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ABSTRACT

We present new computational hardness findings for Interval Scheduling on Unrelated Machines. This is a

traditional scheduling challenge inspired by just-in-time or lean manufacturing practices, where the objective

is to finish tasks precisely by their deadlines. We have n tasks and m machines available. Each task is

accompanied by a deadline, a weight, and a processing time that may vary across different machines. The

aim is to devise a schedule that maximizes the total weight of tasks completed precisely by their deadlines. It is

essential to note that this creates a distinct processing time interval for each task on each machine. Interval

Scheduling on Unrelated Machines has strong connections to coloring interval graphs and has been extensively

examined over the years. However, as highlighted by Mnich and van Bevern [Computers & Operations Research,

2018], the parameterized complexity regarding the number m of machines remains unresolved. We address

this by demonstrating that Interval Scheduling on Unrelated Machines is W[1]-hard when the parameter is

the number m of machines. To achieve this, we establish W[1]-hardness with respect to m in the specific scenario

of having parallel machines with designated machine sets for tasks. This resolves Open Problem from Mnich

and van Bevern’s compilation of unresolved questions in the parameterized complexity of scheduling.
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1. Introduction

In scheduling problems, we wish to assign jobs to machines in order to maximize a certain optimization objective

while respecting certain constraints. In many traditional scheduling settings, jobs can be scheduled to start at

any point in time and then need a given processing time to be completed. However, in a typical interval scheduling

problem, each job can be processed only in a fixed time interval, or sometimes in a set of time intervals, that may

vary from machine to machine [16, 17]. Many different variations of interval scheduling have been considered

and investigated [1, 2, 4, 5, 6, 7, 27].

In interval scheduling in its most basic form, we are given a set of n jobs and a set of m identical parallel machines

that each can process one job at a time. Each job has a processing time, a deadline, and a weight, and shall be

processed such that it finishes exactly at its deadline. This uniquely defines an interval for each job in which it

can be processed. A schedule assigns a subset of the jobs to machines. Unassigned jobs are rejected. We call a

schedule feasible if no two jobs with overlapping processing time intervals are assigned to the same machine.

The goal is to find a feasible schedule that maximizes the weighted number of scheduled jobs.1

This setting corresponds to the concept of just-in-time (JIT) or lean manufacturing that revolutionized industrial

production processes in the 1980s and 1990s [18, 23, 26, 30, 31]. Herein, the main goal is to provide and receive

goods precisely when they are needed in order to reduce storage costs and wastage. The first implementation of

this manufacturing paradigm is attributed to the Japanese automobile company Toyota and is sometimes also

called Toyota Production System (TPS) [23, 26]. Naturally, just-in-time and interval scheduling in many different

variants has received much attention from the research community since the late 1980s until today [1, 3, 4, 5, 6,

7, 9, 13, 19, 20, 25, 27, 28].

The basic form of interval scheduling as described above is known to be solvable in polynomial time [2, 7, 8, 9,

13]. It is closely related to the classical problems of finding maximum independent sets in interval graphs and

coloring interval graphs [8, 11, 24, 32]. The jobs of an interval scheduling instance naturally define an interval

graph with vertex weights. For example, if there is only one machine, then interval scheduling is equivalent to

finding a maximum weight independent set in an interval graph. Coloring an interval graph or, more specifically,

computing its chromatic number is equivalent to determining the minimum number of machines necessary to

schedule all jobs. In our work, we investigate several natural generalizations and variants of interval scheduling

and answer some longstanding open questions about their (parameterized) computational complexity.

The first problem we consider in this paper is Interval Scheduling on Eligible Machines, a natural generalization

of the basic interval scheduling problem we introduced earlier. Here, each job additionally has a set of eligible

machines and each job can only be assigned to a machine in this set in a feasible schedule. Arkin and Silverberg

[2] proved in 1987 that Interval Scheduling on Eligible Machines is strongly NP-hard and can be solved in

O(mnm+1) time. In terms of parameterized complexity, Arkin and Silverberg [2] showed that Interval Scheduling

on Eligible Machines is in XP when parameterized by the number m of machines. However, they left open whether

1In the standard three field notation for scheduling problems of Graham [12] this problem is sometimes denoted

by P | p
j 
= d

j
 - r

j
 |

j
 w

j
U

j
, or P ||

j
 w

j
E

j
, or P || JIT. We give a more formal definition in Section 2.
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Interval Scheduling on Eligible Machines also admits an FPT-algorithm for parameter m. Mnich and van Bevern

[22] included this question as Open Problem 8 in their 2018 list of 15 open problems in the parameterized

complexity of scheduling. We answer this question negatively in our first main contribution of this paper.

