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ABSTRACT: Ensemble methods like Bagging and Boosting which combine the decisions of multiple hypotheses are among
the strongest existing machine learning methods. The diversity of the members of an ensemble is known to be an important
factor in determining its generalization error. We present a new method for generating ensembles, named CDEBMTE (Creation
of Diverse Ensemble Based on Manipulation of Training Examples), that directly constructs diverse hypotheses using
manipulation of training examples in three ways: (1) sub-sampling training examples, (2) decreasing/increasing error-
prone training examples and (3) decreasing/increasing neighbor samples of error-prone training examples.

The technique is a simple, general meta-learner that can use any strong learner as a base classifier to build diverse committees.
Experimental results using two well-known classifiers (1) decision-tree induction and (2) multilayer perceptron as two base
learners demonstrate that this approach consistently achieves higher predictive accuracy than both the base classifier,
Adaboost and Bagging. CDEBMTE also outperforms Adaboost more prominent when training data size is becomes larger.

We propose to show that CDEBMTE can be effectively used to achieve higher accuracy and to obtain better class membership
probability estimates.
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1. Introduction

There are many inherently different classifiers in the pattern recognition. It may be worthy to mention that usage of the broad
versatility in kind of classifiers is not a trivial matter to be ignored.  It means although a classification algorithm may obtain a
good performance for a specific problem, it has not enough robustness for another problem. It has been always an ideal for
pattern recognition communities to present an approach of how to select the best (or at least approximately the best) classifier
for a specific problem. It has been shown that this desire is far from the reach; at least by employing simple classifiers as the main
learner.

Fortunately there is another way to cope with the problem. It is to use many learners instead of one learner and then to employ
a democracy-wise method to firm the final decision of the committee (classifier). One of the major advances in inductive learning
in the past decade was the development of ensemble or committee approaches that learn and retain multiple hypotheses and
combine their decisions during classification [3]. For example, Boosting [4]-[5] is an ensemble method that learns a series of
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“weak” classifiers each one focusing on correcting the errors made by the previous one; and it is currently one of the best
generic inductive classification methods [8]. Therefore, recent researches are directed to the combinational methods which have
more power, robustness, resistance, accuracy and generality than simple method. Combination of Multiple Classifiers (CMC)
can be considered as a general solution method for pattern recognition problems. Inputs of CMC are results of separate
classifiers and output of CMC is their consensus decision [23]-[25].

So pattern recognition communities turn from single-based classification systems to ensemble-based classification systems
due to same reasons that humanity societies converge from dictatorial sovereignties to democratic sovereignties. By the way,
the four mentioned preconditions that are necessary to guarantee a democratic sovereignty to succeed and to emerge wisdom
of crowd must be consequently dealt with. So researchers in pattern recognition communities turn to construct an ensemble in
which each individual (classifier) is (a) as different as possible (satisfying preconditions one and two), (b) while still maintaining
consistency with the training data having authority to learn from a manipulation of them in such a reasonable way (satisfying
precondition three) [10]. Also they use (c) a suitable and consistent to democracy concept to aggregate their opinions (satisfying
precondition four). Although all successful ensemble methods encourage diversity to some extent, few have focused directly on
the goal of maximizing diversity. Existing methods that focus on achieving diversity [21] and [29] are fairly complex and are not
general meta-learners like Bagging [1] and Boosting which can be applied to any base learner to produce an effective committee
[32].

Melville [18] presents a new meta-learner DECORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial
Training Examples), that uses an existing “strong” learner (one that provides high accuracy on the training data) to build an
effective diverse committee in a simple, straightforward manner. This is accomplished by adding different randomly constructed
examples to the training set when building new committee members. These artificially constructed examples are given category
labels that disagree with the current decision of the committee, thereby easily and directly increasing diversity when a new
classifier is trained on the augmented data and added to the committee.

