
 Journal of E -Technology Volume 3 Number 3 August 2012 133

Muhammad Azeem Abbas, Abdul Qadir, Munir Ahmad, Tariq Ali
Center for Distributed and Semantic Computing
Mohammad Ali Jinnah University, Islamabad. Pakistan
azeem.abbas@uaar.edu.pk, aqadir@jinnah.edu.pk, {munirahmad83, tariqali.1982}@gmail.com

ABSTRACT: Finding satisfiability and implication results among queries is fundamental to several problems in databases
especially in distributed databases. The known complexity of finding satisfiability of term S is O (|S|3). Similarly complexity
of finding “Is S implies T (S→ T)” is O(S3+K) Where | S | is the number of distinct predicate attributes in S, and K is the
number of predicate terms in T (S and T are conjunctive select-project-join(PSJ) queries). We show that with the induction of
Cross Attribute Knowledge (CRA) the above complexity is reduced to O (|S - CRA|3) and O (|S - CRA|3 + K) for satisfiability
and implication respectively.

Keywords: Distributed databases, Querying, Semantic Caching, Conjuctive queries

Received: 11 May 2012, Revised 29 June 2012, Accepted 8 July 2012

© 2012 DLINE. All rights reserved

1. Introduction

Satisfiability and implication results are fundamental to several problems in databases especially in distributed databases. It is
widely used as a key to find equivalences among queries, query optimization, query rewriting and semantic cache query
processing. When optimizing, an equivalent of the original query that is cheaper in execution is found through satisfiability and
implication relation. Similarly a query is rewritten that either integrate multiple resources or used in dataware house design[1].

The process of computing available (probe query) and unavailable (remainder query) parts from prestored data fragments
(cache) is highly effective in latency of data retrieval from distributed resources where communication cost is a major concern
[2]. Since cached and incoming queries are formulas of conjunctive or disjunctive inequalities. So finding Probe (pq) and
remainder (rq) queries is a problem of finding implication or satisfiability between cached query (QS) and user query (QU)
formulas. The following definitions formally define the problems and notation to be used in the rest of this paper.

Definition 1: A select-project-join (PSJ) query Q is a tuple < πQ,σQ,operandQ >, where πQ is Select Clause of query which
contains projected attributes. operandQ is the From Clause which contains relation of a database D, from which data is to be
retrieved. σQ is Where Clause which contains conjunctive (∧) or disjunctive (∨) compare predicates, a compare predicate is of the
form P = (X op C) , P = (X op Y) or P = (X op Y + C), where X,Y ∈ A {Attributes Set}, op ∈ {<, ≤, >, ≥, ≠ }, C is a constant in a
specific domain [1].

Satisfiability and Implication Evaluation of Conjunctive Queries in Semantic Caching

 134 Journal of E -Technology Volume 3 Number 3 August 2012

Definition 2: Implication is defined as “S implies T, denoted as S → T, if and only if every assignment that satisfies S also
satisfies T”.

Definition 3: Satisfiability is defined as “S is satisfiable if and only if there exists at least one assignment for S that satisfies T.”.
Let us have a formula (Salary < 20K AND Salary > 8K AND Department = ‘CS’) is satisfiable, because the assignment 12K /
Salary , CS/Department satisfies the formula. Similarly a formula (Salary >10K OR Salary < 12K) is a tautology, because every
assignment under this formula is satisfiable. We will use the following semantic cache application in our examples through the
rest of the paper.

A cached query with associated semantics stored in semantic cache along with resultant data is called a semantic region [3] or
semantic segment [2]. If a user query (QU) posed over n semantic segments (QS1, QS2,..,QSn) then this user query can either be
totally answered (implies) or partially answered (satisfiable) or cannot be answered (unsatisfiable) from underlying segments.

So for above scenario, implication (QU → QS) means every tuple retrieved by evaluating QU can be obtained by evaluating QS
i.e. the whole answer to QU is available locally in the cache. For satisfiability there are some tuples that can be retrieved by both
QU and QS.