Theorem 1. Interval Scheduling on Eligible Machines is strongly2 W[1]-hard when parameterized by the

number m of machines.

A natural and well-studied generalization of Interval Scheduling on Eligible Machines is Interval Scheduling on

Unrelated Machines. In the latter, the processing time of each job can be machine-dependent whereas the deadline

stays the same on all machines. Furthermore, each job is eligible on all machines. This definition stems from the

just-in-time motivation, where each job should be finished exactly at its deadline but on different machines it

may take different times to complete the job. We mention in passing that if both processing times and deadlines

can be machine-dependent, the problem becomes NP-hard on two machines [17, 27]. Sung and Vlach [28] showed

that Interval Scheduling on Unrelated Machines can also be solved in O(mnm+1) time, generalizing the result of

Arkin and Silverberg [2]. Mnich and van Bevern [22] asked in Open Problem 8 for an FPTalgorithm for Interval

Scheduling on Eligible Machines parameterized by the number m of machines as a first step towards finding an

FPT-algorithm for Interval Scheduling on Unrelated Machines parameterized by m. However, Theorem 1 naturally

implies that Interval Scheduling on Unrelated Machines presumably also does not admit an FPT-algorithm for

the number m of machines as a parameter.

Corollary 2. Interval Scheduling on Unrelated Machines is strongly W[1]-hard when parameterized by

the number m of machines. We point out that all known hardness reductions for Interval Scheduling on Unrelated

Machines require job weights, raising the question whether the weights play an integral role in the computational

complexity of the problem. Unweighted Interval Scheduling on Unrelated Machines is the natural special case

of Interval Scheduling on Unrelated Machines where all jobs have weight one. Sung an Vlach [28] asked in 2005

to resolve the computational complexity status of Unweighted Interval Scheduling on Unrelated Machines. We

give an answer to this in our second main contribution.

Theorem 3. Unweighted Interval Scheduling on Unrelated Machines is NP complete.

We remark that our reduction for Theorem 3 does not imply hardness for the unweighted version of Interval

Scheduling on Eligible Machines. We leave this open for future research. An additional immediate question that

we leave open for future research is whether Unweighted Interval Scheduling on Unrelated Machines admits an

FPT-algorithm for the number m of machines as a parameter.

With Theorem 1, Corollary 2, and Theorem 3 we answer fundamental longstanding open questions concerning

the (parameterized) computational complexity of natural interval scheduling problems. For Interval Scheduling

on Eligible Machines and Interval Scheduling on Unrelated Machines, our results together with the XP-

containment results from Arkin and Silverberg [2] and Sung and Vlach [28], respectively, essentially resolve

their parameterized complexity classification for the number m of machines as a parameter. We point out that

all considered problem variants are known to be fixed-parameter tractable when parameterized by the number

n of jobs. This can be shown with a simple reduction to Multicolored Independent Set on Interval Graphs

2A parameterized problem is strongly W[1]-hard if it remains W[1]-hard when all numbers are encoded unarily.
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parameterized by the number of colors, which is known to be fixed-parameter tractable [4, 5]. Hence, we make

an important further step towards fully understanding the parameterized complexity of several basic and natural

interval scheduling problems. We remark that our results also imply that Multicolored Independent Set on Interval

Graphs is W[1]-hard when parameterized by the maximum number of vertices of any color.

The rest of the paper is organized as follows: we give formal definitions of all problems in Section 2. We prove

Theorem 1 and Corollary 2 in Section 3 and we prove Theorem 3 in Section 4. We conclude with future research

directions in Section 5.