Different categorizations of combinational classifier systems are represented in [13], [22], [26] and [28]. Valentini and Masouli
divide methods of combining classifiers into two major categories: generative methods, non-generative methods. In generative
methods, a set of base classifiers are created by a set of base algorithms or by manipulating dataset. This is done in order to
reinforce diversity of base classifiers. Generally, all methods which aggregate the primary results of the fixed independent
classifiers are non-generative. They are also named fusion methods [9] and [30].

In generative methods, diversity is usually made using two groups of methods. One group of these methods obtains diverse
individuals by training classifiers on different training set, such as bagging [1], boosting [4], cross validation [10] and using
artificial training examples [17].

Another group of methods for creating diversity employs different structures, different initial weighing, different parameters
and different base classifiers to obtain ensemble individuals. For example, Rosen [29] adapted the training algorithm of the
network by introducing a penalty term to encourage individual networks to be decorrelated. Liu and Yao [16] used negative
correlation learning to generate negatively correlated individual neural network.

The third group is named selective approach group where the diverse components are selected from a number of trained
accurate networks. For example, Opitz and Shavlik [21] proposed a generic algorithm to search for a highly diverse set of
accurate networks. Lazarevic and Obradovic [14] proposed a pruning algorithm to eliminate redundant classifiers. Navone et al.
[19] proposed another selective algorithm based on bias/variance decomposition. GASEN proposed by Zhou et al. [33] and PSO
based approach proposed by Fu et al. [6] also were introduced to select the ensemble components.

There have been many methods developed to construct an ensemble. Some of these methods, such as Bagging and Boosting
are meta-learners i.e. they can be applied to any base classifier. Other methods are specific to a particular base classifier. For
example, Negative Correlation Learning [15] is used specifically to build committees of Neural Networks. We only deal with
construction of general ensemble, i.e. meta-learners. Although a special base classifier may be better suited for a particular
domain than others, a general ensemble approach that is independent of the particular base classifier is preferred in an unknown
domain. So the aim of our research is to only propose a meta-learner.

In an ensemble, the output of several classifiers is useful to be participated in an ensemble only when they disagree on some
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inputs [7] and [31]. The measure of disagreement is called as the diversity of the ensemble. For regression problems, mean
squared error is generally used to measure accuracy, and variance is used to measure diversity.
There have been defined several measures of diversity for an ensemble in the literature. In a recent study, Kuncheva and
Whitaker [11] compared ten different measures of diversity. They found that most of these measures are highly correlated.
However, to the best of our knowledge, there has not been a conclusive study showing which measure of diversity is the best
to use during constructing and evaluating an ensemble.

Melville and Mooney [17] have introduced a new meta-learner DECORATE that uses an existing learner to build an effective
diverse committee in a simple, straightforward manner. This is accomplished by adding different randomly constructed examples
to the training set when building new committee members. These artificially constructed examples are given category labels that
disagree with the current decision of the committee, thereby easily and directly increasing diversity when a new classifier is
trained on the augmented data and added to the committee.

In this paper, a new method to obtain diverse classifiers is proposed which uses manipulation of dataset structures. In this new
method it is presented to make diversity in base classifiers (of type MultiLayer Perceptron (MLP) or Decision Tree (DT)). The
effect of existing or non-existing of boundary instances is evaluated. Firstly, using a simple classification, the error-prone
instances and their neighbors are detected. Using these subsets, different datasets of our main dataset are created. Then,
several classifiers are trained on these datasets. They may be selected into or eliminated from the ensemble based on a diversity
metric. This method that we have named “CDEBMTE: Creation of Diverse Ensemble Based on Manipulation of Training
Examples” is described in section 3, accurately. The used decision-tree is J48 that is a Java implementation of C4.5 [27] introduced
in [32]. Cross-validated learning curves support the hypothesis that CDEBMTE generally result in greater classification accuracy.