In case of implication user query (QU) shall be posed to the cache i.e. < πQU ,σQU , operandQS >.if satisfiability holds then user
query (QU) is split into two parts i) pq = < πQU ∧ QS , σQU , operandQS > and ii) rq = <πQU ,σQU ∧ ¬QS, operandQU >. This splitting
process is known as query trimming [4]. Query trimming is based on satisfiability and implication results. Let us assume that
query trimming take O(QueryTrim) time. Then total (worst case) time taken by semantic cache query processing is O (| QU |

3 + K)
+ O (|QU ∧ QS|

3) + O (QueryTrim) where K is number of terms in QS. In section III we show that with the induction of Cross
Attribute Knowledge (CRA) [5] this complexity is reduced to O (|QU - CRA|3 + K) + O(|QU ∧ QS - CRA|3) + O(QueryTrim).

Example 1: Consider an employee database with a relation name Emp (Empid,Department, Age, Salary,Exp). The domain of the
Age, Salary, Department and Exp attributes of Emp are {20,...,100},{0.1K,...,1K,15K},{CS, EE, BI, BA},{1,..,50} respectively.
Also suppose that the cache already has following cached segment.

QS = < πAge , Salary, Exp, σSalary < 1K ∧ Salary > 40K, Emp >

Salary

Exp

V0

-20
-30

-1

40
40 80

Age
20 40 10 ∞∞∞∞∞

-20 20 -30 ∞∞∞∞∞

60 80 50 ∞∞∞∞∞

20 40 10 0

Salary V0 Age Ex p
Salary

V0

Age

Ex p

Figure 1. (a) [QU1 ∧ QS] and GQU1 ∧ QS (b) Shortest Path Table

 Journal of E -Technology Volume 3 Number 3 August 2012 135

2. Related Work

Satisfiability and implication results in databases [6], [7], [8], [9], [10] are relevant to the computation of probe and remainder
query in semantic cache query processing for a class of queries that involve inequalities of integer and real domain. Previous
work models the problem into graph structure. Hunt [9] provided an algorithm of complexity O(|Q|3) for solving satisfiability
problem; the expression S to be tested for satisfiability is the conjunction of terms of the form X op C, X op Y, and X op Y + C.
Guo et al. [6] provided an efficient algorithm (GSW) for computing satisfiability with complexity O(|Q|3) involving complete
operator set and predicate type X op C, X op Y and X op Y + C. Here we demonstrate GSW algorithm [6] for finding implication
and satisfiability between two queries.

The GSW algorithm starts with transforming all inequalities into normalized form through given rules. It was proved by llman [7]
that these transformations still holds equality. After these transformation remaining operator set become {< , ≠, >}.

• (X ≥ Y + C) (Y —X ≤ C)
• (X< Y + C) (X ≤ Y + C) ̂ (X ≠ Y + C)
• (X > Y + C) (Y ≤ X ≥ C) ̂ (X ≠ Y + C)
• (X = Y + C) (Y ≤ X ≥ C) ̂ (X ≤ Y + C)
• (X< C) (X ≤ C) ̂ (X ≠ C)
• (X > C) (X ≥ C) ̂ (X ≠ C)
• (X = C) (X ≤ C) ̂ (X ≥ C)

Satisfiability of a conjunctive query Q is computed by constructing a connected weighted-directed graph GQ = (VQ ,EQ) of Q
after above transformation. Where VQ are the nodes representing predicate attributes of an inequality and EQ represent an edge
between two nodes. An inequality of the form X op Y + C has X and Y nodes and an edge between them with C weight. The
inequality X op C is transformed to X op V0 + C by introducing a dummy node V0.

According to GSW [6] algorithm, for any query Q if a negative-weighted cycle (a cycle whose sum of edges weight is negative)
found in GQ then Q is unsatisfiable. Otherwise Q is satisfiable. Testing satisfiability among user query QU and cached segment
QS require us to construct a graph (GQU ^ QS) of (QU ^ QS) and check GQU ^ QS for any negative weighted cycle. Negative
weighted cycle is found through Floyd-Warshall algorithm [11]. Complexity of Floyd-Warshall algorithm is O(|V |3), so finding
satisfiability become O (|GQU ̂ QS|

3).

