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ABSTRACT: Safety critical applications, such as explosion prediction, require continuous and reliable operation of
Wireless sensor networks (WSNs). However, validating that a WSN system will function correctly at run time is a hard
problem. This is due to the numerous faults one may encounter in the resource-constrained nature of sensor platforms
together with the unreliability of the wireless links networks. A holistic fault tolerance approach that addresses all fault
issues does not exist. Existing fault tolerance work most likely misses some potential causes of system failures. In this paper,
we propose an integrated fault tolerance framework (IFTF) that reduces the false negative by combining a network
diagnosis service (component/element level monitoring) with an application testing service (system level monitoring).
Thanks to these two complementary services, the maintenance operations will be more efficient leading to a more dependable
WSN. From the design view, IFTF offers to the application many tunable parameters that make it suitable for various
application needs. Simulation results show that the IFTF reduces the false negative rate of application level failures to
60% with an increase of 4% in power consumption (communication overhead) compared to using solely network diagnosis
solutions.
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1. Introduction

Our work focuses on the issue of fault tolerance in Wireless Sensor Networks (WSNs). A WSN consists of spatially distributed
autonomous sensors to monitor physical or environmental conditions, such as temperature or sound, and to cooperatively
pass their data through the network to a main location. Sensor nodes are resource-constrained with limited processing power,
limited memory and restricted energy. Applications over WSNs are growing quickly. However these emerging applications for
WSNs do not limit themselves to a single function called “sense and send” with trivial local data processing tasks, but also
include more complex collaborative decision-making applications [1], including aerospace, automation, medical monitoring,
natural event monitoring, object and behavior tracking, monitoring product quality, combat field reconnaissance, military and
mission-critical systems. While WSNs have significant potential in a range of varied applications, they also pose
many challenges in terms of fault tolerance.

1.1 Problem Statement
Fault Tolerance in WSN is a crucial feature due to the diverse types of faults that may occur. The important question here
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is: which elements or which system inconsistencies must be considered by the diagnosis and debugging tools? The overall
diagnosis for each individual system component is not possible due to the high energy consumption that will be required.
Thus, diagnosing and fixing efficiently a few selected set of fault types can improve the system dependability. However, it
couldn’t address four major issues that will challenge the reliability of a system at runtime: (1) The positive assessments from
diagnosis tools doesn’t assure the enforcement of application semantics, (2) The negative assessments from diagnosis tools
doesn’t translate directly to the collapse of higher level applications due to the fault tolerance nature of the system. For
example, an individual node failure may not necessarily poke a reliability hole in higher level applications, (3) The environmental
changes, the upgrades, the reprogramming and other conditions changing may lead to unexpected system failures at run-time,
which will ultimately jeopardize the reliability of the system, (4) The sensor nodes can lose synchronization and their applications
can easily reach arbitrary states due to the improper system configuration that lead to the collapse of certain design assumptions
at run-time.

1.2 Fault types in WSN
Failures in wireless sensor networks can occur for various reasons. Sensor nodes are fragile, and they may fail due to
depletion of batteries or destruction by an external event. In addition, nodes may capture and communicate incorrect readings
because of environmental influence on their sensing components. Links are also failure-prone, causing network partitions
and dynamic changes in network topology, leading to delays in both data and communications. Links may fail when permanently
or temporarily blocked by an external [2] or environmental condition. Packets may be corrupted due to the erroneous nature
of communication. When nodes are embedded or carried by mobile objects, nodes can be taken out of the range of communication.
WSNs are also prone to malicious attacks, such as denial of service, injection of faulty packets, leading to unexpected
behavior of the system and so on. Other than these predefined faults or failures (i.e., with known types and symptoms), many
times the sensor networks exhibits silent failures [3] that are unknown beforehand and highly system-related. For example, the
weak correlation between radio-on time and number of transmitted packets of a node suggests inconsistency on that node.

In our approach, we address two classes of faults. First, faults which lead to node and link failures (predefined faults). Second,
faults which lead to system dysfunctionalties or application level failures. In this way, our approach allows to (1) diagnose
network faults which are likely to happen in WSN deployments; (2) quickly assess the impact of faults on the whole system
behavior; (3) to improve the fault detection rate by detecting some hidden causes of faults (silent or predefined faults); and
(4) to validate the application after code upgrades or any changing to the operating conditions.

