Mobile Malware Analysis using Independent and Ensemble Features

o é\
'

\

Aswini, AM, Vinod P

SCMS School of Engineering and Technology
Vidyanagar Karukutty

Ernakulam 683582

India

aswinimohan95@gmail.com

ABSTRACT: The purpose of this paper is to statically analyze the android application package files to detect zero-day
attacks. The methodology deals with attribute extraction using dissemblers, feature reduction by sparse feature
elimination, feature selection and ranking by implementing various feature selection techniques, aggregation of attribute
categories followed by classification and prediction. Feature selection techniques such as Bi-Normal separation (BNS),
Mutual Information (MI), Feature to class correlation (F-CC), Feature to feature correlation (F-FC), combination of
feature to class and feature to feature correlation (FCFF), Comprehensive measurement feature selection (CMFS) and
Optimal orthogonal centroid feature selection (OCFS) are implemented to choose the significant attributes. Prominent
features of five different attribute categories like permissions, count of permissions, hardware features, software features
as well as API calls from 1175 application packages are extracted to generate the classification model. Attribute
aggregation is performed to build the ensemble model. The intention of this framework is to evaluate the effectiveness
of ensemble features with respect to individual features; find out the best feature selection method with fewer feature
length and classification algorithm. The framework developed here by implementing dimensionality reduction and
machine learning algorithms depicts an overall classification accuracy of 93.02% using ensemble features. Evaluating
the performance of ensemble model with independent model, the former provides better results with Bi-Normal separation.

Keywords: Android Malware, Feature Extraction, Feature Selection, Static Analysis
Received: 11 September 2015, Revised 23 October 2015, Accepted 29 October 2015
© 2016 DLINE. All Rights Reserved

1.Introduction

According to the global provider of market intelligence International Data Corporation (IDC) [7], Android is the most popular
operating system [21] which is ranked top among the available mobile OSs on the basis of shipment volumes and market share.
Their widespread use and open source nature motivated the malware writers to focus on developing the apps with malicious intents.
Third party app stores with niche apps offer .apk files with more features than those provided by the official market like Google play
[8]. Such apps with improved characteristics encourage the users to be the regular customers of these repositories that lack
security checks. These third-party apps developed by injecting malicious code to the legitimate apps seems to be useful at first
sight as it provide additional functionalities to the user. The user unaware of its malicious activities fall prey to such apps. The

Journal of Data Processing Volume 6 Number 1 March 2016 11

device with malicious app installed in it is susceptible to threats which may result in loss of personal data, charging cost of
a premium-rate call or SMS, DOS attacks etc [20]. According to the Symantec Corporation Internet Security Threat Report
2014 [5], benign applications are downloaded by the malicious authors frequently from Google play store and are modified
to third party apps containing illegitimate program. Mobile threat report 2014 of F-Secure labs [6] reported that Trojans are
capable of tracing locations, sending SMS’s, link click, create fraudulent transaction, steal data etc.

Due to the above stated issues and threats; smartphone security should be given higher priority. The security solution like
Antivirus mainly employs signatures [16]. These signatures can identify known malicious specimens that are already detected.
Itis a tedious process and cannot detect novel malware as the signatures cannot generalize to identify zero day malware. Also
technical expertise is required to create signatures and the repository has to be updated frequently. Therefore, it is required
to find out a better method to detect the malicious .apk files.

The proposed framework is designed to detect illegitimate .apk files. Here, five different attributes are extracted and feature
selection techniques are applied to find out the significant attributes. Classification models are generated using these prominent
attributes. Ensemble model is designed by aggregating the significant attributes from each category of feature. Finally,
prediction is carried out using these models to evaluate the classification accuracy. We evaluate the performance of both
independent and ensemble features.

The remaining sections are organized as follows: Section 2 deals with some related works which implemented static analysis
in mobile malware. The proposed method is detailed in Section 3 and Section 4 comprises of experiments and results.
Section 5 includes inference of this work. Section 6 presents the comparison with previous works and finally the conclusion
and the future work are presented in sections 7 and 8 respectively.

2. Related Works

DroidAPIMiner in [24] is used to extract Application programming interface calls using a modified python tool named
Androguard and different classifiers are evaluated using the feature set. They achieved an accuracy of 99% and false positive
rate of 2.2% using k-NN classifier.

The authors [29] carried out the experiments using 124,769 benign and 480 malicious applications. They used permissions
declared in the specimens to detect malicious apps in Android OS. The attributes were requested and required permissions,
number of required permissions, normal, signature, dangerous permissions, number of files with .so extensions, number of
elf files, count of executables, shared objects etc. Performance of this system is evaluated using various machine learning
techniques. Results showed that a permission-based detector can detect more than 81% of illegitimate .apk files.

MAMA [32] utilized the permissions and feature tags within the Android manifest file. Their dataset comprised of 333
benign and 333 malware samples. Their investigations provided 87.41% accuracy for permission based model, 86.09% for
feature model and 94.83% for permission and feature combined model. The improved results were obtained with Random
Forest, using 100 trees in all the cases.

In [26], the authors implemented dimensionality reduction and machine learning techniques to find out the attributes that
contributed to the identification of malicious files. They presented a static analyzer named Droid Permission Miner that
mines permissions from the manifest file. Feature selection methods like Bi-normal Separation (BNS) and Mutual Information
(M1) were used and obtained an accuracy of 81.56% with 15 features using MI feature selection approach.

The authors [33] carried out the experiment with 200 .apk samples. They proposed a machine learning based malware detection
framework to distinguish benign and malicious samples. The attributes used were permissions extracted from the .apk samples.
The generated models were trained; and are evaluated using the Area Under ROC Curve (AUC). They recorded an accuracy of
91.58% using Random Forest classifier.

PUMA [25] deploys permissions from the .apk samples for classification and implements machine learning techniques.
They used 239 Android malware samples and mined the attributes, trained the models and evaluated each configuration using
the Area Under ROC Curve (AUC). They obtained a 0.92 of AUC using the Random Forest classifier. All the classifiers

12 Journal of Data Processing Volume 6 Number 1 March 2016

resulted in accuracy higher than 80% except Bayesian classifier. The best classifier was observed to be Random Forest (50
trees) with an accuracy of 86.41%.

This [31] approach is carried out with the uses-permission and the uses-feature tags extracted from the manifest file. Using
the features of benign samples they created an instance based anomaly detection model to detect malware applications.
Manhattan distance, Euclidean distance and Cosine distance was implemented in this work. In case of Manhattan distance,
AUC value of 0.88 was obtained for using average as a parameter in the combination rule resulted in 85% accuracy. Using
Euclidean distance, 0.90 of AUC and 87.57% accuracy was achieved. The best results of 0.91 of AUC and nearly 90% of
sureness is obtained using Cosine distance.

DREBIN [30] performs static analysis by extracting the maximum possible number of features of an application’s code and
manifest file. The features are grouped in sets of strings of permissions, API calls and network addresses and are embedded
in a joint vector space by applying machine learning strategies. The dataset for experiment includes 123,453 benign and
5,560 malware samples. It detects 94% of the malicious specimens with relatively less false positive rate.