An algorithm with O(|S |3 + K) complexity for solving the implication problem between two conjunctive inequalities S and T was
presented by Ullman [7] and Sun [10]. Conjunctive queries of the form X op Y were studied by [8] and [9]. Implication between
conjunctive queries of the form X op Y + C was addressed by GSW algorithm [6] with complexity O (|QU |

2 + |QS |). GSW
Implication [6] requires that QU is satisfiable. Satisfiability of QU can be checked by above mentioned steps. At first the
implication algorithm constructs the closure of QU i.e., a universal set that contains all those inequalities that are implied by QU.
Then, QU ^ QS if QS is a subset of the QU closure.

Ahmad et al.[16] proposed graph based indexing scheme for management of cached segments. This indexing scheme is then
applied to matching process for finding implication & satisfiability results. Satisfiability and implication evaluation is done
through string matching and applied only to select-project queries. Later incoming query is trimmed on the basis of these
results. Similarly a graph based query trimming approach was proposed by Abbas et al [18].

Example 2: Let us have a user query
QU1 = < πAge, Salary, Exp, σ Salary > 20K^Age > 30 ̂ Age > 80 ̂ Exp < 40, Emp > over cached segment QS of Example 1. The directed weighted
graph GQU1 ̂ QS of QU1 ̂ QS is shown in Figure 1(a). QU1 is satisfiable with respect to QS , as there is no negative weighted cycle
in GQU ̂ QS .

 136 Journal of E -Technology Volume 3 Number 3 August 2012

100

 90

 80

 70

 60

 50

 40

 30

100

 90

 80

 70

 60

 50

 40

 30

100

 90

 80

 70

 60

 50

 40

 30

100

 90

 80

 70

 60

 50

 40

 30

A
ge

A
ge

A
geA
ge

Figure 2. (a top left), (b top right), (c bottom left), (d bottom right) Query Q over Cached Segment S
Salary Salary

Salary Salary

3. Cross Attribute Knowledge

In all previous work satisfiability and implication was only addressed for horizontal partitioned fragments. Where it was
assumed that projected attributes of incoming user query and cached segment are same (πQ = πS). So implication and satisfiability
was only applied to predicate part of the queries. Cross Attribute Knowledge (CRA) consider both projected attributes of the
queries and their predicates. The following definitions formally defines the CRA. Later we provide the effects of CRA in satisfiability
and implication problem.

Definition 4: Common aligned comparison (CAC) is defined as similar clauses of user and cache queries are compared with each
other i.e. project clause with project, from clause with from and similarly select clause with select clause.

Definition 5: Consider a cached query QS =< πQS,σQS , operandQS >, and a user posed query QU =< πQU,σQU , operandQU > over
the cached query (QS). Then a predicate attribute of user query (U) is said to be cross attribute knowledge (CRA) [5] if

• it is present in the cached query attribute (πS) and
• it is not in cached query predicate (σS)

 Journal of E -Technology Volume 3 Number 3 August 2012 137

From definition it is clear that CRA itself is not CAC, but it actually extends CAC by comparing cache attributes with query
predicates. The CRA contributes towards evaluation of Satisfiability and Implication testing as an implicit knowledge.