2. Problem Setting

The first problem we consider is Interval Scheduling on Eligible Machines. Here, we have a set of n jobs {j
1
, j

2
., j

n
}

and a set of m machines {i
1
, i

2
, . . . , i

m
} that each can process one job at a time. Each job j has a processing time

p
j
 , a deadline d

j 
, a weight wj , and a set of eligible machines M

j
  {i

1
, i

2
, . . . , i

m
}. Job j can be processed in exactly

one fixed time interval (d
j 
- p

j
, d

j
], specified by its processing time and deadline, that is the same on each of its

eligible machines. A schedule is a mapping from jobs to machines. More formally, a schedule is a function  : {j
1
,

j
2
, . . . , j

n
}  {i

1
, i

2
, . . . , i

m
, }. If for job j we have (j) = i (with i  ), then job j is scheduled to be processed on

machine i. If for job j we have (j) =, then job j is not scheduled, that is, it is not assigned to any machine. We

say that two jobs j, jare in conflict on a machine i if (d
j 
- p

j
 , d

j
]  (d

j-p
j, d

j]  ,that is, the processing time

intervals corresponding to jobs j and jon machine i overlap. A schedule  is feasible if there is no pair of jobs j,

jwith (j) =(j)=i  that is in conflict on machine i and each job is mapped to one of its eligible machines. The

goal is to find a feasible schedule that maximizes the weighted number of scheduled jobs W =
j
|

(j) w
j
. In the

standard three field notation for scheduling problems of Graham [12] Interval Scheduling on Eligible Machines

is sometimes denoted by P | M
j
, p

j 
= d

j 
- r

j
 | 

j
 w

j
U

j
, or P | M

j 
| 

j
 w

j
E

j 
, or P | M

j
 | JIT.

The second problem we consider is Interval Scheduling on Unrelated Machines. Here, for each job j the processing

time p
i
,
j 
can depend on machine i whereas the deadline d

j
 is the same on all machines. Hence, the processing time

interval of job j on machine i is (d
j
 -p

i,j
, d

j
]. Moreover, the all jobs are eligible on all machines, that is, M

j
 = {i

1
, i

2
,

. . . , i
m

} for all jobs j. In the standard three field notation for scheduling problems of Graham [12] Interval

Scheduling on Unrelated Machines is sometimes denoted by R|p
j
 = d

j
- r

j
 |

j 
w

j
U

j
 , or R||

j
 w

j 
E

j
, or R||JIT.

Finally, the third problem we consider is Unweighted Interval Scheduling on Unrelated Machines, the unweighted

version of Interval Scheduling on Unrelated Machines. Here, we have that w
j
 = 1 for all jobs j. In the standard

three field notation for scheduling problems of Graham [12] Unweighted Interval Scheduling on Unrelated

Machines is sometimes denoted by R| p
j
 = d

j 
- r

j
 |

j 
U

j
, or R||

j
 E

j
, or R| w

j
 = 1| JIT.

3. W[1]-Hardness of Interval Scheduling on Eligible Machines

In this section, we prove Theorem 1 from which Corollary 2 follows directly. To prove Theorem 1, we present a

parameterized polynomial-time reduction from Multicolored Clique parameterized by the number of colors to

Interval Scheduling on Eligible machines parameterized by the number m of machines. In Multicolored Clique,

we are given a k-partite graph G = (V1  V2  . . . V
k
, E), we are asked whether G contains a clique of size k. The

k vertex parts V
1
, V

2
, . . . , V

k 
are called colors. Multicolored Clique parameterized by k is known to be W[1]-hard

[10].
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Given an instance of Multicolored Clique, we construct an instance of Interval Scheduling on Eligible Machines

as follows.

Figure 1. Illustration of the edge selection machine for color combination ,-  with <– .
Depictedare intervals of jobs relating to vV , wV , and e ={v, w}E. Gray intervals correspond to

jobs that are not eligible on the machine

Construction 1. Let G = (V1  V2  . . . V
k
, E) be a k-partite graph with n

G
 vertices. Assume we have some

total ordering < over V := V1  V2  . . .  V
k 

such that for all vV  and wV we have that if <  then v
 < w.

Let 
 
(v) denote the ordinal position of vV in the ordering <.

In the following, we describe the jobs and specify their processing times, deadlines and weights. Then we describe

the machines and the eligible machine sets for the jobs. In order to describe the weights more easily, we introduce

the following three values: c1 = n
G
 + 1, c

2
 = (k -1)n

G 
c

1
 + n

G
 + 1, and c

3
 = (kn

G
 + k2n

G
) n

G
c

2 
+ 1. We create the following

jobs:

For each vertex v  V, we create k vertex jobs j
v

(1), j
v

(2), . . . , j
v

(k), where one of the vertex jobs corresponds to

the color of v and the k -1 other vertex jobs correspond to the other k -1 colors.

