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ABSTRACT

We present the solver DAGer for the Directed Feedback Vertex Set (DFVS) problem, as it was entered in the

exact category of the 2022 PACE Challenge. Our method initially employs a variety of preprocessing strategies

that incorporate both established data reduction techniques for DFVS and innovative modifications derived

from the vertex cover problem. In terms of the actual solving process, we discovered that utilizing a MaxSAT

solver with incremental constraints yields impressive results.

Keywords: Effective Solvers, Vertex sets, Data Reduction Techniques

Received:3 November 2024, Revised 24 January 2025, Accepted 1 March 2025

1. Introduction

This paper describes the solver DAGer1, which we submitted to the exact track of the 2022 PACE Challenge [9].

This year the challenge was to solve the Directed Feedback Vertex Set (DFVS) problem. Informally, the DFVS

problem is, given a directed graph G = (V, A) to find a minimum cardinality subset D V such that every

directed cycle of G uses at least one vertex from D. The problem is one Karp’s original 21 NP-complete problems

[6] and has a wide range of applications such as for argumentation frameworks [4, 3], deadlock detection,

program verification and VLSI chip design [10]. It is known that the problem is fixed-parameter tractable [2]

in the size of the DFVS.

The runtime of these parameterized algorithms quickly increases with increasing size of the DFVS, making

alternative approaches necessary for solving instances with a large DFVS, like many of the instances in these

year’s PACE Challenge. We use an alternative approach to developing a dedicated DFVS algorithm: we express

the problem in terms of constraints and use a constraint solver for computing the DFVS. Our implementation

uses a propositional satisfiability (SAT) solver as a constraint solver. Unfortunately, the size of a direct encoding

in propositional logic is, depending on the encoding, cubic or exponential in the size of the input graph, and

therefore prohibitively large. We therefore use a lazy approach: we use an adapted SAT solver that creates the

necessary constraints when they are violated, keeping the total number of constraints low enough for most of the
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instances in the public instance set. We thereby exploit the following observation by [1] in a similar context.

Namely, while there may be exponentially many cycles in a directed graph, in order to prove that we need at least

k vertices to cover every cycle, we may need far fewer.

Data reductions are another crucial component of DAGer, as they transform the given graph into a smaller one

that is easier to solve. Notably, apart from the well-known standard data reductions for DFVS of [7] and [8], we

also managed to non-trivially generalize many data reductions for the Vertex Cover (VC) problem to DFVS.

2. Preliminaries

We denote an undirected graph as H = (V, E) with vertices V and edges E, and a directed graph, or digraph, by

G = (V, A) with arcs A. Further, we denote an undirected edge between vertices u and v as {u, v} and the arc, or

directed edge, from u to v as (u, v). We can now introduce the central problem addressed in this paper.

Definition 1 (Cycle, DFVS). Given a digraph G = (V, A) a path is a list of vertices v
1
, . . . , v

n
 such that for i =

1, . . . , n - 1 there exists an arc (v
i
, v

i
+1)  A. A cycle is a path v

1
, . . . , v

n
 such that v

1
 = v

n
. Furthermore, a cycle

is uncovered, if there is no cycle v
i 
, . . . , v

m 
such that {v

i 
| i = 1, . . . ,m} {vi | i = 1, . . . , n}. A Directed Feedback

Vertex Set (DFVS) of G is a set D V of minimum cardinality such that every cycle of G contains at least one

vertex in D.

We use the notation C(G) to refer to the set of all uncovered cycles in G. Since any self-loop (u, u) can be easily

preprocessed, by adding u to the DFVS and removing u from the digraph, we will henceforth assume that the

input digraph is self-loop-free.

We can represent the problem of finding a DFVS in terms of another problem.

Definition 2 (Hitting Set). Given a set V called the universe and a set C = {C
1
, . . . ,C

n
} with Ci V for 1  i 

n, the minimum hitting set problem asks for a set D V of minimum cardinality such that D  C
i
  for all 1

 i  n.

Given a digraph G, a hitting set for V and C(G) is also a DFVS for G. In the special case where each uncovered

cycle has length 2, we can also express DFVS as follows:

Definition 3 (Vertex Cover). Let H = (V, E) be an undirected graph. A minimum vertex cover is a set of

vertices D  V, such that D is of minimum cardinality and for each edge {u, v} E either u  D or v  D.