The CRA is a predicate attribute and it behaves differently when appears in conjunction with other predicate attributes. So here
we classify query predicate attributes into three categories: 1) The common predicate attributes (CPA), 2) Cross Attribute
Knowledge (CRA) and 3) Non-Common predicate attributes (N-CPA). This classification is formulated from conjunctive appearance
of these categories. Every conjunctive appearance contributes to the answer differently. Their contribution can be shown with
the examples given below (consider relation definition given in Example 1 for all examples given below):

Example 3: The data set of cached query (QS) is shown in Figure 2 (a, b, c, d) as white dotted line boxes. A user query
(QU1 =πAge, Salary, Exp, σ Salary >10K ∧ Salary < 30K ∧ Age < 70, Emp >) is shown as gray boxes over cached query (QS) in Figure 2 (b).
According to CRA definition, in this case the predicate attribute Age in user query (σQU1) is a CRA. The CRA is in conjunction with
a predicate attribute (CPA) Salary, which is common between cached query predicate (σ S) and user query predicate (σQU1). This

Figure 3. (a) 3-dimensional Semantic Space (b) Semantic sub-spaces

15
10

5
3

1

60,000

50,000

30,000
20,000

10,000
10

20
30

50
80

Salary

Age

V1V1

V2

Experience

CPA (Salary) implies cached query predicate i.e. (σQU1∧CRA). So it can be concluded from the data set as shown in Figure 2 (b) that
if CRA appears in conjunction with CPA and this CPA implies cached query predicate attribute, then the whole answer of user
query is present in semantic cache. This conclusion can be derived from lemma given below.

Lemma 1: Consider a cached query QS =< πS , σS , operandS >, and a user posed query with CRA is QU =< πU , σU , operandU >.
We define a new predicate attribute set σU0 = {σU - CRA}, (this can also be written as σU = {σU0 ∧ CRA}), Then we have a statement
(which needs a proof) as:

• If (operandU = operandS , and πU ⊆ πS and user query without CRA, < πU, σU , operandU >, is fully answerable from the cache,)
then QU =< πU, σU , operandU > is fully answerable from QS.

Proof: Suppose we have a user query QU1 =< πU1, σU 1, operandU1 > that is fully answerable from QS =< πS , σS , operandS > i.e.
pq = < πU1, σU 1 → S , operandU1 > and rq = null. Then let us consider another user query with new predicate set, QU2 =< πU1,σU2
, operandU2 > where the new predicate set is σU 2 = σU 1 ∧ CRA. So QU2 become

15
10

5
3

1

60,000

50,000

30,000
20,000

10,000

10
2030

50
80

Salary

Age

V1

Experience

 138 Journal of E -Technology Volume 3 Number 3 August 2012

 QU2 =< πU2, σ CRA(σU 1), operandQU2 >

As per our assumption σU 1→S then

QU2 =< πU2, σ CRA(σU 1→S), operandQU2 > QU2 =< πU2, σ CRA(pq), operandS >

Hence proved that any query that is answerable from semantic cache is also answerable while containing CRA in conjunction.

Example 4: Figure 2 (c) shows an incoming user query (QU2 =< πAge, Salary, Exp, σ Salary >10K^Age < 70, Emp >) over the cached query
QS shown in Figure 2 (a). The gray color filled box shows the available part (probe query), where lined patterned area represents
unavailable data or the remainder query. In this example the CPA (Salary) satisfies the cached query predicate. So any conjunction
of CPA and CRA, where CPA satisfies cached query predicate will be partially answered from semantic cache. Lemma 1 can be
easily extended for common predicate attribute satisfy case.

Example 5: A user query (QU3 =< πAge, Salary, Exp, σ Salary >10K^Age < 70, Emp >) posed over the cached query QS is shown in Figure 2
(d). The CPA (Salary) is unsatisfiable in this case. So the cached query QS does not contribute any answer to this query (QU3).
CRA behave according to CPA when it appears in conjunction with it. That is; (CPA ∧ CRA) implies when CPA implies, similarly (CPA
∧ CRA) satisfies when CPA satisfies and (CPA ∧ CRA) does not contribute if CPA does not satisfies. The other remaining predicate
attribute i.e. non-common predicate attribute (N-CPA) need special handling when it appears in conjunction with CPA or CRA. All
previous semantic cache query processing techniques treats N-CPA as non-satisfying condition. But our analysis and
experimentation shows that N-CPA can be treated as satisfying in many cases.