2. CDEBMTE

In CDEBMTE, using a simple classification, the error-prone samples and their neighbors which are called respectively EPS and
NS are first detected. Using EPS and NS and also the original training set, different training sets are created from the original one.
Then, several classifiers are trained on these datasets. Based on a diversity metric a subset of them is selected into an ensemble.
Finally, a consensus function is employed to aggregate the results of these diverse classifiers.

TS: Training Set
P: Error-Proneness of TS
EPS: Error Prone Set, EPS={};
CEPS: Complement of Error Prone Set, CEPS={};
NS: Neighbor Set, NS={};
K: Folds
N=| TS |
Function FindEPSandNS()
  For i=1 to K
     Produce an Ei of H classifiers by RF(α ) on TS\TSi

     Simulate Ei  over xj TSi, then tag xj by Pj

     If Pj > 0 Then add xj to EPS Else add xj to CEPS
  End.
  For j=1 to N
      c = real tag of xj

      set nxj as the nearest neighbor of xj in CEPS
              that belongs class c

  End.
Return P, EPS, NS

Figure 1. Pseudo-code of algorithm for finding EPS and NS
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3.1 Preparing Different Subsets of Training Dataset
To extract different subsets out of training set, we divide the primary Training Set (TS) in K random partition. Let us denote i-th
partition by TSi. Presume that cardinality of TS, | TS |, is denoted by N. By training a fixed number (denoted by H) of simple base
classifiers on TS\TSi, we reach an ensemble that is expert for TSi. Please note that these H classifiers are produced by a Bagging
mechanism named Random Forest (RF). Breiman [2] proposes a variant of bagging which he calls RF. RF is a general class of
ensemble building methods that uses decision tree as its base classifier. It has a parameter a that shows the ratio of sub-
sampling. To be labeled a “random forest” an ensemble of decision trees should be built by generating independent identically
distributed random vectors and use each vector to grow a decision tree. In this paper RF which is one of the well known versions
of bagging classifier [12] is considered as Bagging method. It means when Bagging is used it refers to RF in the paper.

Let us denote the ensemble that is expert for TSi by Ei. We test each data point in TSi to find out how the data point has potential
to be wrongly classified. We assign a number Pj to j-th data point in TSi indicating how many classifiers out of H ones in the
ensemble Ei, wrongly classify the j-th data point. The bigger Pi, the more error-prone the i-th data point. It is also worthy to
mention that Pi is an integer number between 0 to H.

This procedure is repeated K times, choosing a different part for testing, each time. When N =K, the method is called the leave-
one-out or U-method [12].

The proposed algorithm to discover Error-Prone Subset (EPS) and Neighbor Subset (NS) is shown in Figure 1.

Figure 2 illustrates the EPS and NS in Iris dataset projected in features 3 and 4. In Figure 2 all samples of Iris dataset is considered
as training set.

Figure 2. EPS and NS in Iris dataset projected into features 3 and 4

3.2 Creating an Ensemble of Diverse Classifiers
Using more diverse classifiers is one of the most important factors controlling the performance of combinational classifiers.
Based on three sets of data, TS, EPS and NS, in this step, a number of classifiers are heuristically retrained. As shown in Table
1, a number of combinations are used to create diversity in the ensemble. Also, Table 1 expresses the reasons of their usage. It
is worthy to be mentioned that κ, λ and µ are three parameters that are to be set. The domains of these parameters are {0.2, 0.4,
0.6, 0.8, 1}. For example, κ*TS means that a sub-sampling from TS that contains a κ ration of TS; and κ*TS ∪ λ*EPS ∪ µ*NS
means that a union of three sub-samplings: (1) κ ration from TS, (1) λ ration from EPS and (1) µ ration from NS.

Retraining of classifiers, according to combinations of Table 1, results the classifiers so that each of them concentrates on
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special aspect of data. This can result in very good diversity in the ensemble. In other hand, although the accuracy of each
classifier may not be significantly better than a simple classifier, it can yield to satisfactory diverse base classifiers.