Authors in [18], [19], [22] proposed a supervised anomaly based method named Andromaly to extract 88 contributing features.
Detection rates were better for the database with benign games than benign tools when used in combination with the 4
malicious apps. Naive Bayes and Logistic Regression were found to be the better classifiers with reported results.

The authors in [20] proposed permission based static mechanism for detecting the malicious applications. The experiment
was performed on 46 pieces of i0S, Symbian 9.x and Android malware. Most common malware activities were found to be
disposing user information (61%) as well as sending SMS (52%). They observed that four pieces of malicious files used
root exploits to perform attack on the Android device. They surveyed the act of non-malicious smartphone tinkerers in
publishing root exploits and surveyed the availability of root exploits.

MADAM [23], a real-time multilevel anomaly detector monitors Android both at kernel as well as user level. They used 13
features and implemented machine learning techniques to detect unknown malware. The results depicted an accuracy of
100%. It monitors system calls to monitor energy consumption user activity, incoming/outgoing traffics files, memory
access and sensors status. MADAM detected all the 10 monitored real malicious software.

3. Proposed Methodology

Androguard [1] is used to extract permissions, count of permissions, API calls and software/hardware feature for identifying
illegitimate samples. The permissions, software/hardware features and count of permissions are obtained from the Android
manifest file. The API calls from each .apk files are also extracted using the same tool. Experiments are carried out on the
basis on two aspects (1) individual features and (2) ensemble features. Figure 3 and Figure 4 shows the architecture of our
proposed model. These classification models are briefly explained in the coming sections. Table 1 and Figure 2 include the
.apk file components and its descriptions.

3.1 Datasets

The investigations are carried out using 1175 .apk files collected from various sources. It comprises of 575 malicious
samples downloaded from Contagiodump [2] and received from various user agencies. The rest 600 benign applications are
downloaded from various publicly available internet sources that allows free downloads of mobile applications for Android
OS. The benign samples are allocated such that 300 files are included in the test set and the remaining 300 samples are added
to the training set. From the 575 illegitimate .apk files, the test set is provided with 287 .apk files and the rest 288 files are
added to the train set.

3.2 Feature Categories
To statically examine each Android application as benign or malicious; the attributes are mined without executing the apps.
The descriptions about these attributes are given below

i.Permissions: The Android OS provides a well framed permission mechanism incorporated within its security model. The
functionalities of the .apk file depend upon the permissions requested by it in the Android manifest file. It is declared

Journal of Data Processing Volume 6 Number 1 March 2016 13

statically and there is no provision to declare it dynamically. Permissions are declared in the <uses-permissions> tag in the
Manifest file (Refer Figure 5). It includes an android:name attribute that gives the permission name. For example
RECEIVE_BOOT_COMPLETED, GET_ACCOUNTS, SEND_SMS, READ_SMS etc are some of the permissions.

Components

Description

Android manifestfile:

An XML file that provides the details about hardware and software features
required by application, version, permissions provided by the .apk file, metadata,
package name etc (Refer Figure 1).

Res folder:

It contains the resources of application package file that defines languages,
sound settings, graphics layout, attributes, drawables etc. The res directory
comprises of resources that are not compiled into resources.arsc

Classes.dex:

These are Dalvik virtual machine executables that execute in Dalvik machine.
It includes the compiled Java source code in .dex format. The res directory
comprises of resources which are not compiled into resources.arsc.

Lib:

It consists of native libraries (for C or C++) that can be used through NDK
(Native Development Kit).

META-INF:

It includes application’s signature mainly aimed at its security and integrity. It
comprises of application’s certificate CERT.RSA, manifest file
MANIFEST.MF and CERT.SF that includes the list of resources and SHA-1
digest of the MANIFEST.MF file

Resources.arsc

It is obtained after the compilation.

Table 1. Components of Android application package file

<Pl versione"l, (= encoding =Sytf-§° 7>
<manifest>
<uses-permission /¥

<supports-screens />
<compatible-screens />
<supporta-gl-texture />
<application>
<activityr
<intent-filter>

<data />
<fintent-filter>
meta-cata />
</activity>

<activity-alias>
<intent-filter> . . . </intent-filrer>
<meca-data />

</activity-alias>

CARTVICE>
<intenc-filvar> . . . </inctenc-filcer>
<meta-data/>

<fservicer

<receivers
<intent-filter> . . . </invent-filver>
<meta-dats

</receiver>

<provider>
<grant-uri-permission />
<meta-data />
<path-permission />
«/providers»

<uses-library />
</application>
</manifest>

Figure 1. Android manifest file format

14

Journal of Data Processing Volume 6 Number 1 March 2016

IANBROID PACKAGE]

Android manifest xml | | Lib | | sErane
<?xml version="1.0" encoding="utf-8"2> Name Name
<manifest> |2] asm-debug-all-3.2 i maven

<uses-permission />

; % commens-io-2.0 b services
<uses-sdk /> = e
<uses-configuration /> 2] dexZjar-0.0.7.11-SNAPSHOT =
<uses-feature /> &) sifdj-api-1.56 | MANIFEST.MF
|&] sifdj-simple-1.56 L_| NOTICE
h 4
I classes.dex I | Resources.arsc | I Res folder
dasses_dexZjarjar x
3-8 com [drawables pictures layouts xml attributes

% admob.android.ads

= mj.iCalendar Name Name
&0 R — 2] attrs
= [4) SmsReceiver (=] gridview_menu ds
= (@ SmsRecerver = gridview_pop e
of strRes : String = 2] public
@ onReceive(Conte, Intent) : void (5] item_menu [=] strings
#-[4] iCalendar =] main
Figure 2. Android package file format
E MMAT WARFE E BEINIGIN
H apk £ apk
h i
DISASSEMBLE USING
ANDROGUARTD
I DIVIDE DATA SET I
EXTRACT

1. Permissions

2 Permission Count

3. APT Calls

4. Hardware Features
5. Sofitware Features

.
v v

1
TEST SET [—

-

TERATNIMNG
SET &
- v |

SPARSE FEATURE ELIMNMINATION I

FEATURE SELECTION |
METHOTIS .

1. Mhiutual Inmformation |
2. Bi-Norms-Separation s
3. Feature-Class Correlation |
4_ Feature-Feature Correlation '
5. FCFF Fezture Selection]
5. Optmal Orihogonal Selection |
7. Comprehensively hMeasure Selectior]

Figure 3. Architecture of Individual feature model

Journal of Data Processing Volume 6 Number 1 March 2016

i. Count of permission in each file: This attribute set is generated by computing the number of permissions requested by
an Android application

ii. Application Programming Interface (API) calls: API calls are employed so as to request with the user queries to the
repository and respond back to the user. The application programming interface calls should be invoked at the run time to
perform some specific tasks required by the user. Some examples are onCreateOptionsMenu (), onDraw(),
onActivityResult (), setSpeechRate(), setPitch(), addSpeech () etc. Refer Figure 7 for the snippet
of API calls obtained using the Androguard tool

iii. Software Features: The software features required by the application for its execution is defined within the <uses-
feature> tag in the Manifest file. It includes an android: required attribute that chooses true or false options to determine
whether the app could or could not function without it. For example device_admin, app_widgets, home_screen
etc. (refer Figure 6).