3.1 Semantic Space
In relational model every relation has semantically correlated attributes. This means that every attribute is related to each other,
for example salary and experience of an employee within a tuple are correlated because they belong to a single person. So queries
can be visualized as n-dimensional spaces. In figure 2 (a, b, c, d) queries are shown in 2-dimensional space, where if a query with
more than two predicate or select attributes can be visualized as n-dimensional space where n is the number of predicate or select

100

 90

 80

 70

60

 50

 40

 30

100

 90

 80

 70

 60

 50

 40

 30

QC ← πEname, Age σSalary < 35K , Emp > QU ← πEname, Age σAge < 70K , Emp >

Figure 4. (a) Cached Query (QC) (b)User Query (QU) over Cached Query (QC)

QU2 =< πU2, σU 2 ∧ CRA, operandQU2 >

According to relational algebra splitting law [12],

 Journal of E -Technology Volume 3 Number 3 August 2012 139

attributes. Below figure 3 (a) shows a query that has three predicate attribute, in 3-dimensional space.

When ever a new query is cached, it forms a semantic sub-space. These sub-spaces combined up to form a semantic space. In
above figure 3 (b) a new query creates sub-spaces V2 and V3 when it overlaps previously cached semantic space V1. Any
semantic cache query processing should find answer to an incoming query from this semantic space. As discussed earlier in
section 3, all previous semantic cache query processing techniques are based on common aligned comparison (CAC). In CAC ,
those techniques just compare descriptions of user and cached queries. So they neglect answers that are available in semantic
cache. But with CRA and handling N-CPA properly, maximum data can be retrieved from semantic cache. Our proposed algorithm
also consider semantic relevance of data, so a user query always falls in semantic space what ever its entrance dimensions are.
With this, user and cached queries with entirely different predicates can result to each other. The example below shows
semantically data extraction.

Example 6: Let us have a cached query QC shown in figure 4 (a,b) as white dotted line box. Results of an incoming user query
QU over the cached query QC is shown in figure 4 (b). Since there is nothing common between cached and user query predicates
but still QU can be partially answered from QC . Because data requested in user query is the same as cached query but their
predicate dimensions are different from each other. Also the predicate attribute Age of user query is CRA. But even without CRA,
results can be extracted from semantic space.

QC =< πAge, Salary, σSalary < 10K , Emp >

QU =< πAge, Salary, σSalary < 22, Emp >

AmendQ =< πEmpid, Salary < 10K ∧ Exp < 22, Emp >

ProbeQ =< πEmpid, Salary < 10K ∧ Exp < 22, Emp >

RemQ =< πEmpid, Salary < 10K ∧ Exp < 22, Emp >

Example 7: A user query QU (shown in statement ii above) over cached query QC (shown in statement i above) can be answered
even if user query (QU) does not contain CPA or CRA. We can not depict these queries in diagrammatical representations here. In
this example the predicate attribute Exp of user query QU is a N-CPA.

4. Satisfiability and Implication Based on Cross Attribute Knowledge

As proved in lemma 1 that if any conjunctive inequalities are satisfiable/implies then conjunction of these inequalities with CRA
remain satisfiable/implies. So pruning CRA from original conjunctive inequalities will also give correct results. This pruning of
CRA reduces complexity to O(|QU - CRA|3 + K) for finding implication and O(|QU ∧ QS - CRA|3) for computing satisfiability between
user query QU and cached segment QS.

Example 8: The user query QU1 in Example 2 over cached segment QS of Example 1 can be evaluated for satisfiability and
implication with σQU1 ∧ CRA. The directed weighted graph G(QU1 ∧ QS)- CRA of QU1 ∧ QS is shown in Figure 3(a). QU1 is satisfiable with
respect to QS even with QU1 - CRA as there is no negative weighted cycle.

In previous section, we classified predicates of a user and cached query. There are two types of possible partitioning (horizontal
and vertical) among user and cached queries. Our semantic cache query processing algorithm is based on all the combinations
of predicates (CPA, CRA, N-CPA), partitioning types (horizontal, vertical) and CPA implication & Satisfiability results. In this way
there are total thirty cases to be addressed.

