
 Journal of Electronic Systems Volume 2 Number 4 December 2012 147

Object-oriented Analysis and Design Approach for the Requirements Engineering

A. Zeaaraoui, Z. Bougroun, M.G Belkasmi, T. Bouchentouf Belkasmi
Laboratory of Applied Mathematics
Signal Processing and Computer Science
Department of Computer Science, ESTO
Oujda, Morocco
adilzeaaraoui@yahoo.fr, tbouchentouf@gmail.com

ABSTRACT: In the software development process, developers feel the gap when moving from requirement engineering phase
(using scenario-based approach) to construction phase; this is due to that models result in RE cannot be easily mapped to
models in construction phase. This paper discusses this problem, and offers a new approach that handles this issue so that
developers feel no break during all software development activities from RE to coding and testing.

Keywords: Requirements Engineering, Object-Oriented Applications

Received: 12 July 2012, Revised 10 September 2012, Accepted 15 September 2012

© 2012 DLINE. All rights reserved

1. Introduction

Requirements Engineering (RE) is the process in which different types of methods and technics can be used to obtain the
requirements of a system and its properties.

‘Requirements engineering process’ has the most dominant impact on the capabilities of the resulting product, because an
incomplete or poor RE affects the quality of the final software[2], and errors are more expensive to fix later in project lifecycles[12;
13]. This is why many approaches have been developed and many efforts have been made to enhance this process (Barry
Boehm investigation). Requirements engineering process is composed by seven main activities: project creation, elicitation,
interpretation and structuring, negotiation [4]. Verification & validation, change management [3].and tracing [11]. After RE
phase, when developers move next to software construction phase (domain model, class diagram and so on), they feel the gap
between this two phases; this gap is presented as a non-possibility to map from “scenario-based RE ” [1]. models to object
models as shown in figure 1.

This paper discusses this problem, and presents another approach which is: object-oriented analysis and design approach for require-
ment engineering.

2. Scenario-Based Approach for Requirements Engineering

Requirements engineering is all the technics, skills and methods, automated or not, used to collect functional and non-functional
requirements of users allowing them to achieve their objectives that must be possessed by a system.

The well-known mean of exchange between users and developers (or designers) used to collect requirements, is scenario. There are

148 Journal of Electronic Systems Volume 2 Number 4 December 2012

many forms to express scenarios, but all of them present only functional and behavioral aspect of requirements. Before presenting

weaknesses of scenario-based approach in object-oriented software development, we title its forms as follows: User stories structure,

use case model, sequence diagram [5]., use case map [6, 8]. story-board.

2.1 Weaknesses of scenario-based approach

As we noticed about scenario-based approach, we have only the functional nature of the system; for object-oriented software

in which this research is interested, it is a big issue because:

• Objects and functions do not map to each other: the architecture of functionally decomposed system is significantly different

from the architecture of an object-oriented system; from UML point of view, it is impossible to map directly from use case model,

sequence diagram, system sequence diagram…etc. to domain model or object model and vice versa. Also using use cases within

the context of object-oriented development - so called “differing localization strategies” - will result in the introduction of

significant errors [9].

• Charge estimation problem: the effort to develop a use case (scenario) can vary from a day to a year; if you go with the one-

paragraph approach to use cases, there is enormous room for ambiguity so one cannot have clear path view of charges. Because

use cases (scenarios) are so general and considered a high-level user-interface design, or a high-level design of operating

procedures, so that they provide almost no guidance.

• Do not enable organizing complexity of software system: object-oriented decomposition directly addresses the inherent

complexity of software by helping us make intelligent decisions regarding the separation of concerns in a large state space [10].

To resume, scenario-based approach showed weaknesses in software development process, this does not say they are not

valuable, but they give functional presentation of our system, and readable way, “what do”, of our system for the customer.

…user may create new mail; he can add

recipients by autocompleting his contact

when typing text, or he can list all his

contacts then check the required ones….

Sysetm Sequence Digram

:System

Actor A

Action 1 (attribute)

SystemEvent(parameters)

Check

status

Place

Order

Fill

orders

Establish

creadit

Customer

Use case

A

D B

C

X

ZY

Requirement Engineering Phase

Construction Phase

Figure 1. The break flow when moving from RE phase to the construction phase in software development

Mail Controller

MailTest

Mail Service

User

Mail

Contact

Recipient

ContactDB Service

ContactController

+ autoComplete Contact()
+ list contact()

- Contacts

Database DAO for

contact object

Mail DAO for mail

object

Controller (MVC)

for object Contact

Controller (MVC)

for object Mail

Test object (test

engineering) for mail

object

+ initCreateMail()

+ send Mail()

- ...

