
dline.info/jes 161

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Print ISSN: 2278 – 652X
Online ISSN: 2278 – 6538

JES 2025: 15 (3)
https://doi.org/10.6025/jes/2025/15/3/161-174

DLINE JOURNALS

Journal of Electronic Systems

Leonidas Kosmidis1,2, Tullio Vardanega3, Jaume Abella2, Eduardo Quiñones2 and Francisco J. Cazorla2,4

1Universitat Politècnica de Catalunya
2Barcelona Supercomputing Center
3University of Padova
4Spanish National Research Council (IIIA-CSIC)

Spain

ABSTRACT

The paper explores the application of Measurement-Based Probabilistic Timing Analysis (MBPTA) to buffer

resources in Critical Real-Time Embedded Systems (CRTES). It establishes that buffers, unlike jittery re-

sources like caches, do not inherently create timing jitter; instead, they propagate existing jitter from other

resources. Buffers manage contention by decoupling request sending and processing speeds, and their be-

havior is shown to be deterministic once probabilistic events are accounted for. The study demonstrates that

MBPTA can analyze buffers effectively as long as dependencies remain consistent between analysis and

operation. Empirical verification confirms that execution times are independent and identically distributed,

validating the suitability of MBPTA. Additionally, a classification of hardware resources based on jitter

sources is provided, enhancing the understanding of MBPTA compliance in processor architectures.

Keywords: Measurement-Based Probabilistic Timing Analysis, Critical Real-Time Embedded Systems, Buffer

Management, Processor Architectures

Received: 22 December 2024, Revised 28 March 2025, Accepted 18 April 2025

Copyright: with Authors

1. Introduction

There is an increasing need for high guaranteed performance in Critical Real-Time Embedded Systems (CRTES)

industry such as automotive, space, and aerospace. To respond to this demand, more complex hardware is

used, which allows increasing performance per chip unit, which in turn enables running more functionalities

per chip, thus reducing size, weight and power consumption costs at system level.

Probabilistic Timing Analysis (PTA) [4][3] has recently emerged as an alternative to conventional static (STA)

and measurement-based timing analysis (MBTA) techniques [11].

Applying Measurement-Based Probabilistic Timing Analysis to Buffer

Resources

dline.info/jes 162

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Although PTA is not as mature as STA and MBTA yet, it promises to reduce dependence on execution history.

This is done by randomising the timing behaviour of some processor resources, which reduces the amount of

information needed to obtain tight WCET bounds in comparison to other timing analysis approaches.

PTA provides WCET estimates with an associated probability of exceedance (pWCET). In analogy to the prac-

tice that expresses reliability for embedded safety-critical systems in terms of allowable probabilities of hard-

ware failures, PTA extends this notion to timing correctness by determining the probability with which a given

WCET bound can be exceeded during system operation. PTA aims to obtain pWCET estimates for arbitrarily

low probabilities, so that even if the chosen pWCET estimate can be exceeded, it would be with low enough

probability (e.g., in the region of 10+12 per hour of operation, largely below the required probability of

hardware failures). PTA can be applied either in a static (SPTA) [3] or measurement-based (MBPTA) [4] man-

ner. This paper focuses on the latter, which is more easily amenable to industrial practice.

Contribution. PTA can be applied to hardware/software platforms where the ETP per instruction can be de-

rived. PTA-compliance has been achieved so far for processors equipped with cache memories [5, 6]. In this

paper we extend this to buffer resources. Buffers allow managing contention in those resources where multiple

requests may be pending, decoupling the speed at which requests are sent and processed. Our contribution is

threefold: (1) We prove that buffers can be used while preserving compliance with MBPTA requirements.

Unlike other resources like caches that need to be time-randomised in order to work properly with MBPTA,

buffers require no changes to be used with MBPTA. (2) We provide a new classification of hardware resources

and describe how they can be adopted with MBPTA. (3) We show that, although buffers and any other complex

resource in general can create dependences across instructions, they can be analysed by MBPTA as long as

those dependences, regardless of their nature, whether deterministic or probabilistic, stay the same at analy-

sis and during operation. For buffers in particular, we show how the dependences they create across instruc-

tions are purely probabilistic in a MBPTA-compliant processor and do not change between analysis and de-

ployment.