Let vV . The processing time of j
v

( ) (the vertex job corresponding to the same color as v) is k + 2, the

deadline of j  j
v

( ) is (k + 2)(v) + 1, and the weight of j
v

( ) is one.

The processing time of j
v

( ) with    (vertex jobs corresponding to a  different color than v) is one, the

deadline of  j
v

( )  with   is (k + 2)(v) – , and the weight of j
v

( ) with   is c
1
.

 For each edge e = {v, w}  E with vV , w V , and  , we create one edge job j
e 
with processing time (k

+ 2)((w) -(v)) -  , deadline (k + 2)(w) -  1, and weight c
2
((w) - (v)) + c

3
.

 For each color combination   with <  we create |V | + |V | color combination jobs, one for each v  V

and one for each wV 

Let v  V , we create a job j
v 

(  ). with processing time (k + 2) (v)- -2, deadline (k + 2) (v) - - 1, and

weight c
2
(v).

Let w V , we create a job j
w

(  ) with processing time (k + 2)(n
G
 - (w)) + + 2, deadline (k + 2)n

G
 + 2, and

weight c
2
(n

G
 -  (w)).
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We create m = +1 machines i
1
, i

2
, . . . , i +1. We call the first  machines edge selection machines (one

machine for each color combination) and we call the remaining machine validation machine.

Consider color combination   with   and let i be the corresponding edge selection machine.

Figure 2. Illustration of the validation machine. Depicted are intervals of jobs corresponding to

vertices v, u, wV  with v <  u < w

 For each vertex v  V  we add machine i to the set of eligible machines of job j
v

( )
 
and of job j

v
(  ) .

 For each vertex w V–  we add machine i to the set of eligible machines of job j
w

( ) and of job j
w

(  ).

 For each edge e = {v, w}E with v  V  and w V  we add machine i to the set of eligible machines of job j
e
.

We give an illustration of the edge selection machines in Figure 1. Finally, consider the validation machine i

+1. We add the validation machine to the set of eligible machines of all vertex jobs. We give an illustration of the

validation machine in Figure 2.

This finishes our construction of the Interval Scheduling on Eligible Machines instance. We first show that given

a clique of size k in G, we can create a feasible schedule for the constructed instance such that the total weight of

scheduled jobs attains at least a certain value.

Proof. Let G = (V1  V2  . . . V
k
, E) be an instance of Multicolored Clique and consider the corresponding

Interval Scheduling on Eligible Machines instance specified by Construction 1. Assume there is a clique X of size

k in G. Then we schedule the following jobs.

For color combination   with <   let {v} = X  V  and {w} = X  V . Since X is a clique in G, we know that

e = {v, w}  E. On edge selection machine i corresponding to color combination     we schedule the following

jobs: j
e
, j

v 
(  ), j

w
 (  ),  j

v 
(  ), and j

w 
(  ). By construction of the instance, the intervals of the jobs are non-

intersecting on the machine i, and machines i is in the eligible set of the four jobs. Hence, scheduling these jobs

on machine i yields a feasible schedule. Furthermore, it accounts for weight c
3
 + n

G
c

2
 + 2c

1
 of scheduled jobs per

color combination.

Summing over all color combinations, we obtain weight + +k(k - 1)c
1
.

Note that for each {v} = X V  we have scheduled all vertex jobs j
v

( ) with  
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On the validation machine i
+1

 we schedule the following jobs. Let {v} = X )  V , then we schedule vertex job

j
v

( ). Note that this job is only in conflict with vertex jobs j
v

( ) with  , which are scheduled on the edge

selection machines. Furthermore, we schedule all jobs j
w

( ) with v  w  V  and  . By construction, all

these jobs can be scheduled on machine i +1 without conflicts and all these jobs have machine i +1 in their

set of eligible machines.

For all colors, this accounts for weight (n
G
- k)(k -1)c

1
 + k of scheduled jobs. Clearly, we have that the constructed

schedule is feasible. Furthermore, it is straight forward to check that the total weight of scheduled jobs in this

constructed schedule is W.