Figure 1. Coal mine explosion WSN application

Explosion
Event

Green
moss(S1)

Light
(S2)

CO2
(S3)

Sudden
heat (S5)

Sparks of
light (S6)

Methane
(S4)

Sparks of
fire

Oxygen



    130        Journal of E -Technology  Volume  4  Number  3   August   2013

1.3 Related Works
Most fault tolerance solutions fall into two categories: testing of WSN applications and fault diagnosis of low-level system
components. Testing is an important means to verify the correctness of an application. Debugging WSN applications is a
complicated process and many different approaches exist. T-Check [4] finds bugs by exploring program states extensively via
simulations. Marionette [5] is source-level debugger allowing access to source-level symbols. Sentomist [6] uses data mining
techniques and relies on statistics and learned good behavior for outlier detection. However, all of these debugging mechanisms
are either used prior to the deployment or in a post mortem manner, where data about the application is collected and then
analyzed offline and where the size of the test suite is not as critical. Therefore, these techniques do not provide a way to
monitor the application behavior at run time. Application level testing, which assesses the whole system end-to-end, receives
very little attention. [7, 8] propose a testing methodology of WSN application behavior at run time. These solutions provide
a positive affirmation of correct application-level operation. However, they don’t identify the reasons of the system abnormal
behavior. In contrast, Network diagnosis approaches are important to identify the network, node and data anomalies at run
time. With Sympathy [9], a set of metrics including node connectivity and data flows are transmitted periodically to a central
node to identify the fault reasons of packet loss in data collection applications. PAD [10] employs a packet marking algorithm
that constructs and maintains a probabilistic inference model to infer the root causes of some abnormal phenomena. Some
approaches [11- 13] rely on node collaboration on the basis of periodic heartbeats in order to detect some deviations from
expected behavior. On the basis on our literature survey of related research work, a framework that addresses all fault issues
one may encounter in a WSN doesn’t exist. Thus, our approach aims at providing a complete picture of the system health
with possibility to get detailed reports about low level system components faults.

The remainder of this paper is organized as follows. Section II presents a motivating application scenario. Section III presents
IFTF architecture. Section IV gives some fault scenarios. Section V evaluates the proposed design. Section VI concludes the
paper.

2. An Application Scenario

2.1 Needs for a WSN application for explosion prediction
Let us consider an underground coal mine that reports from time to time that some explosions happen. Through inspections,
the major cause of these explosions is due to mixing enough amount of oxygen with methane in presence of a tiny spark of fire
(harsh environment). Normally, the mine can generate plenty of gases, such as methane and CO2, and a negligible amount of
oxygen. But due to some green moss growing in the mine, a photosynthesis process can produce oxygen when the sunshine
gets through the holes on top of the mine. The danger of this situation can be reduced by setting up a wireless sensor network
to give an alert enough before an explosion occurs. The system must not use oxygen sensors directly because if it can detect
O2, it might be already too late. Instead, the system must detect the photosynthesis process to have enough time to take the
necessary precaution steps. In such an application, six types of detection sensors are required (Figure 1): the presence of
green moss (S1), the sunshine (S2), the CO2 gas (S3), the high concentration of methane gas (S4), the sudden generated heat
(S5) and the sparks of light (S6). The photosynthesis process is detected through the sensors S1, S2 and S3 and the spark of
light through the sensors S5 and S6. The explosion can then be detected when the three events take place: the photosynthesis
process, the high concentration of methane and the spark of light.

2.2 Problems after system deployment
The deployment of WSN saves many times the life of miners and avoids many potential damages in the mine and the nearby
villages. However, the complex fault scenarios of wireless sensor networks (WSN) lead to miss reporting some real explosions
and other times to generate false alarms explosion which make the rescue squad uselessly dispatched to the mine after every
report of explosion events.