2. Background

Figure 1 Example of the pWCET curve. Unlike previous analysis techniques that provide a single WCET value

per program, PTA provides a distribution function that upper bounds the execution time of the program

under analysis, guaranteeing its execution time only exceeds the corresponding execution time bound with a

probability lower than a given target threshold (e.g., 10-16 per activation). In this way the pWCET is defined as

the execution time bound with its associated exceedance probability.

The timing behaviour of a program (and equivalently that of individual processor instructions) is represented

with an Execution Time Profile (ETP). An ETP is the probability distribution function describing the different

execution times that the program can take (the latencies, for processor instructions) and their associated

probabilities. That is, the timing behaviour of a unit of execution (program, instruction) can be defined by the

pair of vectors , where p
i
 is the probability the program/instruction having la-

tency .

The ETP for a program (resp. instruction) may vary with the program input sets that lead to different execution

dline.info/jes 163

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Figure 1. Example of the pWCET curve

paths. Furthermore, the ETP for an instruction may vary across multiple uses as execution events (e.g. previ-

ous accesses to memory) affect the state dependent timing behaviour of that instruction. In Annex I we

analyse those aspects showing that (1) the effect of past random events affect the ETP of an instruction in a

probabilistic manner, whereby PTA continue to be applicable; and (2) each PTA technique has its own mecha-

nisms to address the multiple execution path problem.

MBPTA requires the hardware to guarantee that each operation (at the granularity of processor instructions

or below) has its own ETP. However, unlike SPTA, which needs all ETPs to be known, MBPTA only requires

those ETPs to exist. In other words, if execution times were collected by rolling a die, SPTA would need to

know the number of faces of that die, the value on those faces, and their individual probabilities of occurrence.

Conversely, MBPTA would derive pWCET estimates by simply rolling the die, that is to say, by executing the

program a given number of times, observing the resulting execution times and treating them with Extreme

Value Theory (EVT) [4, 8] to a trustworthy and tight upper bound to the tail of the observed Wexecution time

distribution. By doing so, MBPTA provides pWCET estimates for arbitrarily low target probabilities. Figure 1

shows a hypothetical result of applying EVT to a collection of 1,000 observed execution times. The dotted line

represents the inverse cumulative distribution function (ICDF) derived from the observed execution times.

The continuous line represents the projection obtained with EVT.

2.1 Probabilistic Behaviour of Simple Processor Resources

Processor resources can be regarded as abstract components that process requests. Each such request has a

distinct service time or latency, which can either be fixed or variable.

Jitter-centric resource classification. We term jitter the difference between the best and worst possible la

dline.info/jes 164

 Journal of Electronic Systems Volume 15 Number 3 September 2025

tency of any resource. Resources can be then classified depending upon whether they exhibit jitter or not.

Jitterless resources have a fixed latency, independent of the input request or of the past history of service of

the resource. Many hardware resources in current processor architectures can be classified as jitterless.

Other resources, for instance cache memories, have a variable latency and hence are jittery resources; their

latency depends on their history of service, i.e., the execution history of the program, the input request, or a

combination of both. Jittery resources have an intrinsically variable impact on the WCET estimate for a given

program. The significance of this impact depends on the magnitude of the jitter, the program under study, and

the analysis method. A way to deal with jittery resources in the absence of timing anomalies is to assume that

all requests to those resources incur the worst-case latency [9]. This is acceptable if the cumulative impact on

the WCET from assuming the worst-case jitter for the resource is deemed low enough by the system designer.

If taking the worst latency is not acceptable, then the timing behaviour of the resource must be randomised.

This is the case of the cache, since taking its worst latency would greatly amplify the pWCET estimate. Several

works propose time-randomising caches to reach both, probabilistically analysable behaviour and high guar-

anteed and average performance [5, 6].

ETP and jitter. Jitterless resources are easy to model for all types of static timing analysis. Building the ETP of

a simple instruction that uses a single resource, requires knowing only whether the resource in question is

jitterless (information implicit in the instruction) or whether the instruction is part of a sequence of instruc-

tions that must incur a delay when using a jitterless resource (information implicit in the architecture). With

proper path and pipeline analysis, the types of the resources can be determined. Of course, measurements

obtained from program runs that only use jitterless resources will perfectly capture their constant impact on

execution time. If the instruction accesses a jittery resource whose worst-case latency is acceptable for the

designer, forcing that resource to always take the longest latency would be a simple yet effictive way to make

the resource PTA-conformant: the ETP of that resource would have a single latency value (its worst case) with

probability 1, i.e. 100% probability of maximum latency, leading to a upper-bounded deterministic jitter.