Figure 6 below shows Semantic Cache Query Generator (SCQG) algorithm. An incoming user query QU and cached query QS
posed over semantic cache is passed as input to SCQG algorithm. These input queries are triplets, as discussed in definition 1.
End results of SCQG are an amending query, a probe query and a remainder query.

 140 Journal of E -Technology Volume 3 Number 3 August 2012

At the beginning of SCQG algorithm, the parser function (line 4) separates all information available in semantics of the cached
and user query. This information is then stored in global variables for further computation. The parser algorithm is shown in
Figure 5.

As in above examples 3, 4 and 5, it is clear that answer to a user query is highly influenced by predicate classification. Our
algorithm works accordingly to the appearance of respective predicate type. User posed incoming query and a cached query
selected from semantic cache are given as input to SCQG. Selection of candidate cached segment is an open question. We select
it in linear fashion. Our proposed algorithm generates available part (probe query) and unavailable part (remainder query). At line
4 parser function extract all semantic information present in both user and cached query.

First of all we find either incoming query and cached query are suitable for implication testing or not (line 5). This can be checked
by finding a predicate term (N-CPA (C)) that is in cached query but not in user query. If such term found then these queries are
not suitable for implication testing. With this pre-decision we save implication evaluation time.

After that we still check whether these queries are suitable for satisfiability testing or not. If a common predicated attribute (CPA)
is present then we do satisfiability testing. But still complete user and cached query predicates are not evaluated for satisfiability
rather pruned user and cached query predicates are evaluated. If satisfiability holds then incoming query is trimming into probe
and remainder queries otherwise in case of unsatisfiability only remainder query is generated. If incoming and cached queries
are not suitable for satisfiability testing then incoming query is trimming into probe and remainder query (line 9).

Salary V0-1

40

-20

20 40

-20 20

Salary V0

Salary

V0

Figure 5. (a) [QU1 ∧ QS] and G(QU1 ∧ QS) - CRA (b) Shortest Path Table

If user and incoming queries are suitable for implication testing, then we perform implication evaluation but with pruned
predicates (line 12). After that if implication does not holds then we perform satisfiability testing.

5. Implementation and Results

We implemented a prototype named Semantic Cache Query Generator (SCQG) to verify performance and correctness of our
proposed algorithm. Experiments are designed to compare the performance of proposed algorithm and Ren et. al. [2] query
processing technique. Our primary performance metric is response time while maximum data retrieval is an additional parameter
which we observed is highly influential in semantic cache system. Our prototype is implemented in Java and local and remote
data is stored in MySql database. Only precise data of cached queries is stored locally. Remote data server that is accessed
through internet contains over 3.3 million rows [13]. Local data server contains approximately 30% of the whole data (either
horizontally or vertically). Semantics of cached queries are kept in an extensible mark-up language (XML) file; in which each
block represent clauses of a conjunctive SQL query. We experimented 1500 queries.The presented results are obtained by
averaging the results of three runs of 500 queries over 50 stored queries. All 1500 queries are generated using random attributes
and predicates. These random attributes and predicates are generated by strictly following the schema definition and domain
values of the underlying database. All generated queries returns non-empty answer which shows their correctness. Ren et. al .
[2] computes probe and remainder query by evaluating user and cached query for implication results at first. It then evaluates
those queries for satisfiability if implication goes not hold. This technique has higher time complexity as it adds up implication
and satisfiability computational time.

Graph above shows time complexity comparison of traditional semantic cache query processing algorithm and SCQG. X-axis

 Journal of E -Technology Volume 3 Number 3 August 2012 141

shows the percentage of similarity between incoming user query and cached segment predicates. Y-axis shows time complexity
in milliseconds. Our algorithm compute probe and remainder query within constant time for cached and incoming queries that
have similarity below 20%. For exactly equal queries both traditional and SCQG takes equal time. But for all queries between 20
and 90 range are computed in polynomial fashion by SCQG. But traditional algorithm has high complexity for all queries despite
of any similarity concern. Trend-lines clearly show the efficiency of our algorithm.