2.3 Need for fault tolerance solution with IFTF features
Hence, an efficient diagnosis tool is required to maintain the network performance. Infield investigations conduct to locate the
most frequent failure reasons which are node failures due to energy depletion and link problems. The diagnosis tool contributes
to alleviate the problem, but does not guarantee the correct functionalities of the system at runtime. Consider the case where
the network reports of an oxygen event without the detection of green moss. From the application semantics, an oxygen event
can only happen if there has been a green moss event as one of its necessary triggers. Or the case, where the network reports
the photosynthesis process during night. From the application semantics, the photosynthesis process (which triggers the O2
event detection) must only happen during daytime. In addition the system may generate false alarms even though the
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diagnosis tool shows positive assessments for the node and link states. Thus, it is required to identify efficiently other causes
of failures that highly affect the correct application functioning. Hence, an application testing tool is introduced to complement
the diagnosis tool functionalities. This requirement is common to many collaborative decision making applications dealing
with the complex fault scenarios of wireless sensor networks. Thanks to these two complementary and orthogonal tools, the
maintenance operations will be more efficient leading to a more dependable WSN system. This is the basic idea of our solution
that is called IFTF (Integrated Fault Tolerance Framework).

3. IFTF Architecture

IFTF system is built around the following three components: the IFTF manager, the testing subservice and the diagnosis
subservice (Figure 2).

Figure 2. IFTF Software Architecture

3.1 IFTF manager
IFTF manager takes control of triggering the two subservices according to a hard-coded schedule, on demand of the
administrator or based on the result of the underlying subservice. In addition, this component ensures the synchronization
between nodes to perform the tests at the same time.

Interfaces: IFTF manager provides interfaces to interact with the application and the two subservices. First, a configuration
command is provided so that the application can determine and adjust the subservices schedules anytime. Second, an
interface is provided to get the current node status, e.g. “Normal operation” and “test mode”.

3.2 Application testing Subservice
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3.2.1 Interfaces
The testing subservice uses a clearly defined interface to interact with the application and the framework manager.

• Configuration command is provided to the application layer to determine and to adjust the service parameters (test cases,
test mode, urgent reading, lowest valid reading, and highest valid reading). The first three parameters are application specific
and the second two parameters are sensor specific but are influenced by the deployment. The test mode can be blocking
mode, switching mode or abandonment of the test in case of urgent reading.

• Start command is provided to the IFTF manager to trigger a particular test. It sets the node status to the test mode. By default,
it triggers the “end to end ” test.

• Stop command is provided to the IFTF manager to cancel a specific test. It changes the node status to the normal mode
operation.

• Read command which is a call to get a new reading to the application. Depending on the current status node, the application
receives back the real or the virtual reading. In case of normal mode operation, the application receives a real reading with a
validity field. The validity field indicates whether the reading is valid or not and it is up to the application to filter messages
based on its own policy. For example, the application may wait for several erroneous readings before alerting the server or it
may alert the server on the first erroneous readings and send any more until the error is fixed. This field allows a significant
decrease in network overhead.

• Send command is provided to the application to send its output values in a network packet. Depending on the current node
status, it can be an application generated or a test packet.

• Receive command lets the application receiving the test and effective packets transparently.

• Report is a provided interface to notify the application about the test result.

3.2.2 Testing subservice components
• Input Handler component: the input handler component manages the inputs directed (provided) to the application. Depending
on the current state mode and the test mode, the input handler polls either the physical sensors (sensors drivers) or redirects
the request to the test data or virtual sensors. These virtual sensors have a buffer to store test readings and can also be
sampled. This component can also deal with several different virtual sensors, e.g. temperature and green moss presence.
Depending on the test mode selected by the application, when a node starts the test checks, this component can stop the
sampling from real sensors, or continue sampling the real sensors even in test mode or abandon test in case of sensing of an
urgent reading, e.g. the high methane concentration.

• Communications handler component: the communication handler tags the application messages with current state node.
This allows distinguishing the real packets from the test packets. Also, it allows verifying the state of the neighboring nodes
when checking the tag on receiving the application messages.

• Test checker component: this component verifies the test output against the expected output.