MALWARE BENIGN
apk 5 apk
¥ ¥
DISASSEMBLE USING
ANDROGUARD

\ 2

DIVIDE DATA SET I

v

EXTRACT
Permissions
Permission Count
APT Calls
- Hardwrare Features
. Software Features

I —

TRAINING
SET TEST SET
v v |

SPARSE FEATURE ELIMINATION

v ¥
FEATURE SELECTION |
METHODS :

- Mutual Information |
. Bi-Normal-Separation)
. Feature-Class Correlation |
Feature-Feature Correlation .
FCFF Feature Selection "
Oprimal Orthogonal Selection |
I

Comprzhensively Measure Selectio]
¥ + g _
ENSEMELE FEATURES |0 FERnmssioNs
o - PERNISSION

| COUNT
[s FEATURE:S

Lh e b ba

LA e pa e

|- H'W FEATURES
I aA®rcaLLs

Figure 4. Architecture of Ensemble model

16 Journal of Data Processing Volume 6 Number 1 March 2016

<uses-permission android:name=" permission.RECEIVE BOOT COMPLETED"> </uses-permi
<uses-permission |

<uses-permission a
<uses-permission
<uses-permission an

.permission.GET_ACCOUNTS"> </uses-permission>

.permission.ACCESS NETWORK STATE"> </uses-permiss
.permission.MANAGE ACCOUNTS|> </uses-permission>
.permission.USE CREDENTIALS"> </uses-permission>
.permission.AUTHENTICATE ACCOUNTS"> </uses-permis
name="android.permission.WRITE SYNC SETTINGS"> </uses-permissi

M B HH

0 O D D

<uses-permission an
<uses-permission a
<uses-permission anc d:name="android.permission.WRITE SETTINGS"> </uses-permission>
Figure 5. Android Permissions declared within <uses-permission> tag

<uses-feature android:name="android.hardware.location" android:required="false'

<uses-feature android:name="android.hardware.location.gps" android:required="f:

<uses-feature _:=”Fndroid.hardware.touchscreen[) </uses-feature>

<uses-feature android:name="android.hardware.camera" android:required="false">
<uses-feature android:name="android.hardware.camera.autofocus" android:requiret

<uses-feature andro :name="android.software.app widgets"

<useg-feature a:ﬁ::id::axe=1android.software.device adminl androi
<uses-feature android:name="android.software.home screen" android:

Figure 6. Software and Hardware features within<uses-feature> tag

Lcnmfokythoos}android;utils/FtleHanaéer;’ onCreate ['ANDROID', 'CéNTENT', "APP',
'"WIDGET', '0S']

Lcom/okythoos/android/utils/FileManager;fonCreateOptionsMenulj ['ANDROID', 'VIEW']
Lcom/okythoos/android/utils/FileManager; € CK | ANDROID', 'WIDGET', '

APP ']

Lcom/okythoos/android/utils/FileManager; onOptionsItemSelected ['ANDROID', 'CONT
ENT', 'VIEW']

Lcom/okythoos/android/tdmpro/G; run ['ANDROID', 'WIDGET']
Lcom/okythoos/android/tdmpro/H; onClick ['ANDROID', 'APP']

Figure 7. API calls obtained using Androguard tool

i.Hardware Features: It gives information about the set of hardware features on which the application depends. For example:
touchscreen, camera, camera.autofocus etc. (refer Figure 6).

3.3 Feature Extraction

The .apk files which are originally in binary format are provided as input to the disassembler tool. The tool component
androaxml.py is used to convert the manifest file which is originally in binary format to human readable .xml form. This file
includes the permissions (within <uses-permission> tag) as well as s/w and h/w features (within <uses-feature> tag). Similarly,
the python script androapkinfo.py is implemented to extract the API calls of the specimens. Refer Figure 8 and Figure 9 for
the commands executed to obtain the output. The number of permissions in each file is considered as another attribute to
foster the classification model.

3.4 Data Pre-Processing

During this phase, the attributes are mined from the test and train set. After feature extraction, (which is an initial step to data
pre-processing) the redundant, irrelevant information that appears as noise in the training set should be filtered off. For this,
feature pruning is carried out to eliminate the features (sparse attributes) that do not contribute to the classification of
malicious samples.

After removing the unreliable information, features common to both the classes (MB) are taken into consideration. This
feature set is given more importance than other category of attribute sets like malware and benign features (MUB),
discriminant benign features (B\M) and discriminant malware (M\B) features as they give improved accuracy according to
our previous work [26].

Journal of Data Processing Volume 6 Number 1 March 2016 17

3.5 Attribute Selection Techniques

Feature selection in data mining is the technique to select significant features for model creation. The input feature list
obtained as a result of initial data pre-processing steps still contains noisy attributes as well as highly correlated features.
These irrelevant features have to be eliminated by selecting only the required features as their presence increases the time
and processing power.

Bi-Normal Separation (BNS) (based on Z-Score), Mutual Information (MI), feature to class correlation (F-CC), feature to
feature correlation (F-FC), FCFF feature selection (FCFF), comprehensively measure feature selection (CMFS) and optimal
orthogonal centroid feature selection methods (OCFS) are implemented to build the classification model in our proposed
method. The mathematical formulas of these variable selection techniques are included in Table 2.

Bi-Normal Separation (BNS) chooses the positive and negative attributes and is not biased to the malware or benign class.
The score is determined using the statistical table for Z-score [4]. Value of F* is obtained from this table. F* values of both
true positive rate (TPR) as well as false positive rate (FPR) are computed and the absolute differences of these values are
treated as the BNS score (Refer equations in Table 2).

Androguard
Input: J'W""_‘PK""“H y Output:
§. fandroapkinfo.py =i APl Calls

apktiles W vourfile.apk -o outpat. txt

Figure 8. Androguard command to output API Calls

Qutput:
Parmissions.
xml format Solftware
Hardware
Features

Androguard
androaxml.py

§. Jandroaxsl.py =i
yourfile.apt —o cutput.xzml (Manifesi fise)

Input:
apkfiles

Figure 9. Command to output Permissions and software/hardware features

The attributes are ranked on the basis of this score in order to generate different feature sets of varying attribute lengths.

Mutual Information (MI) provides the knowledge about the extent to which an attribute F reduces the uncertainty in identifying
the right class C. It computes the mutual dependence of two random variables.

Feature to Class Correlation (F-CC) measures the correlation between a feature and a class. It is based on the joint
probability distribution function between the attribute and its associated class (malware and benign class). The marginal
probability distribution of feature and class is also computed to find out the score of an attribute. It chooses the attribute that
highly represents its membership in a class.