Instructions may access multiple resources during their execution, and those resources can be arranged in

different manners, e.g. sequentially or in parallel. Under each arrangement, the ETP of those resources can be

properly combined to derive the ETP of the instruction.

To that end, several forms of convolution, [3], can be used either adding latencies (sequential arrangements)

or picking the maximum latency of the elements convolved (parallel arrangements).

Instruction Instruction IL1 DL1

id type hit prob. miss prob. hit prob. miss prob.

i1 LD 1.0 0.0 0.9 0.1

i2 ADD 0 . 7 0.3 - -

i3 ADD 0.6 0.4 - -

i4 ADD 1.0 0.0 - -

Table 1. Code example with hit/miss probabilities for the instruction and data caches

dline.info/jes 165

 Journal of Electronic Systems Volume 15 Number 3 September 2025

3. Complex Processor Resources

However, the taxonomy presented in previous section does not cover buffers, which in fact are in widespread

use in modern processor architectures. Buffers are used to temporarily hold some information decoupling the

timing of the sender and the receiving elements. If a buffer is full it may create stalls that propagate backwards

in the pipeline of the processor, thus potentially increasing the execution time and affecting WCET.

3.1 Timing Behaviour of a Buffer in a Time-Randomised Architecture

For the sake of illustration, let us assume an architecture with two stages (fetch and execute) that respectively

access instruction and data caches (IL1 and DL1 for short). Caches deploy random placement and random

replacement [5], which enable computing a probability of hit/miss for every access. In between both stages

there is a 2-entry buffer (see Figure 2). In case of hit in both caches and if the buffer is available, an instruction

takes 3 cycles: Fetch (F), buffer (b) and Execute (E).

Further assume that we execute the program with four instructions shown in Table 1, whose hit and miss

probabilities for each cache are shown next to each instruction. For this example, i1 always hits in IL1 and has

a 0.9 hit probability in DL1. The remaining instructions do not access DL1.

In the program fragment shown in Table 1, i1 may introduce some delay in the execution of the program when

accessing DL1. In particular, if it misses in the data cache it will cause a longer delay than if it hits. Note that the

IL1 hit probability of i1 is 100%, hence always hitting in IL1. i2 and i3 may introduce some delay when

accessing IL1 only since they are not memory operations.

In Figure 3 we depict the 8 different chronograms for each one of the combinations of hits and misses in IL1

and DL1 of all 4 instructions. The x-axis shows the cycles of execution while the y-axis shows each instruction.

Each rectangle represents the stage in which each instruction is in each cycle: ‘F’ fetch, ‘b’ buffer and ‘E’

execute. We use the vector <DL1-i1, IL1-i2, IL1-i3> to describe the outcome of each DL1 and IL1 access, being

H a hit and M a miss. For instance <HHH> is the event ‘i1 hits in DL1’ and both ‘i2 and i3 hit in IL1’. Similarly

P(HHH) is the probability of that event to happen. Note that i1 and i4 have IL1 hit probability of 100% so for

this reason IL1i1 and IL1i4 do not appear in the vector.

The key appreciation we do in the behaviour of the buffer is the following: given a set of fixed initial conditions

Figure 2. Processor setup considered in Section 3.1

dline.info/jes 166

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Figure 3. Potential chronograms based on the outcome of the different cache accesses. (<DL1-i1 IL1-i2 IL1-

i3>) Grey rectangles show the cycles in which the processor is stalled due to the buffer

(e.g. empty state of the pipeline) each different combination of probabilistic events (e.g. DL1 and IL1 accesses)

leads to exactly one fully-deterministic behaviour of the buffer. If we compare different outcomes of probabi-

listic events, we observe that the buffer introduces a different number of stall cycles (0, 2, 4 or 6 cycles) for

each combination of probabilistic events. The number of stalls and the particular cycles in which the stalls

dline.info/jes 167

 Journal of Electronic Systems Volume 15 Number 3 September 2025

occur may repeat in different sequences of outcomes of the probabilistic events occurring (for instance cases

<M, H, M> and <M, M, H>). However, for a particular sequence of random events the behaviour of the buffer

is fully deterministic: all data dependences, which are given by the sequence of instructions that are executed

and their order. Given that MBPTA works or a per-path basis, in each path the sequence of instructions

executed is known and fixed across runs of the same path.