3.3 Network Diagnosis subservice
Our diagnosis subservice targets two failures that are likely to happen in WSN deployments which are the node failure due to
energy depletion, and the link failure due to poor connectivity with neighbors. Failure detection phases: Our subservice
leverages the insights gained from existing distributed approaches [11-13] and uses a similar two-phase detection algorithm:
the local detection phase and the consensus phase.

• In the local detection phase, each node monitors its neighbors (or a specific number of neighbors) and waits for a certain
period of time for a “heartbeat” message. To avoid the impact of transient failures [13], the period must be large enough to
allow transmitting n1 messages from each selected neighbor. Thus, only when n1 messages are missed from a particular node,
will that neighbor node be considered suspicious.

• In the consensus phase, the monitoring node corroborates its findings with other neighbors. This phase is particularly
important to decrease the false alarm rates. Again, the period of the second phase must be large enough to allow exchanging
n2 messages before deciding the final verdicts and sending them to the application layer.

3.3.1 Diagnose failure root cause
The root causes reported by the diagnosis subservice are: battery energy depletion, link failure, and unknown failure.
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Distinction among them is based on remaining energy information, and link quality indicators. The remaining energy is
transmitted by each packet sent by a node. The link quality between two neighbor nodes is computed by a node upon
receiving a packet from each of its neighbors. If the remaining energy is below a low battery threshold level, the first cause is
the reported root cause. Similarly, if the link quality is below to a predefined link quality threshold, the link failure is the
reported root cause.

3.3.2 Interfaces
The diagnosis subservice provides several well defined interfaces to interact with the application and the framework manager.

• Configuration command is provided to the application to determine and to adjust the service parameters (n1, n2, neighbors
Number, low battery threshold, link quality threshold).

• Start command is provided to the IFTF manager to start the diagnosis communication.

• Stop command is provided to the IFTF manager to stop the communication.

• Report is provided to the application layer to get the report information.

4. IFTF and Fault Mine Scenarios

To illustrate our approach, let us return to the mine explosion WSN application. The application provides several types of
services (functionalities) such as the explosion prediction, and so on. The main goal of the testing service is to allow us to
verify that the application can provide its services as expected.

4.1 Scenario 1: Oxygen detection at area X at daytime Service Description
A cluster head node notifies the gateway about the event O2 detection in case of receiving positive readings from the green
moss sensor (S1), CO2 sensor (S2) and the sunshine (S3) sensor and while the time is daytime (as the photosynthesis process
happens during daytime only) (Figure 3) . Now, let us see which types of faults that each subservice can detect in each of the
following cases:

• Case 1 : Node or sensor crashes
If S1 crashes the diagnosis subservice detects this failure and sends an alert to the gateway when the reporting time fires. The
testing subservice doesn’t consider it as a problem, even if it is able to detect it, as it does not affect the O2 detection event.
However, the crash of S2 would be considered as a problem for the two subservices because in this case the node or  sensor
failure will affect the O2 detection event.

Figure 3. Area X topology
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• Case 2: Location error
Suppose that the location of S3 is changed to another area. Such a location change leads to a failure as it is against the
application’s requirements. In this case, the testing subservice signals that there is potential problem (an application level
failure) to the gateway. However, for the diagnosis subservice nothing goes
wrong!!

• Case 3: Clock drift
Case3 is another semantic application failure, suppose that the cluster head receives positive readings at day from the three
types of sensors (S1, S2 and S3) that affirm that three events that lead to the photo have occurred. In such case, the network
must report the O2 event. However, due to a clock drift on the cluster head the network doesn’t report anything because the
time at cluster head indicates a wrong time (a night time) to the photosynthesis process. Although, the assessments of the
diagnosis subservice here were positive (node responsiveness) the testing service is able to detect incorrect behavior of the
O2 detection service.

4.2 Scenario2: Explosion Detection service
Service Description: A cluster head node notifies the gateway about the eventual mine explosion upon receiving positive
affirmations about the three events: O2 detection service, high methane concentration service and sparks of fire detection
service (Figure 1). We can apply the same fault scenarios as Scenario1. However, this time the service’s requirements increase
and more complex operations need to occur (collaborative decision making, messages passing, interaction between nodes,
and so on). However, the more the complexity increases and the application functionalities are distributed among the nodes
the more the benefits of our approach will be. This is mainly due to the faults isolation process that allows triggering efficient
tests to pinpoints the potential reasons of a potential failure.