Feature to Feature Correlation (F-FC) is also known as Pearson’s correlation coefficient. It measures the strength,
correlation and direction of a linear relationship between two attributes. The correlation coefficient r has the value between
+1 and -1.i.e. -1.00 < r <+ 100. The value r = 0.0 represents the absence of a linear relationship (weak correlation), r = +1
0 or -1.0 represents the presence of a perfect linear relationship (perfect correlation) [37].

18 Journal of Data Processing Volume 6 Number 1 March 2016

FCFF is a combination of feature to class and feature to feature correlation techniques that are mentioned above. The attributes are
initially scored on the basis of their F-CC value. The scored features are ranked in the descending order of their scores to select the
top 50% attributes from the ranked set. The F-FC values of these selected attributes are computed with each and every other
attributes in the selected list. Correlation of a feature to itself generates a value of 1.00 as they are highly correlated to one another.
From this list, every attribute pairs with 0 > r > -0.7 (negatively correlated) and 0 < r < 0.7 (positively correlated) are considered
in our evaluation (the pairs with r value beyond these values approaches to more correlated features). These feature pairs are
arranged in the descending order of values of their Pearson’s correlation coefficient.

Comprehensive Measurement Feature Selection (CMFS) measures the importance of an attribute by calculating its
significance from both inter-category and intra-category. To measure the goodness of a feature, the class specific scores of
an attribute can be combined in the following ways (using equation 1 or 2):

|C
CMFS .. (1,)= P(C,) CMFS(t,.C,) (1)

average
i=1

-
CMFS , . (t,)= max CMFS(t,,C,))]

max

Optimal orthogonal centroid feature selection method (OCFS) is based on a supervised feature extraction algorithm
known as the orthogonal centroid algorithm [38]. The steps involved in the implementation are described below:

Step 1: Compute the centroid for attributes in benign class and malware class using equations 3 and 4.

; 1
E e i
Moy = Z x;eclass B Xi s (3)

ny

g] 5 ;
my = 7 x;eclass M *i (4)

M

Where i is the set of features, x; is the frequency of feature i

Step 2: Compute the centroid for all attributes in the training sample using equation 5.

P e
m = ? i1 x,‘ (5)

Step 3: Calculate the feature score using the equation 6.

OCFS (t,) =Y Limt — m*)? ©®)
n

These feature selection techniques are applied to select the required features for classification based on the scores assigned
to each attribute.

3.6 Feature Aggregation
The optimal feature space of the five individual attribute categories are aggregated to form a new feature type referred as
ensemble features. It may improve the detection rate as extraneous attributes would be already eliminated (refer Figure 4 and 10).

3.7 Classification and Prediction

The class labels are assigned in advance to the learning set in case of supervised learning. The unclassified specimens in the
test set are finally assigned with the predicted class labels (malware/benign). The input to the classification algorithms used in
this work includes feature vector tables with prominent features of varying attribute lengths (refer steps 1 and 2 in Figure 10). For
each feature category, optimal feature space is found out by comparing the classification accuracies and this process is followed
by generating ensemble models with the combined feature space for classification (refer step 3, 4 and 5).

Journal of Data Processing Volume 6 Number 1 March 2016 19

FEATURE
SELECTION
METHODS

MATHEMATICAL FORMULA

TERM DESCRIPTION

Bi-Normal Separation
(BNS) [12][13][14]

BNS= |F'\(tpr)- F(fpr)|

TP
True positive rate (TPR) =
rue positive rate (TPR) TP + FN
False Positive rate{ FPR)= i
TN + FP

F is the normal cumulative distribution function

F~' is the inverse cumulative probability function of
standard normal distribution
FP gives the misclassification of benign samples
TP indicate correctly classified malware instances
FN represents wrongly classified malware samples
TP denotes correctly classified malware files

Mutual Information
(MD)[9]

: P(f.c)
MI(f,c) = P(S,c)log| —d+€)_
A= 2, LR O”[P(fJP(c)J

[is the feature

¢ represents class

P(f. ¢) is the joint probability distribution function

P(f) and P(c) are the marginal probability distributions
of variables fand c.

Feature to Class

_IN{P(1,C,)* P(1,C.) - P(1,C.)* P(1,C,)}

P(t) :Probability of feature ¢

P(L} : Probability of absence of feature

P(C;) Probability of class C,

P(C,) :Probability of class C,

P(t,C,) : Probability of presence of feature in
class C,

correlation (F-CC)[36] F-CClte) = = P ;E, :Probability of absence of feature ¢ in class
JP(t)* P(t)* P(C.)* P(C) zf— / d
P .f,‘(?‘_,-) :Probability of presence of feature ¢ in
class C,
Pl f,Cr.) :Probability of absence of feature ¢ in class
C,
N: Total number of samples in the training set.
Feature to Feature
correlation (F-FC)/ F—FClx.y)= \Z = fZ x)* "Z y) x and y represents features
Pearsons’s correlation ’ Jr NY X =D x)) NY Y = (X)) N: Total number of samples in the training set
coefficient [35]
dfft,,C,): Documentfrequencyof featurer, inclass C;
Ciiiprelicie |C| : Numberof classes
measurement fsature CMFS(,,C,) = {dfit, . C)+1) |V| : Total features in featurespace

selection (CMFS) [34]

(dfit,)+ | C)* dfit,.C.)+ |V)

dfit.C,): Totalfrequency of attributetinC,
dfft,): Frequencyof feature ¢, in traininget

Optimal orthogonal
centroid feature
selection method
(OCFS) [34]

OCFS(1,)= Y, "(m! ~m")

m] :centroid of class i with feature k
m" : centroid of feature k
n, : Number of samples in class i

n: Total number of training samples

Table 2. Attribute selection techniques

The classifiers implemented in WEKA [17] such as AdaBoostM1 with J48 as base classifier (ADA) [10][28], Random Forest
(RF) [11][27] [No: of Trees = 40, seed = 3] and J48 are used for classification.

AdaBoost.M1 with J48 as base classifier (ADA): It incorporates the base classifier J48 as the accuracy can be improved
by using multiple classifiers than a single classifier. Boosting enhances the potential of a weak classifier. The classification
models generated from the training data by the process of repeated learning by weak learners are combined to a single strong
model.

Random Forest (RF): The RF classifier grows an ensemble of decision trees. These are generated at the training time by
creating random vectors that deal with the growth of each tree. Each tree vote for the most favoured class to obtain the final
output class. It implements the bagging technique to resample the training data and train the weak learners on this data. Its

20 Journal of Data Processing Volume 6 Number 1 March 2016

randomness allows the random selection of features for tree construction.

J48: 1t is a decision tree based classification algorithm that implements C4.5 algorithm in WEKA. The classification process
is modelled by constructing a decision tree traversed in top-down approach. The tree traversals generate rules that contribute
to classification.

3.8 Evaluation Parameters
Accuracy gives the degree of correctness of the model in classifying the test samples [15]. It specifies how close to the
actual class the predicted class is (equation 7 is used to compute accuracy).