The initial conditions can be caused to a fixed state by flushing the state of the resource prior to its use.

Alternatively, it might be possible to probabilistically determine the state left by previously executing code.

We refer the reader to [7]. for more details.

In order to better understand this phenomenon, Figure 4 depicts, for the same example shown before, the

probability tree for the states of the processor in each cycle. In cycle 1 i1 is fetched. In cycle 2 i1 is stored in the

buffer while i2 is fetched. Accessing DL1 is a random event that has two outcomes hit/and miss, and hence

spawns into two possible probabilistic states, which generates a new branch in the probability tree as shown in

cycle 2.

In the left branch, during cycle 3, i1 accesses DL1 while i3 accesses IL1. Both are probabilistic events that

generate 4 new branches in the probability tree. Similarly, in the right branch in cycle 3, i1 accesses DL1

generating two branches in the probability tree. As shown, the variability in the execution time increases the

number of potential probabilistic states that we can reach. It is interesting noting that all the execution time

variability can only be introduced by probabilistic events.

In this diagram, the stalls due to the buffer are shown with grey boxes. Unlike caches that introduce probabi-

listic variability, and hence generate new branches in the probability tree, buffer stalls cannot produce proba-

bilistic variability, instead buffer variability has no effect on the probability of each execution time to occur.

Therefore buffers cannot create probabilistic jitter but simply propagate jitter or, in other words, given a

sequence of outcomes for all probabilistic events the delay of the buffer resources is fully deterministic.

Under MBPTA, the fact that buffer resources can affect the duration of the program under each combination of

probabilistic events but cannot affect the probability of each combination, simplifies their analysis. As long as

the execution time observations obtained sufficiently cover, in probabilistic terms, the outcome of random

events, it is also enough to safely cover the effect of buffers.

3.2 Classification of Sources of Jitter

So far we regarded jitter as deterministic or probabilistic (the latter for time-randomised resources). Yet, as

shown above, the jitter caused by buffers does not fit into either category; instead, it simply propagates the

inbound jitter regardless of its nature.

With this insight, we classify the potential sources of jitter into 6 groups depending on the combination of two

factors: (i) whether the jitter is produced solely by the event under consideration (no history dependence) or

by the combination of previous events and the current one (history dependence); and (ii) whether the jitter is

deterministic, probabilistic or simply propagated regardless of its source. We omit two groups for which we

did not find any existing resource to fit in.

dline.info/jes 168

 Journal of Electronic Systems Volume 15 Number 3 September 2025

This new classification of hardware resources will help analysing whether a given resource or processor

architecture is MBPTA-compliant. To that end, for each group we identify how resources in that group can be

used in the context of MBPTA.

No history dependence + deterministic jitter. This could be the case of a resource whose latency does not

depend on the sequence of requests it has received, but on the data of each request. For instance, the floating-

point unit in some processors is affected by the particular operands (data) being operated. For this type of

resources we typically enforce the unit to experience always its maximum latency as explained before, which

can be done deploying a simple hardware mechanism called the worst-case mode [9].

History dependence + probabilistic jitter. This is the case of a time randomised cache [5].

The sequence of events between two consecutive accesses to the same data together with the initial cache

state, determine the hit/miss probability of that access. Time randomised caches have been shown to be

analysable with MBPTA [5].

Figure 4. Processor Stage Graph

dline.info/jes 169

 Journal of Electronic Systems Volume 15 Number 3 September 2025

History dependence + deterministic jitter. This is the case of a deterministic cache implementing modulo

placement and LRU replacement. Events may experience different latencies depending on previous history:

for a given initial state and a sequence of events their latency is always the same. This type of resources is not

analysable by MBPTA in general unless the factors that influence the jitter are fully under control, so that it can

be known whether the observations taken to feed MBPTA cover the worst behaviour of those factors of influ-

ence. In general, the only easy way to enable the use of this type of resources in the context of MBPTA is using

the worst-case mode.