3. Algorithm

Our solver DAGer works via reduction of the DFVS problem to the hitting set problem. Given the set of cycles

C(G), we can easily express that each cycle needs to be hit by the DFVS in propositional logic. This propositional

encoding has one variable per vertex and the corresponding vertex is in the DFVS if and only if the variable is

true. We represent each cycle as a disjunction, as at least one vertex per cycle must be in the DFVS, and connect

all cycles by a conjunction. We ensure the minimality of the DFVS by using a MaxSAT solver: besides satisfying
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the clauses representing the cycles, the MaxSAT solver maximizes the number of satisfied soft clauses. We add

for each variable the negation as a soft clause, causing the MaxSAT solver to minimize the number of variables

set to true.

As the graph might have too many cycles to efficiently enumerate them all, we proceed in a lazy fashion: while

computing a hitting set for a subset of the cycles we dynamically check for additional cycles that do not

intersect the hitting set. More precisely, DAGer works as follows:

1. Preprocess the graph (See Section 3.1)

2. Identify a set C(G)  C(G) of uncovered short cycles, we use a maximum length of 8.

3. If C(G) = C(G), perform additional preprocessing not performed in Step 1 (Section 3.1).

4. Find a minimum hitting set D for C (G) using a modified MaxSAT solver (See Section 3.2).

5. If an additional cycle is found while solving, add it.

We will briefly discuss our preprocessing and our changes to the MaxSAT solver.

3.1 Preprocessing
From classic DFVS preprocessing we used the data reductions INDICLIQUE, OUTDICLIQUE, DICLIQUE-2 and

DICLIQUE-3 from [7], as well as the data reductions PIE and DOME from [8]. Apart from that, we adapted

preprocessing techniques from the vertex cover setting to the DFVS problem. Here, we used the data reductions

1, 2, 3, 4, 5, 6 and 7.2 from [11], as well as data reductions 8 and 10.1 from [5]. Their soundness for DFVS is

based of the following observation: Given a directed graph G that only has uncovered cycles of length 2, i.e.,

each cycle has the form u, v, u and let G  = (V, E) such that E= {(u, v)| there is a cycle u, v, u in G}. A minimum

vertex cover for G is a minimum DFVS for G.

Clearly, in the above case we can apply all vertex cover data reductions on the undirected graph. Furthermore,

if we know all uncovered cycles, we can apply vertex cover preprocessing locally, whenever all vertices

involved in the reduction only take part in uncovered cycles of length 2. This case constitutes Step 3. of the

algorithm, we described above.

However, it is not always the case that we know all cycles. Therefore, we integrated all the aforementioned

vertex cover preprocessing techniques also into the preprocessing in Step 1. It follows from the above reasoning

that if all vertices involved in a reduction only have bidirectional edges, then we can apply it. There are

additional cases in which we can additionally apply vertex cover preprocessing, however, a detailed analysis

of these cases requires a lot of technical details and is therefore left out due to space reasons. The underlying

intuition is simple though. We can apply a VC reduction if (1) it would be applicable, in the undirected graph

that has an edge {u, v} whenever u and v are bidirectionally connected in the original graph and (2) the

application of the reduction does not lead to new subset-minimal cycles.
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3.2 MaxSAT and Cycle Check
The SAT solver used inside the MaxSAT2 solver tries to find satisfying assignment (equivalent to a DFVS) by

repeating the following steps, until all variable values have been set:

1. Decide on a variable and value, i.e., decide to add a vertex to the DFVS or leave it in the graph.

2. Propagate values that are implied by the decision, e.g., if all but one vertices in a cycle have been left in the

graph, add the remaining vertex to the DFVS.

3. Check if any clause cannot be satisfied, i.e., a cycle where all vertices are left in the graph.

4. If yes, learn a clause to avoid making the same decisions and undo the corresponding decisions.

We extended the conflict check in Step 3: whenever the SAT solver decides to leave a vertex in the graph, we

check if there is a cycle. If there is a cycle, we add the cycle to our encoding and notify the solver of the conflict.

This way we do not have to find all the cycles initially and we only add those cycles that are required for finding

a DFVS.
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