Before we show a similar statement for the opposite direction, we make an observation about feasible schedules

in Interval Scheduling on Eligible Machines instances from Construction 1. We show that we can assume that

any feasible schedule where the total weight of scheduled jobs is at least 

schedules exactly one edge job on each edge selection machine.

Observation 5. Let I be an instance of Interval Scheduling on Eligible Machines resulting from applying

Construction 1 to some k-partite graph G. Let Ã be a feasible schedule such that for the total weight W of

scheduled jobs we have

Then exactly  edge jobs are scheduled, one on each edge selection machine.

Proof. We first show that no feasible schedule with total weight W   c
3 

+ n
G
c

2
+(k-1)n

G
c

1
 + k of scheduled

jobs can schedule more than  edge jobs. Let  with  <  be a color combination. On the edge selection

machine corresponding to color combination   we have that all edge jobs corresponding to edges that do not

connect vertices of colors  and are not eligible. Furthermore, all edge jobs corresponding to edges that connect

vertices of colors  and  are pairwise in conflict. It follows that on each edge selection machine, at most one

edge job can be scheduled. Hence, any feasible schedule can schedule at most edge jobs, one on each edge

selection machine.

We next show that any feasible schedule with W   c
3 

+ n
G
c

2
+(k-1)n

G
c

1
 + k needs to schedule at least  edge

jobs. Assume we have a feasible schedule that schedules(strictly) less than  edge jobs. Note that each edge job

has weight at least c3. Furthermore,there are at most k
nG

 + k2
nG

 jobs that are not edge jobs and those jobs each

have weightat most n
G
c

2
. Let be a feasible schedule that does not schedule all edge jobs and let W be the total

weight of all jobs scheduled by . Let W* denote the sum of weights of all jobs that are not edge jobs. Then we

have
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Hence, the observation follows.

Now we are ready to show how to construct a clique of size k from a feasible schedule where the total weight of  W

scheduled jobs is at least  c
3
+ n

G
c

2 
+ (k-1)n

G
c

1 
+ k .

Lemma 6. Let G be an instance of Multicolored Clique. Let I be the Interval Scheduling on Eligible Machines

instance computed from G as specified by Construction 1. If there is a feasible schedule  for I such that for the

total weight W of scheduled jobs we have

then G contains a clique of size k.

Proof. Let G = (V1 V2  . . .  V
k
, E) be an instance of Multicolored Clique and consider the corresponding

Interval Scheduling on Eligible Machines instance specified by Construction 1. Assume we have a feasible schedule

such that the for the total weight W of scheduled jobs we have W   c
3 
+ n

G
c

2
+(k-1)n

G
c

1
 + k  We construct a

clique of size k in G as follows.

By Observation 5 we know that schedules one edge job on each edge selection machine. We can also observe

that on the validation machine, only vertex jobs are eligible and can be scheduled. Note that the sum of weights

of all vertex jobs is (k-1)n
G
c

1 
+ n

G
, which is strictly smaller than c

2
.

Assume that edge job j
e
 is scheduled on the edge selection machine i corresponding to color combination  

with  . Then by construction, e = {v, w} E with v  V  and w  V . Now by construction of the instance,

two color combination jobs can be scheduled on machine i, one for a vertex of color  and one for a vertex of color

. In order to obtain a weight of scheduled jobs of at least c3 + n
G
c

2
 it is necessary that jobs j

v
(  ) and j

w
(  )

arescheduled (note that the weights of j
e
, j

v 
(  ), and j

w
(  ) sum up to exactly c

3 
+ n

G
c

2
). Any other selection of

color combination jobs to schedule either results in a weight that is lower by at least c2 or in an infeasible

schedule. Now, by construction, the only further jobs that can be scheduled are j
v

(  )
 
and j

w
(  ) . It follows

that the maximum weight achievable on any edge selection machine is c
3
 +n

g
c

2 
+2

c1
. Since  2 c

1
< c

2
, it follows

that for each edge selection machine corresponding to color combination   with  <  we have the following:

one edge job j
e
 for e = {v, w} with v V  and w  V  is scheduled and the two color combination jobs j

v
(  ) and

j
w

  are scheduled.We can conclude that the jobs scheduled on all edge selection machines have a total

weight of at least c
3 

+ n
G
c

2
. Hence, there are additional jobs scheduled that have a total weight of (k-1)n

G
c

1

+ k on the validation machine.