We grouped our experimented quires accordingly to the branches of our algorithm (SCQG). Figure [7] shows computational

SCQG () {
1 Input: QU (user query), QC (cached query)
2 Output: AmendQ(amending query), ProbeQ(probe query), RemQ1 & RemQ2 (reminder query)
3 Global Variable: KA, A1, A2, CPA, CRA, N-CPA(C), N-CPA(Q), AmendQ, ProbeQ, RemQ1 & RemQ2
4 parser (QU);
5 if Exists(N-CPA(C)) {
6 if Exists(CPA {
7 if Satisfiable(QU, QS) {
 pq = < πQu ∧ σQs, operandQs >
 rq = < πQu ∧ ¬ σQs, operandQu >
 return pq, rq;
8 } else {
 rq = < πQu ∧ ¬ σQs, operandQu>
 return rq;
 }
9 } else {
 pq = < πQu ∧ σQs, operandQs >
 rq = < πQu ∧ ¬ σQs, operandQu >
 return pq, rq;
 }
10 } else {
11 if Exists(CPA) {
12 if Implies(QU, QS) {
 pq = < πQu, σQu ∧ σQs, operandQs>
 return pq;
13 } else if Satisfiable(QU, QS) {
 pq = < πQu, σQu ∧ σQs, operandQs>
 rq = < πQu, σQu ∧ ¬ σQs, operandQu >
 return pq, rq;
14 } else {
 rq = <πQu, σQu ∧ ¬ σQs, operandQu >
 return rq;
 }
15 } else {
 pq = < πQu, σQu ∧ σQs, operandQs >
 rq = < πQu, σQu ∧ ¬ σQs, operandQu >
 return pq, rq;
 }
}

Figure 6. Semantic Cache Query Generator Algorithm

 142 Journal of E -Technology Volume 3 Number 3 August 2012

comparison of queries that does not fall in implication relationship. Our algorithm take pre-decision by evaluating predicate
classification. The branch at line 10 of SCQG handle all such queries. Dotted line in graph above represent traditional algorithm.
SCQG is shown in solid line. Efficiency of our algorithm is better in maximum situations.

The branch at line 9 of algorithm SCQG handles queries that does not have a common predicate attribute yet other predicate
attributes exists. In this case it is known that both incoming and cached query satisfies each other, so our algorithm perform
query trimming in constant time. Figure [7] shows time complexity of traditional algorithm (dotted line) and SCQG (solid line).

Figure [8] shows comparison of traditional (dotted line) and SCQG (solid line) algorithms for quires that fall under branch at line
5 of SCQG algorithm. Where incoming query have larger answer set than cached query and they both posses some common

Figure 7. Experimental Results

Figure 8. Experimental Results

Traditional Algorithm

Semantic Cache Query Generator (SCQG)

Semantic Cache Query Generator (SCQG)

Traditional Algorithm

Semantic Cache Query Generator (SCQG)

Traditional Algorithm

(SCQG)

Traditional Algo

Number of Queries

0 20 40 60 80 100 120

1200

1000

 800

 600

 400

 200

 0

Nubmer of Common Predicate Attribute

1 2 3 4 5 6 7 8 9 10

 6000

 5000

 4000

 3000

 2000

 1000

 0

1200

1000

 800

 600

 400

 200

 0

1200

1000

 800

 600

 400

 200

 0

0 20 40 60 80 100 120 140 160 0 50 100 150 200 250

Number of QueriesNumber of Queries

T
im

e (
m

s)

T
im

e (
m

s)

T
im

e (
m

s)

T
im

e (
m

s)

predicate attributes. Time complexity of SCQG remains low in all cases because traditional algorithm sums up implication and
satisfiability complexity for satisfiable cases. Also for implication queries we prune incoming and cached query which reduces
time complexity require to compute implication relationship.