TP+TN

Accuracy =
Y TP+TN + FP+ FN (1)

STEP 1: Input individual attributes

Count of AP Calls Software Hardware

| | Permissions | | | | features | | fesfures

y v ' v v

STEP 2; Classify using individual features with varying feature lengths

v

STEP 3: Find optimal feature vectors of five feature categories

Permissions

‘ Count of Software Hardware
+ API Calls
Permissions Permissions features features

v v v v v

STEP 4: Generate Ensemble mode] using the combined feature space
Countof

Permissions + S+ ApICalls + Software , Hardware
Permissions features features

v

STEP 5: Classify using ensemble model

Figure 10. Steps to generate ensemble model from individual

Accuracy does not indicate the proportion of malware samples that are correctly identified as malware and misclassified as
benign samples. To have knowledge about these proportions, the true positive rates (TPR) and false positive rates (FPR) should
be evaluated. The equations for TPR as well as FPR are included in Table 2.

The classification accuracies of models built with distinct feature sets are compared to find out the:

1) Best feature selection method.

2) Optimal feature vector length.

3) Best feature category (permissions, count of permissions, software/hardware features or API calls).
4) Best classifier

5) Comparative analysis of ensemble and individual features.

4. Experiments and Results
The experimental environment is set up with Ubuntu 12.04 OS, Intel core i3 CPU and 4GB RAM. The investigations are

carried out in two phases (1) considering independent attributes and (2) ensemble features. These two steps are discussed
briefly in the following subsections.

Journal of Data Processing Volume 6 Number 1 March 2016 21

4.1 Evaluation with Independent Features

A given permission, software and hardware feature is declared only once in an apk file. So the presence/absence (1 or 0) of
these attributes represented in the Boolean format are considered to generate the feature vector tables (FVT). API calls in
most cases are invoked more than once in an application. In this case, the classification models can be generated using
Boolean FVT as well as frequency FVT. The former incorporates the presence/absence of an API in a sample and the latter
considers the frequency of each attribute in the sample.

Performance Evaluation with Boolean FVT:

The benign and malware train samples respectively contributed 195 and 109 unique permissions. About 78 common
permissions (MnB) are found within these unique lists. These are arranged based on their BNS, MI, F-CC, F-FC, CMFS,
OCFS and FCFF scores in descending order.

Classification models are generated using top 10, 20..70 ranked permissions based on the feature selection methods. For
BNS, the bottom ranked permissions are considered as the top ranked BNS attributes give less classification accuracy
according to our prior work [26]. The same activity is carried out for permissions with permission count for the training
samples. In case of API calls, 7,174 and 29,765 unique attributes are obtained for malware and benign train samples. In order
to reduce the feature space, 50% of irrelevant API calls are filtered off to obtain rest 14,882 benign and 3587 malware API’s.
From this pruned feature set, 2166 common API’s (MB) are determined. BNS API calls are selected from bottom (bottom
scored) whereas top scored APIs are selected for rest of the feature selection techniques. Boolean FVT’s are generated for
variable feature length (i.e. 50, 100, 200.....1000).

The experiment results depict that 30 BNS permissions give 92.51% accuracy using Random Forest classifier. It is observed
that the classification model generated using MI, F-CC, F-FC, CMFS, OCFS and FCFF features uses more number of
permissions than BNS to generate the better model. For the count of permissions, the optimal feature length is observed to
be 41 with an accuracy of 92.50% using OCFS with Random Forest. BNS, Ml, F-CC, F-FC and FCFF give improved accuracy
with 71 features whereas CMFS uses 10 features more than OCFS to provide 92.16% accuracy (refer Table 3).

For API calls with Boolean FVVT, model built with 50 APIs provided an accuracy of 90.81% using BNS. MI gives an accuracy
of 91.15% using 550 features more than BNS. FCC uses extra 850 features to gain 90.80% accuracy, FFC with 900 features
give 90.80% accuracy, CMFS gives 92.33% accuracy with 400 APIs, OCFS uses 950 features more BNS to attain 91.82%
accuracy. So, BNS with 50 APIs take less processing time and uses precise attributes compared to the features selected with
other feature selection techniques (refer Table 3).

The feature space for software and hardware features are not pruned in the feature pre-processing stage and feature selection
techniques are not applied to these attributes. The 40 h/w and 7 s/w features depicted 56.12% and 52.04% accuracies
respectively (refer Table 4).

Performance Evaluation with Frequency FVT:

Classification models are generated using the frequencies of APIs in the samples. Bottom 100 BNS APIs are optimal as they
provide an accuracy of 91.83% with Random forest. CMFS APIs provide 92.84% accuracy but considers 400 features more
than BNS to have 1.01% increase in accuracy (refer Table 3).

From the results for evaluation with Boolean and frequency FVT of independent features, BNS is better for every feature
categories as it uses precise attributes and consumes less processing time for classification. BNS Permissions are found to
be the best feature category when compared with API calls and count of permissions as these models depict 92.51% accuracy
with 30 features. For all the cases, Random Forest gives better detection rate (refer Table 5).

4.2 Evaluation with Ensemble Features

For each feature selection technique, two ensemble models are generated using (1) the frequencies of prominent APIs in
each file and (2) considering the Boolean value of APIs. These two categories of API calls are separately aggregated with the
presence/absence of other four categories of features.

From Table 6, ensemble model fabricated using frequency FVT gives an accuracy of 93.87% (for 218 features) with Random

22 Journal of Data Processing Volume 6 Number 1 March 2016

Forest classifier for BNS method. Even though, the highest accuracy is attained using FCFF technique (94.37%), this method
uses extra 680 attributes that increases the processing time.

CMFS employs 508 features to attain highest accuracy of 94.03% in the category of Boolean ensemble models but requires
more processing time. So, 168 BNS attributes providing 93.02% accuracy are found to be the optimal features (refer Table
7).

Summarizing the results for ensemble feature category, Boolean features with BNS that uses 168 features are the preferred
categories as they require less number of features and less processing time (refer Table 6 and 7).

Trivial and significant permissions/API calls that are used by malicious and legitimate .apk files with their descriptions are
given in Tables 9, 10, 12 and 13.

For an ideal malware analyzer, the TPR should be higher with minimum FPR rates. Figure 11 depicts the 30 BNS permissions
with improved accuracy (92.51%), TPR (88.50%) and minimum FPR (3.6%) when compared with rest of the feature space.
For permissions with permission count, highest accuracy of 92.50% is achieved with OCFS using 41 attributes. This feature
space has depicted a minimum false positive rate of 3.33% with higher true positive rate of 88.1% (refer Figure 12).

For frequency FVT, 900 attributes give 4% FPR with reduced TPR of 89.19% and accuracy of 91.68% (refer Figure 13). But,
BNS with 100 API calls (giving 91.83% accuracy, 90.24% TPR with 6.66% FPR) are selected as the best case. The reason
behind this is that they require less attributes to achieve higher accuracy and TPR compared to the other feature spaces thus
avoiding irrelevant features. BNS Boolean FVT with 50 API calls provides 90.81% accuracy, 88.15% TPR with 6.6% FPR
(refer Figure 14).