- ...

- ...

+ send Mail()

- recipients

0..*

1..* - ...

 Journal of Electronic Systems Volume 2 Number 4 December 2012 149

3. Object-Oriented Analysis and Design Approach for Requirements Engineering

3.1 Introduction

Even the come of processes, methodologies…etc., many stakeholders (companies, students, developers…) are facing the

problem to move from requirements engineering phase to construction step in a way there is no break in development activities

flow for object-oriented software; in addition to that, none of them showed an automated practice for software industry or a

practice that developers may apply for new projects, maintenance…etc. [14].

The important activity and most early step in object-oriented software construction phase is the domain model; this model is

converted to PIM (Platform Independent Model) as class diagram that will be transformed to PSM (Platform Specific Model),

then generate code (classes) to begin actions implementation. This gives a light that domain model is valuable and fired in mind

the idea that we must think object, we must concentrate on objects and consider them as the core and as the backbone when

analyzing and designing.

Object-Oriented Analysis and Design (Grady Booch approach) is convenient method to build object models from requirements;

but this method showed weaknesses in a way it focuses only on object design and neglect capturing what a system must do.

Our idea rose from here; is to use OOA/D method and dig to:

• Have a method to capture and identify automatically a “what do” the application using check list of actions.

• Make a practice to automate some software artefacts like patterns: mvc, dao…etc.

Ordinary

Mail

Ordinary objects are objects

that share ordinary actions, and

have a common characteristic

functionally thinking. Examples:

User, Car, Right, Role,

Product…

Mail objects are object that are

different from ordinary objects,

and they offer actions related to

mail. Ordinary objects and mail

objects share some actions.

Examples: Mail, Message

initCreate

create

initUpdate

 update

 get

 list

 search

 delete …

initCreate (or initSend)

create (or send)

initUpdate

update

get

list

search

initReply

reply

acknowledge …

Object Category Description Actions

The database of categories and their actions may grow by experience and feedback. Actions from the table are self-explanatory,

for example the action “initCreate” means initialize the creation of the object in question and prepare the view (initialize data) for

the creation. To clarify deeply this approach and see how all of this is transformed to code, let’s project it on a web based application.

4. OOA/D Approach for Requirements Engineering in web-based application

In this section we will see a web-based application developed using this approach; the application is called “MindMail ” (http://

3.2 How OOA/D approach for RE works

 The main objective of this paper is to facilitate, automate and provide a practice that any developer may use in software development.

The idea of this approach is simple; it is based on object-oriented analysis and design approach; during object analysis, when an

object is identified we define to which category belongs and we check which actions, from the predefined ones, must fulfill this object

by understanding user goals. Below a table presenting examples of object categories and their actions:

150 Journal of Electronic Systems Volume 2 Number 4 December 2012

www.mindware.ma/product/getProduct?productID =1&MindMail-E-mail-&-Collaboration) which is an open source web-based mail
& collaboration tool developed by MindWare Company (http://mindware.ma).

To present how this approach is used in this application, we take a short part of user-story and detail all steps followed from OOA/D
RE to coding. During design some quality and design artifacts will be undertaken, like MVC (Model View Controller), DAOs (Data
Access Objects) and so on , but how this can be related to our approach? Good, here is the idea: when capturing an object, we create
its controller holding its actions (mvc), create one or many of its DAOs, its test class…etc. Figure 2 illustrates the design of this
approach in a class diagram.

Figure 2. Class diagram showing how the main element “object” is related to other design artifacts

To clarify how to develop any kind of web-based application using this approach, we move to show steps followed giving
examples for each one.

• Step 1: form user stories In this step a set of interviews, workshops…etc. must be done to gather and elicit all functional
requirements [3]. then write the gathered information in a well formed ordered text using a developer style (user stories). For our
example we take a part from the user stories about creating new mail:

MVC (Model View Controller)

Controller Action

View

+ object controller

+ actions

+ view 0..1

1

1..* - name

- name

Actions are predefined.
Organized by object
catagery. Action name is
unique

Each actions may have a
view having the same
name of the action.

Object may have many
DAOs. for example one
for database. one for web
service ...etc.

DAL (Data Access Layer)

DAO

0..*

+ object DAOs
ObjectTest

0..1

0..1

+ object Test

Test Engineering

 Journal of Electronic Systems Volume 2 Number 4 December 2012 151

Figure 3. Illustration of how class diagram is constructed from user stories using OOA/D Approach for RE

Mail DAO for mail
object

Mail Service

User

Mail

Contact

Mail Controller

Database DAO for
contact object

ContactDB Service

ContactController

Controller (MVC)
for object Contact

Recipient

Controller (MVC)
for object Mail

Test object (test
engineering) for
mail object

MailTest

+ autoCompleteContact()
+ list contact()

+ autoCompleteContact()
+ list contact()

+ initCreateMail()
+ send Mail()

- ...