History dependence + jitter propagation. This is the case of a hardware buffer. A particular instruction

may spend a different number of cycles in a buffer depending on previous events. However, as explained

before, buffers do not create new jitter by themselves. Instead, they only propagate deterministically the

effect of the jitter induced by other resources. If such jitter is probabilistic, then the stalls induced by buffers

occur also with a given probability and so they are analysable with MBPTA.

3.3 Empirical Verification

Figure 5 Processor setup considered in Section 3.3. Although we have described how buffers meet the MBPTA

requirements if they are already fulfilled by the processor in use without buffers, in this section we verify

empirically that this claim holds by testing that execution times in such a processor are independent and

identically distributed, as required by MBPTA. To that end we apply the experimental methodology shown in

[4].

We consider a pipelined processor with in-order fetch, dispatch and retirement of instructions (see Figure 5).

Fetch and execution stages are equipped with first level instruction and data cache memories respectively

(IL1 and DL1 caches for short). Instruction and data translation look-aside buffers (ITLB and DTLB) are also in

place. Buffers across pipeline stages are deployed to mitigate stalls. Similarly, a store buffer is provided to

allow store instructions to retire quickly without stalling the pipeline1. Both IL1 and DL1 size are 4KB 8-way

16-byte line caches. Both caches implement random placement and replacement policies [5]. DTLB and ITLB

are 16-way fully associative, and page size is 1KB. The latency of the fetch stage depends on whether the access

hits or misses in the IL1 and ITLB: only if the access hits in both its latency is 1-cycle, and 100 cycles otherwise.

After the decode stage, memory operations access the DL1 and DTLB and their behaviour is analogous to that

of IL1 and ITLB. The remaining operations have a fixed execution latency (e.g. integer additions take 1 cycle).

For our experiments we use the EEMBC Autobench benchmark suite [10] that reflects the current real-world

demand of automotive systems. The fact that, unlike EEMBC, real-world programs normally have multiple

paths does not invalidate the conclusions of our analysis: this is so because MBPTA considers individual paths.

In order to test independence we use the Wald-Wolfowitz independence test [2]. We use a 5% significance level

(a typical value for this type of tests), which means that absolute values obtained after running this test are

below 1.96 if there is independence, otherwise are higher. For identical distribution, we use the two-sample

Kolmogorov-Smirnov identical distribution test [1] as described in [4]. For a 5% significance level, the out-

come provided by the test should be above the threshold (0.05) to indicate identical distribution, otherwise

non-identical distribution.

1 A store buffer is a particular incarnation of buffer resources

dline.info/jes 170

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Table 2 shows the results of both tests for all EEMBC benchmarks, when running each benchmark as many

times as needed by MBPTA (up to 1,000 times per benchmark in our evaluation). As shown, both tests are

passed in all cases.

Benchmark a2time aifftr aifirf aiifft cacheb canrdr

Indep. test 0.90 0.10 0.27 0.11 0.51 0.21

Ident. distr. test 0.64 0.93 0.84 0. 70 0.40 0.39

Benchmark iirflt puwmod rspeed tblook ttsprk

Indep. test 0.11 0.37 0.33 0.47 0.63

Ident. distr. test 0.80 0.89 0.27 0.93 0.73

Table 2. Independence and identical distribution tests results

4. Conclusion

In this paper we show that buffer resources do not create any jitter on their own but, instead, they simply

propagate inbound jitter regardless of the nature of it. With this, we prove that buffers do not break PTA

requirements, hence can be used in PTA-conforming processors with no change. We also provide a compre-

hensive classification of hardware resources and how they can be considered in the context of PTA.

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Frame

Figure 5. Processor setup considered in Section 3.3

dline.info/jes 171

 Journal of Electronic Systems Volume 15 Number 3 September 2025

work Programme [FP7/2007-2013] under the PROARTIS Project (www.proartisproject. eu), grant agree-

ment no 249100. This work was partially supported by EU COST Action IC1202: Timing Analysis On Code-

Level (TACLe). This work has also been partially supported by the Spanish Ministry of Science and Innovation

under grant TIN2012-34557 and the HiPEAC Network of Excellence. Leonidas Kosmidis is funded by the

Spanish Ministry of Education under the FPU grant AP2010-4208. Eduardo Quiñones is partially funded by

the Spanish Ministry of Science and Innovation under the Juan de la Cierva grant JCI2009-05455.