4.3 Processing Time

In this subsection, we discuss with the processing time for testing unseen samples (in seconds) with the Random forest
classifier. In all the cases, except for permission count, BNS with less number of attributes are found to be the best method. Table
8 provides information about the comparison of processing overhead of BNS attributes with other feature selection techniques.
The other attribute sets are selected for comparison based on the criteria that they exhibits improved accuracy with more number
of features in the corresponding feature category.

For permissions with permission count, time consumed by OCFS technique for testing the samples is compared with F-CC
method.

In case of ensemble features, the processing overhead of 168 BNS attributes for Boolean model are compared with 508 CMFS
attributes. Similarly, 218 BNS attributes for frequency model are compared with 898 FCFF features.

Accuracy B3 TPR B0 FPR mmm
100
= - e - i
- == m B OB OB OEb
Ssor BHEOOBEOEH OB O :
= e g g 0 e 5) £ .
g e O I ;
Z MEOEE O O - :
] i . « e " :
4 60k i I F M3 b :
E o s g] "
= o {3 1) L X
o d s i bt s .
= N B A :
8 40+ ’ ‘.) 43 = :
" - s :-"!- 1 : 3 b :
& : B KR o :
| . [t 1 2
201 e = .
i] i ;': i o b K '3 iy : "
i 5] 1 o | rd X
] ! + i 3| I h :
o 4 5 | s | :

¥ : % K 2 X s |
10 a0 30 40 50 a0 T
Feamre Length

Figure 11. Evaluation measures of BNS scored permissions

Journal of Data Processing Volume 6 Number 1 March 2016 23

Figure 12. Evaluation measures of OCFS scored permission count

Evahestion messure (%)
s

o P

1 21 L) | 41 s
Fente Leaigth

b
2
4
"
o

2

Lot

&

e A L L D

H

B

F

100 -

s
L=

40

Evalustion measire (%)
2

Acturacy B=ER | TPREEE

D]

e
ot e B S O A S

i K
i i

FPR -

i RS (A5 WE BN 8. i
100 200 300 400 300 G600 700 E00 SO0 1000

Fearure Length

Figure 13. Evaluation measures of BNS scored API calls (frequency features)

100 |

80 F

40+

Evalustion measure (%5)
3

0p

=]

Accuracy B8 TPR B

W

N Y Y]

%_ 1 1 A1 Gl Al
00 100 200 300 400 300 400 TOO
Fearure Lenzth

FPR mmm

Figure 14. Evaluation measures of BNS scored API calls (Boolean features)
Feature slection BNS MI F-CC F-FC FCFF CMFS OCFS
Evaluation

e alff) alifi} alff) alifi) alfi) allfi) ailfi)
Features
Permissions 9.51/(30) | 92.51/(70) 90.30/(70) | 9165/(70) | 8892/(40) | 9233/(60) | 92.50/(50)
;ell’::“"““ 0234/(T) | 9234/(T1) 90.30/(71) | 92.50/(71) | 8977/(51) | 92.16/(51) | 92.50/(41)
APl calls 91.83/(100) | 91.49/(1000) | 90.11/(900) | 90.46/(%00) | 90.80/(800) | 92.84/(500) | 91.48/(500)
API(Boolean) | g1 /(50) | 91.15/(600) | 90.80/(900) | 90.80/(900) | 91.65/(800) | 92.33/(400) | 91.82/(1000)

Table 3. Accuracies for optimal feature space of individual features for the corresponding feature selection technique
represented in the « /) form, where « represents accuracy attained using Random forest classification algorithm and g

depicts feature length

24 Journal of Data Processing Volume 6 Number 1 March 2016

Features Software Hardware
Features Features
(7) (40)
Evaluation
easure Ace. Ace.
Classifiers
J48 51.19 53.23
Adaboost M1(J48) 51.19 54.08
RF(40) Seed 3 51.04 56.12

Table 4. Accuracies for software and hardware attributes

Festiife Classifiers
Features length
ADA J48 RF

Permissions 30 89.79 87.92 92.51
g API calls 100 89.62 | 87.07 | 91.83

API

(Boolean) 50 86.22 84.01 90.81
W POy
3] Permbsion 41 87.73 86.54 | 92.50
O count

Table 5. Summary table for accuracies of individual features (results for optimal feature sets are only projected here)

Feature selection BNS MI F-CC F-FC FCFF CMFS OCFS§
eature length
218 1118 1018 1018 898 608 588
Classifier
J48 87.92 87.41 89.45 87.56 88.41 89.26 87.39
AdaBoost M1 (J48) 90.64 91.83 89.45 92.67 90.46 91.48 9233
Random Forest 93.87 94.04 92.85 93.35 94,37 93.18 94.03
Table 6. Accuracies for ensemble features with frequency of attributes
Feature selection BNS MI F-CC F-FC FCFF CMFS OCFS
eature length
168 718 1318 1018 898 508 1388
Classifier
J48 88.26 89.28 89.77 87.73 89.60 88.24 92.33
AdaBoost M1 (J48) 91.15 90.64 91.82 91.99 92.50 92.50 91.14
Random Forest 93.02 93.53 92.50 93.52 92.50 94.03 93.35

Table 7. Accuracies for ensemble features with Boolean value of attributes

Journal of Data Processing Volume 6 Number 1 March 2016

Attributes
Permissions | Permission Count ARReall. APLcall (Bostean) | nocmble Festures (Ensemsble Features
(Frequency) (Boolean) (Frequency)
120% 107 13%10™ 146X 10~ 128107 13310~ 143% 10~
[BNS,30] [OCFS, 41] [BNS, 100] [BNS, 50] [BNS, 168] [BNS, 218]
141x10~° 146X 10~ 1.55% 107 1.53x 10~ 16210~ 156% 10~
(M1, 70] [F-CC, 71] [CMFS, 500] [CMEFS, 400] [CMFS, 508] [FCFF, 898]

Table 8. Processing time (in seconds) of optimal attribute sets of each feature category compared with the feature sets of
other feature selection techniques (that exhibit improved accuracy with more features); represented in the form x[y, z];
where, X represents processing time for Random forest, z depicts feature space and y gives attribute selection technique

5. Inference

Permissions

Description

WRITE_EXTERNAL_STO
RAGE

Permission for an app to write to the
external storage

READ PHONE STATE

Read only access permission to phone
state

CHANGE_WIFI_STATES

Permission to change Wi-fi
connectivity state.

WAKE_LOCK

Using PowerManager WakeLocks to
keep processor from sleeping or
screen from dimming

ACCESS_NETWORK_STA
TE

To access network information

RECEIVE_BOOT_COMPL
ETED

Allows an application to receive
ACTION_BOOT_ COMPLETED that is
broadcasted after booting.

SEND_SMsS

Allows an application to send SMS

ACCESS WIFI_STATE

Allows the app to access network
information

ACCESS_COARSE_LOCA
TION

Permission for the app to access
approximate location by means of
towers and wi-fi

ACCESS_FINE LOCATI
ON

Permission for the app to access
precise location by means of towers
and Wi-Fi

READ CONTACTS

Permission to read contact list of the
device’s user

Table 9. Prominent permissions and their description

In this section we discuss with the inferences made from this work:

1. BNS Permissions are found to be the desired attributes in case of independent features as it gives 92.51% accuracy with
30 features. The functions of an app are based on the permissions requested by it and all illegitimate .apk files need some
permission that is different from the benign samples.

