   Number  2   June   2015                              35

Step 1: Creating link step and checking threshold lifetime k
c

1: Input: C
DB
, k

c
, δ

2: link ← Null

3: For t
k
 = 0 to t-1 do

4:         c
i  

← take each cluster from cluster set at time t
k  
 do

5: t’ ← k+1

6:               z←0

7:                   c
j 

←take each cluster from cluster set at time t
k+1
 do

8:       dist←Dist(c
i
, c

j
)

9:                       if(dist<= δ)
10:                      link [t

k
][i][z++]←j

11:                   end

12:            end

13:         for i=0 to obj-1 do

14:            z←0

15: count←0

16:                while link[t
k
][i][z] is found do

17:                count++

18:                end

19:            if(count<k
c
)

20:             delete all values from ith row

21:         end

22: end

Step 2: detecting crowd from link

1: Input: C
DB
, link

2: crowd ← Null

3: for t
k
 = 0 to (t-k

c
) do

4:       For i=0 to obj-1 do

5:              z←0

6:              count←0

7:              k’←t
k

8:                z’←0

9:              while link [t
k
][i][z] is found do

10:                   k’++

11:                 crowd [t
i
][z’++] ← cluster in zth row at time k’

12:               end

13:        end

14: end



 36                                   Journal of Data Processing    Volume  5   Number  2   June   2015

2.3.1 Participator
Given in a crowd Cr, an object o is called a participator of Cr iff it appears in at least kp snapshot clusters of Cr. Let Cr(o) denote
the set of snapshot clusters in Cr that contains object o, i.e., Cr (o) = {ct| ct∈Cr, o (t) ∈ct}.

Then the participators of Cr are the object set Par (Cr) = {o ||Cr (o)| > kp}.

Example of Participator
Consider a closed crowd as shown in table 1, and let kc = kp = 3, mc = mp = 3. Let the 2 crowds are Cra = c1, c2, c3, c4_ and Crb= c6,
c7, c8. According to the rule each cluster of both the crowd should have mp= 3 no. of objects at least kp= 3 times in other cluster
of same crowd.

Figure 1. Cluster with objects

In Cra = c1,c2, c3, c4    for c1 having 3 participator o2, o3, o4, same c2 having 3 participator o2, o3, o5same c3 having 3 participator o2, o4,
o5, and c4 having 3 participator o2, o3, o5 so Cra = c1, c2, c3, c4    is a gathering but Crb= c6, c7, c8 is not a gathering because Crb is
not following the condition for being gathering.

2.3.2 Algorithm for Gathering
1:   input: crowd, kp, mp, kc

2:   R←∅ // set of gathering
3:   for tk = 0 to t- do
4:          for i = 0 to obj−1 do
5:              z←0
6:              if CRi from crowd is found then
7:                   if check participator(CRi , kp, mp) is true then
8:                      R [tk] [z++]←CRi

9:             end
10:    end

2.4 Discovering Gathering Incrementally

We have discussed the efficient algorithms for discovering closed gatherings in a trajectory archive. But in real applications,
trajectories are often received incrementally. As such, the latest batch of trajectory data should be appended to the database
periodically (e.g., every day, week or month). Specifically, consider a trajectory database ODB with the time domain TDB = t1; t2;
…. tn. After a new batch of trajectories One with the time domain Tnew = tn+1 ….. tu has been collected and appended to ODB, we
obtain an updated database ODB = ODB ∪ Onew with the extended time domain TDB = TDB∪Tnew.

Now from here we get a problem that some crowds which ware closed crowd in old data that may be extended in new data. To get
the correct result after new data incremented we are proposing some points.



             Journal of Data Processing    Volume  5   Number  2   June   2015                              37

1) All those crowds which has no clusters at time tn they can’t be extended because crowds are the set of clusters at consecutive
timestamp.
2) Only those crowds we have to check to be extend which has cluster at tn.
3) We have to check those non-crowds also from time between (tn-kc)(here kc=lifetime) and tn if it has cluster at tn.
4) We have to check crowd for the extended time interval.

After checking these four terms in new database we can find the final extended crowd. Once the final super crowd will be found
then we will go for the gathering and repeat the process for gathering as explained above.

3. Conclusion

In this paper we study the concept of discovering gathering patterns from a large-scale trajectory database. Here we see how
gathering is different than crowd. And after finding cluster database we produced an algorithm for efficiently finding the crowd
from cluster database during the given time interval. We see here if the data are incremented after given time then how we will
handle it and update gathering.

References

[1] Zheng, Y., Zhou, X. (2011). Computing with Spatial Trajectories. New York, NY, USA: Springer.

[2] Ester, M., Kriegel, H., Sander,  J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases
with noise, In: Proceedings SIGKDD, 96, 226–231.

[3] Ester,  M., Kriegel, H., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases
with noise, in SIGKDD, 96, 226–231.

[4] Jeung, H.,  Yiu, M., Zhou, X., Jensen, C., Shen, H. (2008). Discovery of convoys in trajectory databases, VLDB Endow.,  1, no.
1, 1068–1080, August.

[5] Lee, J., Han,  J., Whang, K. (2007). Trajectory clustering: A partition-and-group framework, In: Proceedings SIGMOD, Beijing,
China, 2007, a. 604.

[6] Rote, G. (1991).  Computing the minimum Hausdorff distance between two point sets on a line under translation, Inform.
Process. Lett.,  38 (3)  123–127.

[7] Rote, G. (1991). Computing the minimum hausdorff distance between two point sets on a line under translation, Information
Processing Letters,  38, (3)  123–127.

[8] Zheng, K., Zheng, Y., Yuan, N. J., Shang, S. (2013). On discovery of gathering patterns from trajectories, In: Proceedings
ICDE, Brisbane, QLD, Australia,  242–253.