Next, we show how the existence of an ETP for each instruction in a program is a necessary and sufficient

condition to make a program and a target platform analysable with MBPTA. To that end and without loss of

generality we assume a processor architecture in which core operations (e.g., MUL and ADD) take a fixed

latency and memory operations (e.g., LD and ST) access a fully-associative random-replacement cache [5].

Let us assume a fully-associative cache with W ways and random replacement2. An approximation to the

probability of hit of a given access Aj in the sequence < Ai B1 B2, ..., Bk Aj >, where Ai and Aj access the same

cache line and all Bl access other cache lines, is given by [5]:

(1)

In the equation, W-1 / W is the probability of one access to evict Aj, while the exponent gives a measure of the

number of evictions Aj can suffer depending on the probability of each {Bl}
l(1..k)

 to miss in cache. We observe

that Aj depends on execution history, i.e., {Bl}
l(1..k)

. In particular, the probability of miss of {Bl}
l(1..k)

 affects

the probability of hit/miss of Aj. In a given run, the fact that a given Bl hits/misses in cache affects the

probability of hit of Aj in that run. For instance the probability of hit of Aj in a run in which B1 misses is different

from another run in which B1 hits. Hence, under each history of outcomes for {Bl}l2(1..k), Aj may have a

different hit probability.

We focus on two scenarios as depicted in Figure 6. In the first one, Figure 6(a), the whole sequence of accesses

is in the same basic block, while in the second one, Figure 6(b), the sequence of accesses is spread across

several basic blocks.

Figure 6. Cache access sequences and distribution over different basic blocks

(a) single basic block (bb) (b) branch structure (several bb)

dline.info/jes 172

 Journal of Electronic Systems Volume 15 Number 3 September 2025

Note that, if the variability that {Bl}
l(1..k)

 causes on Aj is not probabilistic, which happens for instance if cache

is not randomised (e.g., if modulo placement is used), the hit event for {Bl}
l(1..k)

 is not random, so we could not

derive an ETP for A
j
 disallowing the use of MBPTA.

Results: In the example in Figure 6(a) there is a dependence between Aj and the history of outcomes of B1,B2

and B3. In particular, for a given run the number of misses incurred by B1-B3 determines the number of

random evictions carried out between Ai and Aj. The second column in Table 3 shows the number of evictions

carried out under each outcome history for B1-B3. The third column shows the probability of that outcome

based on the probability of miss of B1-B3. Finally, the fourth column shows the ETP of Aj assuming a fully-

associative cache of 8 ways. With enough runs, the final miss probability for Aj can be computed as the

addition of the probability of each possible history of outcome of B1-B3 times the probability of Aj to miss

under that outcome:

1) Single path. When all accesses in a sequence affecting a given access Aj are in the same basic block, they

affect Aj in each run systematically, since all {B
l
}l(1..k) are present in each run. Under each history of out-

comes Aj may have a different probability of hit, and hence a different ETP.

Interestingly, hit/misses affecting Aj’s probability of hit are random events by construction for a cache using

random replacement and random placement. This introduces a probabilistic variation in the probabilities of

each execution time of Aj. Hence, if enough runs are made the observed frequencies of hit/miss for each Bi and

Aj will converge to their actual hit/miss probability.

As a consequence, Aj can be regarded as having an ETP, where the probability of hit of Aj is that resulting

from executing the program an infinite number of times.

In the example in Figure 6(a), for a cache with W=8 ways the ETP of Aj is as follows: {lh, lm}{0.745, 0.255}.

2 A similar analysis can be done for set-associative caches [5].

Table 3. ETPs of Aj under each history of outcomes

(2)

dline.info/jes 173

 Journal of Electronic Systems Volume 15 Number 3 September 2025

that in our example results in: = (0.330 × 0.35) + (0.234 × 0.35) + (0.234 × 0.15) + (0.125 × 0.15)=0.251,

that accurately matches the value computed with Equation 63, where . Hence the ETP for Aj

is: {l
h
, l

m
} {0.749, 0.251}.

Therefore, although the probability of each latency of an instruction depends on its execution history – the set

of outcomes of previous accesses in our case – the fact that factors of influence on its execution history are

random, and hence they occur with a given probability, makes it possible to derive an ETP for the instruction.