2. Ensemble models are found to be better than independent models as they combine the optimal feature space of individual
features like permissions, count of permissions, API calls, s/w and h/w features and aggregates the strength of this combination.

3. Boolean ensemble model with BNS gives 93.02% accuracy with 168 features whereas frequency ensemble framework
uses extra 50 attributes to gain 93.87% accuracy.

26 Journal of Data Processing Volume 6 Number 1 March 2016

4. In all the cases, Random Forest classifier performed better than other classifiers as it is an ensemble based learning
method. Results from multiple classifiers are aggregated to assign the class label to an unseen sample.

5. J48 classifier gives less accuracy in all the cases as it is a decision based classifier and causes overfitting of training data.

6. Increase in feature length included redundant and irrelevant features that are not necessary for model generation and
reduced the classification accuracy. Reducing the feature space beyond certain feature length degraded the performance of
our analyzer. The optimal feature sets with precise attributes are selected such that they could represent the features of the
entire attribute set.

7. Permissions and API calls assigned with lesser score by the attribute selection methods are filtered off in order to reduce
the dimensionality of feature space. In case of BNS, the less scored features are selected for classification by avoiding the
high scored attributes

Permissions Description

SEGEIVE WAP PUSH To Monitor Incoming Wap Push

WRITE_ CALL_LOG To write user’s contact data

READ CALL LOG To read call log

Allows to clear the caches of all

CLEAR_APP_CACHE N .
- = applications that are installed

UPDATE DEVICE STETS Allows to update device statistics.

Permission for an application for low-

DEVICE_POWER level access to power management

CALL PREVILEGED Allows to call any phone number
- without using dialler user interface to
confirm the call.

Permission for an application to

REORDEE, ThIRS change Z-order of tasks

STATUS_BAR Permission for an app to disable, open
and close the status bar and its icons

Permission for an app to collect battery

BATTERY STATS ..
- statistics.

Table 10. Trivial permissions and their description

API Calls Description
setLanguage () Sets the text to speech language
setMarginEnd () Provides additional space on the end

side of this view. It sets the end
margin.

setWebViewClient () | Sets the webViewClient that is
capable of receiving requests.

shouldOverrideKeyE | Provides chance to the host

vent () application to handle the key events
simultaneously

setPitch() Sets the speech pitch

addSpeech () Adds mapping between text and a
sound file

setSpeechRate () API calls to set speech rate.

setName () API calls to set name of the suite.

Table 11. Trivial API’s and their description

Journal of Data Processing Volume 6 Number 1 March 2016 27

Authors (year)

Feature Used

Result (Accuracy)

Borja Sanz, Igor Santos et. al,
2013 [25]

Permissions and count of permissions
= Dataset: 249 malware and 357 benign .apk files

86.41%

Borja Sanz,Igor Santos et al,
2013 [32]

Permissions as well as features present in the <uses—feature> tags
and a combination of these two attributes
* Dataset: 333 benign and 333 malware samples

87.41% (permission based model)
86.09% (feature model)
94.83%(permission and feature
combined model)

features
= Dataset: 1175 apps (600 benign and 575 malware apps)
= Test and train set are divided in an unbiased manner.

Yousra Aafer et al., 2013 API calls, their package level information, as well as parameters 99%
[24] = Dataset: 19,987 apps (16000 benign and 3987 malware
apps)
Aswini AM etal., 2014 [26] | Permissions 81.56%
* Dataset: 436 apps (209 malware and 227 benign samples)
A. Shabtai et al., 2012 [22] Features at the application level, OS level, hardware etc (about 88 87.4% to 99%
features) are extracted.
= Dataset: 44 apps (20 benign and 4 malware apps)
= Experiments were conducted in a biased manner. Size of
training set is larger than test set in all cases.
Daniel Arp et al, 2014 [30] Permissions, intents, suspicious API calls, hardware components, | 94%
app components and network addresses
* Dataset: 129013 apps (123,453 benign and 5,560
malware apps)
= Searched for matching of API calls with permissions to
find out the permissions that are actually used.
= Focused on suspicious API calls and network addresses.
Proposed Method Permissions, count of permissions, API calls, software/hardware 92.51% (Permissions)

92.34% (count of permissions)
91.83% (API calls)

93.02% (with ensemble model(with
Boolean features))

93.87% (ensemble model(with
frequency

attributes))

Table 12. Comparison with previous works

6. Comparison with Previous Works

Table 12 shows the comparison of our result with the results of some previous works.

7. Conclusion

We implemented machine learning and dimensionality reduction techniques to perform static analysis of Android malware
files. Permissions, count of permissions, software/hardware features from manifest file and API calls are used as attributes
to generate the classification model. Results suggest that ensemble model performed better than individual features. Ensemble

28

Journal of Data Processing Volume 6 Number 1 March 2016

API Calls Description

onCreateOptionsMenu (. :
) P It is called the first time when

the options menu is shown. It is
used to initialize the contents of
the activity’s standard options
menu. Menu items are placed in
menu

onDraw () Used when the contents of the

view has to be changed.
Override these calls to
implement custom view.

OnActivityResult () Gives the results back from an
Activity when it ends.

onCreateDialog() To implement dialog designs
present in the dialog design
guide.
onTouchEvent () Called when an event like a
touch screen motion event
oceurs.

onOptionItemSelected
()

Called when an item in the
options menu is selected

onKeyUp () Called at the time of an event
like a key up event
OnAttachedToWindow () | It is called when the view is

window attached

Table 13. Prominent API’s and their description

model aggregates the strength of individual features by combining the optimal attributes of each feature category. These
models with Boolean features depict 93.02% accuracy with 168 features and individual model with 30 permissions depict
92.51% accuracy using BNS.

8. Future Scope

Features like Dalvik opcode, Java reflection and Android Manifest attributes can be used individually and as ensemble features
to extend this work. In future, the parameters of API calls, suspicious API calls, permissions that are actually used etc. can be
selected to improve the performance of our proposed system. Dynamic analysis can be carried out to extract run-time
features to generate an expanded framework for malware detection. Thus the proposed system can also be extended to a
hybrid model as a future work.