 Journal of E -Technology Volume 3 Number 3 August 2012 143

6. Conclusion

Efficient and effective solutions for satisfiability and implication problem are needed as it is important and widely-encountered
in database problems such as semantic cache. In this paper query predicates are classified based on their semantic meanings. An
algorithm for semantic cache query processing based on satisfiability and implication relationship among cached and user
query is proposed. The proposed algorithm computes the available and unavailable part from cache against the incoming user
query. Our algorithm process query evaluation while keeping in view the semantic classification of the predicates of the
underlying queries. This makes our algorithm time efficient over its predecessors.

References

[1] Halevy, A.Y. (2001). Answering queries using views, VLDB J., 10, p. 270-294.

[2] Ren, Q., Dunham, M. H., Kumar, V. (2003). Semantic Caching and Query Processing. IEEE Transactions on Knowledge and
Data Engineering, IEEE Computer Society, p. 192-210.

[3] Dar, S, Franklin, M. J., Jonson, B. T., Srivastava, D., Tan, M. (1996). Semantic Data Caching and Replacement, In: Proceedings
of 22nd VLDB Conference, Mumbai.

[4] Keller A. M., Basu, J. (1996). A Predicate-Based Caching Scheme for Client-Server Database Architectures, VLDB J., 5 (2), p.
35-47.

[5] Abbas, M. A., Qadir, M. A., Cross Attribute Knowledge: A Missing Concept in Semantic Cache Query Processing, 13th IEEE
International Multitopic Conference (INMIC 09), Islamabad Pakistan.

[6] GUO, S., SUN, W.,WEISS, M. (1996). On satisfiability, equivalence, and implication problems involving conjunctive queries
in database systems, IEEE Trans. Knowl. Data Eng. 8 (4) 604-616.

[7] Ullman, J. D. (1989). Principles of Database and Knowledge-Base Systems, 11. Computer Science Press.

[8] Klug, A. (1988). On Conjunctive Queries Containing Inequalities, ACM, 35 (1), p. 146-160.

[9] Rosenkrantz, D. J., Hunt, H. B. (1980). Processing Conjunctive Predicates and Queries, In: Proc. Conf. Very Large Databases,
p. 64- 71.

[10] Sun, X., Kamell, N. N., Ni, L. M. (1989). Processing implication on queries. IEEE Trans. Softw. Eng. 5, 10 (Oct.), 168-175.

[11] Floyd, R.W. (1962). Algorithm 97 Shortest Path, Comm. ACM, 5(6), p. 345, June.

[12] Hector Garca-Molina, Jeffrey, D. Ullman and JenniferWidom., Database Systems: the Complete Book, GOAL Series.

[13] Sample database with test suite, (2011). https://launchpad.net/test-db, Version 1.0.6 dated February.

[14] Tariq Ali, Muhammad Abdul Qadir, Munir Ahmad. (2010). Translation of relational queries into Description Logic for
semantic cache query processing, Information and Emerging Technologies (ICIET), International Conference on , 1 (6) 14-16

6, June, ICIET.2010.5625709.

[15] Tariq Ali, Muhammad Abdul Qadir, DL based Subsumption Analysis for Relational Semantic Cache Query Processing and
Management,10th International Conference on Knowledge Management and Knowledge Technologies 1â Ø A¸S3 September
Messe Congress Graz, Austria.

[16] Munir Ahmed, Sohail Asghar, Muhammad Abdul Qadir, Tariq Ali.(2010). Graph Based Query Trimming Algorithm for
Relational Data Semantic Cache, The International Conference on Management of Emergent Digital EcoSystem, MEDES.

[17] Ahmad, M., Qadir, M. A., Ali, T., Abbas, M.A., Afzal, M. T. book chapter: Semantic Cache System, in the book Semantics,
eds. (M. T. Afzal).

[18] Abbas, M. A., Qadir, M. A., Ahmad, M., Ali, T., Sajid, N. A. (2011). Graph based query trimming of conjunctive queries in
semantic caching, Emerging Technologies (ICET), 7th International Conference on, p. 1-5.

