Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-3503
Online ISSN:
0976-2930


  About JET
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of E-Technology

Models for Electromagnetic Standards and Issues
Máté Liszi, István Drotár, Péter Prukner, Szilvia Nagy
Széchenyi István University, Radio Frequency Test Laboratory, Egyetem tér 1, Gyõr, Hungary, H-9026 & Department of Telecommunications, Egyetem tér 1, Gyõr, Hungary, H-9026
Abstract: In this work we studied the Electromagnetic standards and the combatiability issues in the smart environment. To provide the required correct approximation on the measurement uncertainty, it is important to measure and to model the electromagnetic field distribution inside the chamber around the device under test and the test antenna. A one dimensional simplified model is presented for electromagnetic field distribution modelling with a straightforward possibility to extend to higher dimensions. Wavelets are ideal tools for modelling such environments, where the length scale of the obstacles vary, like the test chambers with different sizes of devices under test.
Keywords: EMC, Fully Anechoic Chamber, Semi Anechoic Chamber, Wavelet, Electromagnetic Field Modelling Models for Electromagnetic Standards and Issues
DOI:https://doi.org/10.6025/jet/2021/12/1/1-7
Full_Text   PDF 1.35 MB   Download:   277  times
References:

[1] Baker, A. E., Sitzia, R. M., Preston, I., Puzo, A., Pons, A. (1996). Characterisation of Electromagnetic Anechoic Chamber by Finite Element Method, IEEE Transactions on Magnetics, 32 (3) 1513-1516.
[2] Chung, B.-K., Teh, C. H., Chuah, H.-T. (2004). Modeling of Anechoic Chamber Using a Beam-Tracing Technique, Progress in Electromagnetics Research, vol. 49, p. 23-38.
[3] Kawabata, M., Ishida, Y., Shimada, K., Kuwabara, N. (2007). FDTD Method for Site Attenuation Analysis of Compact Anechoic Chamber Using Large-Cell Concept, Electrical Engineering in Japan, 162 (4) 9-16.
[4] Prez, I. M., Nuo, L., Pereira, Quesada., F. D., Tejedor, Balbastre., J. V. (2006). Low-Frequency Model for Rectangular SemiAnechoic Chambers, IEEE Transactions on Electromagnetic Compatibility, 48 (4) 725-733.
[5] Nuño, L., Balbastre, J. V., Quesada, F. D. (2003). A Highly Efficient and Accurate Procedure for Semi-Anechoic Chamber Analysis Using Circuital Techniques, Microwave and Optical Technology Letters, 37 (4) 263-265.
[6] Sasaki, T., Watanabe, Y., Tokuda, M. (2006). NSA Calculation of Anechoic Chamber Using Method of Moment, PIERS Online, 2 (2) 200-205.
[7] Pan, G. (2003). Wavelets in Electromagnetics and Device Modeling, Hoboken, N.J., Wiley-Interscience.
[8] Pipek, J., Nagy, Sz. (2013). An Economic Prediction of Refinement Coefficients in Wavelet-Based Adaptive Methods for Electron Structure Calculations, J. Comput. Chem., vol. 34, p. 460-465.
[9] Nagy, Sz., Pipek, J. (2015). An Economic Prediction of the Finer Resolution Level Wavelet Coefficients in Electronic Structure Calculations, Phys. Chem. Chem. Phys., vol. 17, p. 31558- 31565.
[10] Szióvá, B., Nagy, Sz., Pipek, J. (2017). Optimization of the Prediction of Second Refined, Wavelet Coefficients in Electron Structure Calculation, Open Phys., 14 (1) 643-650.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info