- ...

- ...

+ send Mail()

- contacts

- recipients

0..*

1..*

152 Journal of Electronic Systems Volume 2 Number 4 December 2012

Figure 5. Screen shot showing the organization of the generated code from using OOA/D for RE

…user may create new mail; he can add
recipients by autocompleting his contact when
typing text, or he can list all his contacts then
check the required ones….

• Step 2: OOA/D RE
In this step, first we begin by highlighting entities, then identifying objects one by one and define to which category belongs each one,
after that, as we said we must think “object ”, we capture from the text what must that object offer, what actions must be ran on that
object to answer user’s goals, then check the appropriate actions from the predefined ones. While doing this, we project and model the
gathered elements (object, action, connection, interaction…) on a class diagram by creating objects, their controllers with actions, their
DAOs and so on. Let us see the practice:

• Step 3: generating code
Generating code is an implementation phase of our software; this step is added just to give an idea how the code will be organized.
Before generating code from the class diagram, we must detail the diagram (methods, data types, attribute and so on.) and specify what
the targeted technology is (java, php, .net and so on.); after that, we do the generation using a CASE (Computer-Aided Software
Engineering) tool supporting this feature. In our example, as we noticed we have given just the skeleton of the main elements so that
one can understands the approach and its steps. Here is a screen shot taken from eclipse showing the organization of the application

 Journal of Electronic Systems Volume 2 Number 4 December 2012 153

and little code generated using JEE with struts 2:

After this step, developers begin building objects actions, then making unit test for each one.

5. Conclusion

Requirements engineering deserves a stronger attention from practice; many approaches were developed to model those requirements,
but all of them showed weaknesses in software development process when moving to the construction phase. In this paper we
presented methods used to structure and model RE and showed the break they present when moving to construction phase. In the last
section we presented our approach, named OOA/D for RE, that fixes this problem and we finished by giving a detailed example using
our approach in a web-based application.

6. Future works

While working on this approach, many ideas come to mind to enhance it. Bellow some of them:

• Prototyping a framework based on this approach that details all industry line for software manufactory.
• As we noticed, this approach does not provide a document or a model which can be communicated or delivered to the customer; this
must be handled.

References

[1] Salinesi C. Authoring Use Cases. (2004). In: Alexander I.F., Maiden N. Coord. Scenarios, Stories,Use Cases: Through the
Systems Development Life-Cycle. Wiley & Sons, Ltd, 544 p. ISBN 0-470-86194-0.

[2] Pfleeger, S. L. (1998). Software Engineering – Theory and Practice, Prentice Hall.

[3] Nuseibeh, B., Easterbrook, S. (2000). Requirements Engineering: A Roadmap, The Future of Software Engineering, Anthony
Finkelstein (Ed.), ACM Press.

[4] Kotonya, G., Sommerville, I. (1998). Requirements Engineering – Processes and Techniques, John Wiley & Sons.

[5] Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative
Development, Third Edition. Addison Wesley Professional, October, chp. 10, ISBN 0-13-148906-2.

[6] URN - Use Case Map Notation (UCM). (2003). ITU-T Draft Recommendation Z.152. Geneva, Switzerland, Sep. accessed April
2007: http://www.UseCaseMaps.org/urn.

[7] User Requirements Notation (URN) – Language Re-quirements and Framework, ITU-T Recommendation Z.150. Geneva,
Switzerland, February, acc. April : http://www.itu.int/ITU-T/publications/recs.html.

[8] Mussbacher, G. (2007). Evolving Use Case Maps as a Scenario and Workflow Description Language. In: 10th Workshop on
Requirements Engineering (WER’07), Toronto, Canada (May).

[9] Edward V. Berard. (1998). Be Careful With Use Cases, the Object Agency, Inc, (http://www.cs.unc.edu/~stotts/204/usecases/
careful.html).

[10] Grady Booch. (1998). Object Oriented Analysis and Design with Applications, second edition, Addison Wesley Longman,
Inc., p.16-20, ISBN 0-8053-5340-2.

[11] Davis, A. M. (1993). Software Requirements: Objects, Functions, and States, Prentice Hall.

[12] Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.

[13] Nakajo, T., Kume, H. (1991). A Case History Analysis of Software Error Cause-Effect Relationships. Transactions on
Software Engineering, 17 (8) 830-838.

[14] Jacobson, I., Wei Ng, P., Spence, I. (2006). Enough process - let’s do practices, Journal of Object Technology, 6 (6).