If enough samples are taken from the timing behaviour of Aj during analysis time, the observed behaviour is

representative of its behaviour during deploy time. This is so because the factors of influence on Aj execution

time have a random nature, so for a higher number of runs the observed frequencies of each event converge to

the actual probability of the event.

2) Multiple paths: In the situation depicted in Figure 6(b) we observe that the hit probability of Aj depends

on the particular path followed. Hence, the ETP of Aj is affected by: the path followed and the history of hit/

misses. If Aj is reached through the left path, hence under the sequence < Ai B1 Aj > it has higher probability

of hit than if it is reached through the right path under the sequence < Ai B2 B3 Aj >: ETP
left

 = {l
h
, l

m
}{0.911,

0.089} and ETP
right

 = {l
h
, l

m
}{0.818, 0.182}. Differently to the single-path case, now there is one ETP per path

leading to Aj. MBPTA provides pWCET estimates for the set of paths exercised with the input data used during

the testing phase. It is also the case that MBPTA is insensitive to the frequency each path is exercised as long

as each path is exercised a minimum number of times [4]. Overall, having for each instruction and path-

leading-to-that-instruction one ETP preserves the i.i.d. property in the execution time of each path. MBPTA

[4] samples the execution time observations obtained from each path to obtain an i.i.d. sample that covers the

execution time observed for all paths.

Results: In [4] it is shown how MBPTA works for multipath analysis: If enough execution time observations

are obtained under each path, the effect that Aj can suffer from any of the Bl in each path is captured in

probabilistic terms. This is a sufficient condition for MBPTA to provide safe upper-bounds.

References

[1] Boslaugh, Sarah., Watters, Paul Andrew. (2008). Statistics in a nutshell. O’Reilly Media, Inc.

[2] Bradley, J. V. (1968). Distribution-free statistical tests. Prentice-Hall.

[3] Cazorla, F. J., Quiñones, E., Vardanega, T., Cucu, L., Triquet, B., Bernat, G., Berger, E., Abella, J., Wartel, F.,

Houston, M., Santinelli, L., Kosmidis, L., Lo, C., Maxim, D. (2012). Proartis: Probabilistically analysable real-

time systems. ACM TECS.

3Note that minor discrepancies are expected given that hit/miss events are not independent among them, so

the hit probability computed in Equation 1 is an approximation. In fact, there are only two ways to derive the

actual hit/miss probabilities: (i) Performing an infinite number of runs and measure actual probabilities, or (ii)

Computing the probability of each particular cache state left by the sequence of hits and misses for previous

accesses, and accumulating the probabilities for those cache states where the current cache access would

result in a hit/miss.

dline.info/jes 174

 Journal of Electronic Systems Volume 15 Number 3 September 2025

[4] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L., Abella, J., Mezzetti, E.,

Quinones, E., Cazorla, F. J. (2012). Measurement-based probabilistic timing analysis for multi-path programs.

In: (ECRTS).

[5] Kosmidis, L., Abella, J., Quinones, E., Cazorla, F. J. (2013). A cache design for probabilistically analysable

real-time systems. In:DATE.

[6] Kosmidis, L., Curtsinger, C., Quinones, E., Abella, J., Berger, E., Cazorla, F. J. (2013). Probabilistic timing

analysis on conventional cache designs. In: DATE.

[7] Kosmidis, L., Quinones, E., Abella, J., Vardanega, T., Cazorla, F. J. (2013). Achieving timing composability

with measurement-based probabilistic timing analysis. In: Proceedings of the IEEE International Symposium

on Object/component/service-oriented Real-time distributed computing (ISORC).

[8] Kotz, Samuel., Nadarajah, Saralees. (2000). Extreme value distributions: Theory and applications. World

Scientific.

[9] Paolieri, M., Quinones, E., Cazorla, F. J., Bernat, G., Valero, M. (2009). Hardware support for WCET analysis

of hard real-time multicore systems. In: ISCA.

[10] Poovey, Jason. (2007). Characterization of the EEMBC benchmark suite. North Carolina State Univer-

sity].

[11] Wilhelm, R., et al. (2008). The worst-case execution-time problem: Overview of methods and survey of

tools. ACM Transactions on Embedded Computing Systems, 7, 1–53.