5. Evaluation

To evaluate the performance of our approach, we have decided to use the TinyOS 2.x [14]. TinyOS is a free and open source
component-based operating system and platform targeting wireless sensor networks (WSNs). What motivates to use TinyOS

Figure 4. On average, IFTF uses 4% more messages than using solely diagnosis
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False negative rate =
Number undetectable fires

Number generated fires

is its portability to many hardware platforms  and its programming structure based on components and interfaces which
accommodate the IFTF layer structure. Then, the performance of our solution can be easily studied using the TOSSIM tool
[15]. TOSSIM is a TinyOS simulation tool which simulates WSN physical and link layer features accurately. This allows
validating the solution under realistic WSN deployment conditions.

5.1 Memory overhead
One main concern of our approach is memory cost. IFTF resides on every node of the network. The required memory of the
diagnosis subservice for TinyOS implementation on TelosB platform is approximately 13 Kbytes in ROM and 1 Kbytes in
RAM. Implementation of testing subservice involves mainly a mapping table to store virtual readings, a timer to schedule
tests, handlers to manage the inputs and outputs tests. The required memory for the testing subservice using TinyOS
implementation on TelosB is approximately 20 Kbytes in ROM and 3 Kbytes in RAM.

5.2 Energy Overhead
Another important performance parameter is the energy consumption. Since network overhead consumes three times more
energy than computations [16], only, the radio communication cost was considered in our study. So, we have studied the
number of messages for energy overhead estimation. To study the impact of redundancy, we vary the number of nodes per
area or cluster. The testing service trigger tests based on a hard coded timer and on a rotation basis (a different cluster/area
is picked each time a test should be run).The experiment lasts 10 minutes in which the testing subservice runs a test for the
sparks of fire service and the diagnosis subservice runs a test every minute. We have measured the message overhead of the
IFTF approach and the results are shown in Figure 4. We see that the IFTF approach introduces on average a message
overhead of 4% more than sing solely the diagnosis subservice. The message overhead of the testing service increases
slightly when the number per area or cluster increases due to the multi-hop communications overhead, in contrast of the one
hop communications in the diagnosis subservice.

5.3 False Negative rate
The detection accuracy of our approach is studied for the sparks of fire service by calculating the false negative rate of
diagnosis service and IFTF solution according to the following formula (1):

Figure 5. False negative rates of IFTF and diagnosis services are similar (isolated failures)
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failures. The first model captures independent node failures and represents the effect of local environmental effects. The
second model captures location error or mobility error. To simulate the isolated failures, randomly selected nodes were
disconnected at a random time governed by a Bernoulli Process. Disconnection is simulated by deleting all links to the rest of
the network in TOSSIM’s radio model. To simulate the mobility error; we change the location of randomly selected nodes at
a rate of one node per second in adjacent clusters. The mobility of a node is considered as an application level failure when
the number of nodes in a cluster becomes less than two. The experimental results show that false negative rate for the
diagnosis service and the IFTF approach are similar for the isolated failures for different size of clusters (Figure 5). In contrast,
we see in Figure 6 that the diagnosis service has a high false negative rate and cannot guarantee the system’s robustness.
This occurs because when a node is moved to an adjacent cluster, it can still send heartbeats to its neighbors, so the diagnosis
service considers it operational. However, since the IFTF approach tests the fire detection ability of each cluster, it can catch
such errors without using extra mechanisms to explicitly detect location errors. On average, the IFTF misses 60% fewer
application level failures than the diagnosis service. When the node redundancy reaches 5 nodes per clusters, IFTF does not
incur any false negatives.

6. Conclusion

Traditional fault tolerance approaches focus on certain states of system inconsistencies. Our approach allows system monitoring
at different levels without significant extra overhead. In addition, it gives more valuable information to the network administrator:
Which faults need to be recovered quickly and which faults can be ignored even temporarily.
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