Since no additional edge jobs or color combination jobs can be scheduled, we have that all (k-1)n
G 

vertex jobs j
v

( ) with v V  and  (having weight c
1
 > n

G
) are scheduled. Furthermore, at least k vertex jobs j

v
 with v 

V (having weight one) are scheduled.

Let X be the set of vertices in G such that if v  X and v V ,the job j
v

( ) is scheduled. We claim that X is a clique

of size at least k in G.
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By construction we have that |X|  k, assume for contradiction that X is not a cliquein G. Then there are two

vertices v, w  X such that e = {v, w}  E. Let v  V  and w  V . Then, in particular, vertex jobs j
v

( ) and j
w

( )

cannot be scheduled on the validation machine, since they are in conflict with vertex jobs j
v

( ) and j
w

( ),

respectively. However, as observed above, vertex jobs  j
v

( ) and j
w 

( ) can only be scheduled on the edge selection

machine corresponding to color combination   if there is edge job j
e
 with e = {v, w} scheduled on that

machine, a contradiction to the assumption that e = {v, w}  E.

Finally, we have all ingredients to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we show that Construction 1 is parameterized polynomial-time

reduction from Multicolored Clique parameterized by the number of colors to Interval Scheduling on Eligible

Machines parameterized by the number m of machines. First, it is easy to observe that given an instance of

Multicolored Clique, the Interval Scheduling on Eligible Machines instance specified by Construction 1 can be

computed in polynomial time. Furthermore, if k is the number of colors in the Multicolored Clique instance,

then the number of machines in the constructed Interval Scheduling on Eligible Machines instance is m= +1.

Lastly, observe that all weights in the constructed Interval Scheduling on Eligible Machines instance are in

 (where n
G
 is the number of vertices in the Multicolored Clique instance).

The correctness of the reduction follows from Lemmas 4 and 6. Since Multicolored Clique parameterized by the

number of colors is W[1]-hard [10], we have that Theorem 1 follows.

4. NP-Hardness of Unweighted Interval Scheduling on Unrelated
Machines

In this section we prove Theorem 3. The containment of Unweighted Interval Scheduling on Unrelated Machines

in NP is easy to see, hence we focus on proving NP-hardness. To this end, we present a polynomial-time many-

one reduction from Exact (3,4)-SAT to Unweighted Interval Scheduling on Unrelated Machines. In Exact (3,

4)-SAT we are given a Boolean formula  in conjunctive normal form where every clause has exactly three

literals and every variable appears in exactly four clauses, and are asked whether  has a satisfying assignment.

Exact (3,4)-SAT is known to be NP-hard [29].

Given such a formula , we construct an instance I of Unweighted Interval Scheduling on Unrelated Machines

as follows.

Construction 2. Let  be a Boolean formula in conjunctive normal form where every clause has exactly

three literals and every variable appears in exactly four clauses. Let  be the number of variables in  and let

 be the number of clauses in . We construct an instance I of Unweighted Interval Scheduling on Unrelated

Machines as follows.

We first describe the jobs, then we define an ordering of the jobs and use it to specify their deadlines. Lastly, we

describe the processing times of the jobs on the different machines. We create the following jobs.

For every variable x, we create two variable jobs: xT and xF.
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For every clause c, we create three clause jobs: c
1
, c

2
, and c

3
.

 We create 2+ 2 dummy jobs.

We next define an ordering  of the jobs, which we will use to define the deadlines of the jobs. To this end, we

partition the jobs into the following sets.

 Let T = {xT | x is a variable in }.

 Let F = {xF | x is a variable in }.

 Let P = {c | the  th literal of clause c of  is non-negated}.

 Let N = {c  | the  th literal of clause c of  is negated}.

 Let D be the set of dummy jobs.

 Now we define  as a total ordering of the jobs such that

and the jobs within the sets are ordered in an arbitrary but fixed way. Let  (j) denote the ordinal position of job

j in . For each job j, we set

We next describe the machines, more specifically, the processing times of all jobs on each of the machines. We

first introduce  variable selection machines, one for each variable in .

Let x be a variable in , then we introduce a machine where the processing time of variable.