In this study, six classes of producing a subset are defined. In first class of producing subsets, by sliding parameter κ in all
possible values in its domain, we obtain 5 training subsets. Equivalently in second class, by sliding parameters κ and µ in all
possible values in their domains, we obtain 5*5 training subsets. In 3rd, 4th, 5th and 6th classes, we respectively reach 125
(5*5*5), 25, 25 and 5 training subsets by sliding their parameters.

         Classes of                        Feature of Resultant Subsets
Producing Training
             Subset

1. κ* TS                         To create the base classifiers

                      Classification by high complex
2. κ*TS ∪ µ*NS                 boundaries with more concentration on

                                       crucial points

                Classification by complex boundaries
3. κ*TS ∪ λ*EPS ∪ µ*NS         with more concentration on error prone

                                and crucial points

                         Classification by high simple
4. κ*(TS\EPS) ∪ µ*NS             boundaries with more concentration on

                                        crucial points

                         Classification by high complex
5. κ*TS ∪ λ*EPS                  boundaries with more concentration on

                                error prone data samples

                            Classification by very simple
6. κ* (TS\EPS)                                             boundaries

Table 1. Different data combinations and reasons of its usages

3.3 Diversity of an Ensemble
To define a meaningful diversity metric first we define a between-classifier diversity metric over one example. As equation (1)
shows, the between-classifier diversity metric over one example is denoted by d (Ci ,Cj ,xk )

d (Ci, Cj, xk ) =
0   Ci (xk ) = Cj (xk ){1   Ci (xk ) = Cj (xk )/

(1)

In the equation (1), Ci stands for i-th classifier from the ensemble and Ci (xk ) stands for its output over an exemplary sample xk.
Based on the equation (1), we define a diversity metric for an ensemble according to equation (2).

( ) ( )2
1 , ,

k i j i j kx TS C E C ED E d C C x
E TS ∈ ∈ ∈=

∗
∑ ∑ ∑ (2)

where E stands for an ensemble of classifiers. D(E) is the diversity of ensemble .

3.4 Performance of an Ensemble
Let us assume that E is the ensemble of r classifiers {C1, C2, C3 …Cr}. Also assume that problem has q classes. Next, assume
applying the ensemble over data sample x is resulting in a binary D matrix like equation (3).
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where di,j is one if classifier j votes that data sample x belongs to class i. Otherwise it is equal to zero. Now the ensemble decides
the data sample to belong class tc according to equation (4).

(4)

TS: Training Set
FinalEnsemble={}
Function ProduceFinalEnsemble (E)
pre_acc=0;
pre_div=0;
  For i =1 to |E |
     tempEnsemble= Ci ∪ FinalEnsemble;
     div=D(tempEnsemble);
     acc=TEST(tempEnsemble, TS);
      If (acce > pre) & (dive > pre_div) Then
          FinalEnsemble=tempEnsemble;
          pre_acc=acc;
          pre_div=div;
  End.
Return FinalEnsemble

Figure 3. Pseudo-code of CDEBMTE algorithm

We define the number of correct assignments by an ensemble as its accuracy.

3.5 CDEBMTE
In CDEBMTE, a rough ensemble is first generated and then pruning it into the final ensemble. A classifier is trained on each
subset defined on the training data. We train each classifier on each subset defined on the training data, thereby forcing them
to differ from the each other. Therefore these classifiers as an ensemble can be considered a diverse one. While enforcing the
diversity into the rough initial ensemble, we still want to extract the most diverse subset of classifiers out of the rough initial
ensemble. We do this by eliminating a new classifier if adding it to the existing ensemble decreases its accuracy. This process is
repeated until we exceed the maximum number of iterations. The pseudo code of the CDEBMTE algorithm is presented in Fig 3.
As you can understand from Figure 3, a greedy algorithm is employed to find the most diverse subset of the classifiers existing
in the ensemble. The CDEBMTE algorithm incrementally examines possibility of adding the next classifier to the pool of current
ensemble by considering two factors. First it temporarily adds the next classifier to the current ensemble. If both accuracy and
diversity of the current ensemble increases over TS, the search algorithm accepts the current ensemble; else the temporarily new
added classifier is removed from current ensemble.