References

[1] Androguard.http://code.google.com/p/androguard/, (accessed September 12, 2013)

[2] Malware application package files download : http://contagiominidump.blogspot.in/2011/07/take-sample-leave-sample-
mobile-malware.html, (accessed September 22, 2013)

[3] Application package file (.apk file) format. http://www.file-extensions.org/article/android-apk-file-format-description,
(accessed October 5, 2013)

[4] Z-Score Table: http://www.stat.tamu.edu/~Izhou/stat302 /standardnormaltable.pdf, (accessed October 13, 2013)

[5] Symantec Corporation, Internet Security Threat Report 2014:http://www.symantec.com/content/en/us/enterprise/
other_resources/b-istr_main_report_v19 21291018.en-us.pdf (accessed June 10, 2014)

[6]F-Secure Labs Mobile Threat Report Q1 2014:http://www.f-secure.com/static/doc/labs_global/Research/
Mobile_Threat Report_Q1 2014.pdf (accessed June 10, 2014)

Journal of Data Processing Volume 6 Number 1 March 2016 29

[7] IDC, International Data Corporation: http://www.idc.com/getdoc.jsp?containerld=prUS24676414, (accessed June 10,
2014)

[8] Google Play Market: https://play.google.com/store?hl=en (accessed September 5, 2013)

[9] Battiti, R. (1994). Using Mutual Information for Selecting Features in Supervised Neural Net Learning, IEEE Transactions
On Neural Networks, 5 (4), July.

[10]Freund, Y., Schapire, R. E. (1996). Experiments with a new Boosting Algorithm, Machine Learning In: Proceedings of
the Thirteenth International Conference, 148-156.

[11] Liaw, A., Wiener, M. (2002). Classification and Regression by Random Forest, R News, 8-22, December.

[12] Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for Text Classification. special Issue on
Variable and Feature Selection, Journal of Machine Learning Research, 3 (Mar), 1289-1305.

[13] Tang, Lei., Liu, Huan. (2005). Bias Analysis in Text Classification for Highly Skewed Data, ICDM, IEEE Computer
Society, 781-784.

[14] Forman, G. (2006). BNS Scaling: A Complement to Feature Selection for SVM Text Classification. Hewlett-Packard
Labs Tech Report HPL-2006-19.

[15] Tan, Pang-Ning., Steinbach, Michael and Kumar, Vipin, Introduction to Data Mining, First Edition, 2005, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA USA

[16] Filiol, E., Jacob, G, Le Liard, M. (2006). Evaluation Methodology and Theoretical Model for Antiviral Behavioural
Detection Strategies, WTCV06 Special Issue, G. Bonfante J.-Y. Marion eds, Journal in Computer Virology, 2 (4).

[17] Hall, M., Frank, E., Holmes, G.., Pfahringer, B., Reutemann, P., lan H. Witten. (2009). The WEKA Data Mining Software:
An Update, SIGKDD Explorations, 11 (1).

[18] Shabtai, A., Elovici, Y. (2010). Applying Behavioral Detection on Android-Based Devices. In: The proceedings of Third
International Conference, Mobilware, Chicago, IL, USA, June 30 - July 2, 235-249.

[19] Shabtai, A. (2010). Malware Detection on Mobile Devices, In: The Proceedings of 11th International Conference on
Mobile Data Management.

[20] Felt, A. P., Finifter, M., Chin, E., Hanna, S., Wagner, D. (2011). A Survey of Mobile Malware in the Wild, In : the
proceedings of SPSM11, October 17.

[21] Heger, D. A. (2011). Mobile Devices - An Introduction to the Android Operating Environment Design, Architecture, and
Performance Implications.

[22]Shabtai, A.., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y. (2012) . Andromaly: A Behavioral Malware Detection Framework
for Android Devices, J. Intell. Inf. Syst. 38 (1), February.

[23] Dini, G., Martinelli, F., Saracino, A., Sgandurra, D. (2012). MADAM: a Multi-Level Anomaly Detector for Android
Malware, In: The proceedings of 6" International Conference on Mathematical Methods, Models and Architectures for
Computer Network Security, MMM-ACNS 2012, St. Petersburg, Russia, October 17-19, 240-253.

[24] Aafer, Y., Du, W., Yin, H. (2013). Droid APIMiner: Mining API-Level Features for Robust Malware Detection in Android.

[25] Sanz, Borja., Santos, Igor., Laorden, Carlos., Ugarte-Pedrero, Xabier., Bringas, Pablo Garcia., Marafion, Gonzalo Alvarez
(2012). PUMA: Permission Usage to Detect Malware in Android. CISIS/ICEUTE/SOCO Special Sessions. 289-298,

[26] Aswini, A M., Vinod, P. (2014). Droid Permission Miner: Mining Prominent Permissions for Android Malware Analysis,
In: The proceedings of 5" IEEE International Conference on the Applications of the Digital Information and Web Technologies
(ICADIWT).

[27] Breiman, Leo. (2001). Random Forests, Machine Learning, 45 (1), 5-32.
[28] Breiman, Leo. (1996). Bagging Predictors, Machine Learning, 24 (2), 123-140.

[29] Huang, Chun-Ying., Tsai, Yi-Ting., Hsu, Chung-Han. Performance Evaluation on Permission-Based Detection for Android
Malware, In: Proceedings of International Computer Symposium, December.

30 Journal of Data Processing Volume 6 Number 1 March 2016

[30] Arp, Daniel., Spreitzenbarth, Michael., Hubner,Malte., Gascon, Hugo., Rieck, Konrad. (2014). Drebin: Efficient and
Explainable Detection of Android Malware in Your Pocket, In: Proceedings of 17! Network and Distributed System Security
Symposium (NDSS).

[31] Sanz, Borja., Santos, lgor., Ugarte-Pedrero, Xabier., Laorden, Carlos., Nieves, Javier., Bringas, Pablo Garcia. (2013).
Instance-based Anomaly Method for Android Malware Detection. In: Proceedings of SECRYPT 2013, 387-394.

[32] Sanz, Borja., Santos, lgor., Laorden, Carlos., Ugarte-Pedrero, Xabier., Nieves, Javier., Bringas, Pablo Garcia., Mara,
Gonzalo Ivarez. (2013). Mama: manifest Analysis for Malware Detection in Android, Cybernetics and Systems, p.469-488.

[33] Aung, Zarni., Zaw, Win. (2013). Permission-Based Android Malware Detection, In: Proceedings of International Journal
of Scientific & Technology Research, 2, 228-234.

[34] Yang, Jieming., Qu, Zhaoyang., Liu, Zhiying. (2014). Improved Feature-Selection Method Considering the Imbalance
Problem in Text Categorization, The Scientific World Journal, Article ID 625342, 17.

[35] Egghe, Leo., Leydesdorff, Loet. (209). The relation between Pearson’s correlation coefficient r and Salton’s cosine
measure. JASIST, 60 (5), 1027-1036.

[36] Zheng, Zhaohui., Wu, Xiaoyun., Srihari, Rohini. (2004). Feature selection for text categorization on imbalanced data,
SIGKDD Explor. Newsl. 6, 1, 80-89, June .

[37] Correlation: http://academic.macewan.ca/burok/Stat151/notes/regression.pdf (accessed May 12, 2013)

[38] Yan, Jun., Liu, Ning., Zhang, Benyu., Yan, Shuicheng., Chen, Zheng., Cheng, Qiansheng., Fan, Weiguo., Ma, Wei-Ying
(2005). OCFS: optimal orthogonal centroid feature selection for text categorization, In: Proceedings of 28" Annual
International ACM SIGIR conference on Research and development in Information Retrieval, 122-129, January.

Journal of Data Processing Volume 6 Number 1 March 2016 31