Figure 3. Illustration of the job intervals on the variable selection machine for variable x. On this

machine only one of jobs xT and xF (bold) can be scheduled alongside with one dummy job
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job xT is (xT)- 22 and the processing time of variable job xF is (xF)- 2 2 . We set the processing times

of all other jobs to their respective deadlines. We give an illustration of the variable selection machines in

Figure 3.

Next, we introduce 2 clause selection machines, two for each clause in . Let c be a clause in , then we

introduce two machines where the processing times of c
1
, c

2
, and c

3
 are (c

1
) - 22, (c

2
) - 22 and (c

3
)

22, respectively. We set the processing times of all other jobs to their respective deadlines. We give an

illustration of the clause selection machines in Figure 4.

Furthermore, we have  validation machines, one for each variable in . Let x be a variable in , then we

introduce a machine where

 The processing time of xT is (xT )- (xF) + 1,

 The processing time of xF is (xF )22,

 If x appears in the th literal of clause c, then the processing time of c  is one, and

 Processing times of all other jobs are set to their respective deadlines.

We give an illustration of the validation machines in Figure 5.

This finishes our construction of the Unweighted Interval Scheduling on Unrelated Machines instance. We first

show that given a satisfying assignment for , we can

Lemma 7. Let  be an instance of Exact (3,4)-SAT. Let I be the Unweighted Interval Scheduling on Unrelated

Machines instance computed from  as specified by Construction 2. If  is satisfiable, then there is a feasible

schedule  for I such that all jobs are scheduled.

Figure 4. Illustration of the job intervals on the clause selection machine for clause c. On this

machine only one of the jobs c
1
, c

2
 and c

3
(bold) can be scheduled alongside with one dummy job
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Proof. Let  be an instance of Exact (3, 4)-SAT and consider the corresponding Unweighted Interval Scheduling

on Unrelated Machines instance specified by Construction 2. Assume there is a satisfying assignment for .

Then we schedule the jobs as follows.

We first describe on which machine we schedule each variable job. Let x be a variable in . If x is set to true in

the satisfying assignment, we schedule variable job xT on the variable selection machine corresponding to x and

we schedule variable job xF on the validation machine corresponding to x. Otherwise, we schedule variable job xF

on the variable selection machine corresponding to x and we schedule variable job xT on the validation machine

corresponding to x.

Next, we describe on which machine to schedule each clause job. Let c be a clause in . Let clause c be satisfied

by its  th literal (if multiple literals satisfy the clause, pick one of them arbitrarily). Let x be the variable appearing

in the –™th literal of c. We schedule clause job c  on the validation machine corresponding to x. We schedule

clause jobs c
’
 with {1, 2, 3} \ { } on the two clause selection machines corresponding to c, respectively.

Lastly, notice that the number of dummy jobs equals the number of machines. For each dummy job we arbitrarily

choose a distinct machine and schedule it on this machine.

In the constructed schedule, we clearly schedule each job. We next show that the schedule is feasible.

Notice that on each variable selection machine and each clause selection machine we schedule exactly two

jobs, one dummy job and one variable job of the variable corresponding to the variable selection machine or,

respectively, one clause job of the clause corresponding to the clause selection machine. Since the processing

time intervals of the variable jobs of variables corresponding to the variable selection machines start at

Figure 5. Illustration of the job intervals on the validation machine for variable x for the case that

x appears in clauses c and c  non-negated in positions one and two, respectively, and that x appears

in clauses c  and c negated in positions three and one, respectively. Processing time intervals of

jobs that do not conflict with dummy jobs on this machine are depicted in bold
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2 +2and the deadline of each dummy job is at most 2+2, the schedules for the variable selection machines

are feasible. Analogously, the schedules for the clause selection machines are feasible.

It remains to show that the schedules for the validation machines are feasible. Notice that by construction, the

variable jobs and clause jobs that are potentially scheduled on a validation machine cannot conflict with any

dummy job. Furthermore, the variable jobs that are potentially scheduled on a validation machine cannot conflict

with each other. We have the same for the clause jobs.