4. Experimental Results

In this chapter we present experiments comparing CDEBMTE with the leading ensemble methods like Bagging and AdaBoost.
We also discuss some additional experiments that we run to better understand CDEBMTE’s performance.

tc = arg max|     |Σ
 i =1

m n

j =1
 di, j
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4.1 Benchmarks
To evaluate the performance of CDEBMTE we ran experiments on 18 representative datasets from the UCI repository [20]. The
datasets are summarized in Table 2. Note that the datasets vary in the numbers of training examples, classes, numeric and
nominal attributes; thus providing a diverse testbed.

4.2 Experimental Setting
The performance of each learning algorithm is evaluated using 10 complete runs of 10-fold cross-validation (except 3 monk
problems). In each 10-fold cross-validation, each dataset is randomly split into 10 equal-size segments and results are averaged
over 10 trials. For each trial, one segment is set aside for testing, while the remaining data is available for training.

The size ensemble in each algorithm is considered same with CDEBMTE algorithm. It means after running of CDEBMTE
algorithm, the size of final ensemble is extracted and is feed as the ensemble size to other algorithms.

Dataset Name Cases Classes Attributes
anneal    898       6        39
audio    226       6        69
autos    205       6        25
breast-w    699       2         9
credit-a    690       2        15
glass    214       6         9
heart-c    303       2        13
hepatitis    155       2        19
colic    368       2        22
iris    150       3         4
labor     57       2        16
lymph    148       4        18

monk•    432       2         6
soybean    683      19        35
splice   3190       3        62
wine    178       3        13

• The training and test sets in all three Monk’s problems are predetermined. The training sets in Monk 1, 2 and
3 are 124, 169 and 122, respectively. More info about this problem can be found in: (The Monk’s Problems,
Donor: Sebastian Thrun School of Computer Science Carnegie Mellon University Pittsburgh, PA  15213, USA,
1992).

Table 2. Summary of datasets

4.3 Experimental Results
Figure 4 depicts the performance of CDEBMTE comparing to the performances of DECORATE, AdaBoost and Bagging over Iris
dataset. In Figure 4 the accuracy of different ensemble methods in terms of different ratios of TS is presented.

Figure 5 depicts the performance of CDEBMTE comparing to the performances of DECORATE, AdaBoost and Bagging averaged
over all 18 datasets. In Figure 5 the averaged accuracy of different ensemble methods in terms of different ratios of TS is
presented. As it is depicted, DECORATE outperforms other methods considerably when the size of TS is small. It is due to
adding artificial data samples to train set. It means while the number of training set is not enough to properly the other methods
learn the models of the classes, DECORATE increases the size of training set to learn the models of the classes better.

For TS sizes above 50 percent, DECORATE falls gradually in comparing with AdaBoost. It is finally slightly placed in rank three
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after AdaBoost method. While CDEBMTE sliding improves as TS size becomes greater. It is finally placed in rank one above all
methods.

Figure 4. Accuracy of different ensemble methods
in terms of different ratios of TS over Iris dataset

Figure 5. Averaged accuracy over all 18 datasets of different
ensemble methods in terms of different ratios of TS

For TS sizes above 50 percent, DECORATE falls gradually in comparing with AdaBoost. It is finally slightly placed in rank three
after AdaBoost method. While CDEBMTE sliding improves as TS size becomes greater. It is finally placed in rank one above all
methods.

5. Conclusion

In this paper, a new method to improve performance of combinational classifier systems, CDEBMTE, is proposed. CDEBMTE is
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based on increasing the diversity of ensemble. First different datasets are extracted from training dataset. Then it trains a number
of classifiers over them. Finally it selects a subset of the trained classifiers.

It shows that emphasizing on crucial data can cause improvement in diversity. Also we showed that usage of different datasets
causes to quite diverse classifiers.
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