Hence, the only way to obtain an infeasible schedule is if a variable job and a clause job are in conflict. Assume

the variable xT is scheduled (the case of variable job xF is analogous) and clause job c  is scheduled and the two

jobs are in conflict. Note that this implies that we are dealing with the validation machine for variable x. By

construction of the schedule, this means that variable x is set to false in the satisfying assignment. However, the

jobs c  and xT are in conflict on the validation machine for x (and the job of c  is not in conflict with the dummy

jobs) if x appears non-negated in the th literal of clause c. Furthermore, by construction of the schedule, we have

that clause c is satisfied by its th literal. This is a contradiction to x being set to false in the satisfying assignment.

Now we show how to construct a satisfying assignment from a feasible schedule where all jobs are scheduled.

Lemma 8. Let  be an instance of Exact (3,4)-SAT. Let I be the Unweighted Interval Scheduling on Unrelated

Machines instance computed from as specified by Construction 2. If there is a feasible schedule  for I such

that all jobs are scheduled, then  is satisfiable.

Proof. Let  be an instance of Exact (3,4) - SAT and consider the corresponding Unweighted Interval Scheduling

on Unrelated Machines instance specified by Construction 2. Assume we have a feasible schedule for the

constructed instance such that all jobs are scheduled. We construct a satisfying assignment for  as follows.

First, observe that by construction, the at most one dummy job can be scheduled on each machine. Since the

number of dummy jobs equals the number of machines, we have that on each machine exactly one dummy job is

scheduled. This means that on each machine no non-dummy jobs that conflict with a dummy job (that is, jobs

with processing time equal to their deadline) can be scheduled.

We can further observe that on the variable selection machine of variable x, apart from a dummy job, only the

variable job xT or the variable job xF can be scheduled. Since the two jobs conflict, they cannot both be scheduled.

We assume w.l.o.g. that exactly one of the two jobs is scheduled. If the variable job xT is scheduled, we set variable

x to true, otherwise we set variable x to false. In the remainder, we show that this yields a satisfying assignment

for .

Assume for contradiction that  is not satisfied by the constructed assignment. Then there is a clause c in  such

that none of its literals are satisfied. Consider the three clause jobs c
1
, c

2
, and c

3
 associated with the three literals

in clause c. Each of these three jobs can only be scheduled (without creating a conflict with a dummy job) on

the clause selection machines corresponding to c, and the validation machine corresponding to the variable

appearing in the respective literal of the clause c. Since we only have two clause selection machines, at least

one of the clause jobs c
1
, c

2
, and c

3
 has to be scheduled on a validation machine. Assume c

1
 is scheduled on a



dline.info/jes 94

  Journal of Electronic Systems Volume 15  Number 2  June 2025

validation machine (the case of c
2
 and c

3
 is symmetric). Let x be the variable appearing in the first literal of c.

Assume the variable job xT is scheduled on the variable selection machine corresponding to x (the case where

the variable job xF is scheduled is symmetric). Then the variable job xF has to be scheduled on the validation

machine corresponding to x, since on all other machines it is in conflict with all dummy jobs. However, by

construction of the validation machines, the clause job c1 and the variable job xF can only both be scheduled

on the validation machine corresponding to x if setting x to true satisfies the first literal of c, a contradiction to

the assumption that c is not satisfied.

Finally, we have all ingredients to prove Theorem 3.

Proof of Theorem 3. To prove Theorem 3, we show that Construction 2 is polynomial-time many-one

reduction from Exact (3, 4)-SAT to Unweighted Interval Scheduling on Unrelated Machines. First, it is easy to

observe that given an instance of Exact (3, 4)-SAT, the Unweighted Interval Scheduling on Unrelated Machines

instance specified by Construction 2 can be computed in polynomial time. The correctness of the reduction

follows from Lemmas 7 and 8. Since Exact (3, 4)-SAT is NP-hard [29], we have that Theorem 3 follows.

5. Conclusion

We proved that Interval Scheduling on Eligible Machines and its generalization Interval Scheduling on Unrelated

Machines are W[1]-hard when parameterized by the number m of machines, and that Unweighted Interval

Scheduling on Unrelated Machines is NP-complete, answering two open questions by Mnich and van Bevern

[22] and Sung and Vlach [28], respectively. With this, we contribute to the understanding of the (parameterized)

computational complexity of basic and natural interval scheduling problems.

Our results leave two main open questions. Our NP-hardness proof for Unweighted Interval Scheduling on

Unrelated Machines does not imply NP-hardness of Unweighted Interval Scheduling on Eligible Machines, which

leaves the following question.
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