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Use of NLPCA for Sensors Fault Detection and Localization Applied at WTP
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ABSTRACT: Principal Components Analysis (PCA) has been intensively studied and is widely applied in industrial
process monitoring. The main purpose of using PCA is the dimensionality reduction by extraction of the feature space that
still contain the most information in the original data set. Despite its success in this field, the most important obstacle faced
is the sensitivity to noise, also the fact that the majority of collected data from industrial processes are normally contaminated
by noise makes it unreliable in some cases. To overcome these limitations, several strategies have been used. One of these
has been interested to combine the robustness theory with PCA method, such theory sonsists in robustifying the existing
algorithms against noise or outliers. Fuzzy Robust Principal Components Analysis (FRPCA) is one of the results for such
combination that acheive better result compared with the classical method. In this work the RFPCA method is used and
compared with the classical one to monitoring a biological nitrogen removal process. The obtained results demonstrate
the performances superiority of this method compared with the conventional one.
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1. Introduction

With the increased demand on water supply over the last century due to population growth, the adoption of new technology
to ensure water quality at lower cost is essential. In a typical process of water treatment for drinking purposes, raw water from
various sources is chemically treated, filtered and disinfected. The type of treatment it then undergoes depends on the source
and the quality of its water. In this field, the searched efficacy in terms of effluent quality and economies of treatment costs has
made necessary the modeling, identification and monitoring of biological treatment processes. The drinking water treatment
processes allow well and truly significantly improve the quality of raw water, the classical complete treatment of water is
performed in several steps: oxidation, clarification and disinfection, whose some not necessary for the cleanest waters. These
water treatment processes must meet specific conditions that will ensure their efficiency. Every element must be taken into
account in the correct process operation of the treatment chain, the sensors in the heart of metrological process (to measure:
the flow, pressure, level, temperature, pH, oxygen level, etc.) have become now ubiquitous, at the same time, the steps: quality
and research zero fault, must ensure the efficiency of the process. Indeed, in order to operate correctly this control system, the
fault diagnosis is an essential element for any proceeding of automation process. The objective of this paper, is to validate a
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data collection delivered by the sensors useful to the control water treatment plant using a diagnosis procedure based on the
NLPCA, we will interest by an application of sensor fault detection and localization particularly on the station of Azzaba,
situated in the northeast of Algeria,the principal component analysis is then a modeling tool used to perform the monitoring.
In order to construct a model, we use a data matrix constitutes the measures data collected by sensors available in the
installation, the PCA is then a statistical technique which consists simultaneously to identify the linear relations between the
variables of the process and to analyze and reduce the dimensionality of big size dataset. The PCA consists to replace
variables set by new variables uncorrelated two to two, of a smaller size and maximum variance, these new variables called
principal components.

2. Principal Component Analysis

The Principal Component Analysis (PCA) is a method of data analysis family and more generally of multivariate statistics,
which consist to transform a variables interrelated (called “correlated ” in statistics) into new linearly uncorrelated variables
from each other. These new variables are called “principal components” or axes. It allows the practitioner to reduce the
information to more limited number of components compared to the initial number of variables. It is both a geometric approach
(representation of variables in a new geometric space according to maximum inertia direction) and statistical approach (search
independent axes explaining the most variability “variance” of data). Then, when we want to compress a set of random
variables, the first axes of the PCA are a best choice, in terms of inertia or explained variance.

We called principal axes the direction axes of the eigenvectors of the covariance matrix of the process variables, where the first
axis that is associated with the biggest eigenvalue and the second axis orthogonal to the first, is associated with the second
biggest eigenvalue...etc, and then the last axis is that associated with the lowest eigenvalue. The two or three first principal
axes constitute the directions of the reduced space “Principal space” which belongs to the original data space.

This approach is based on the projection of the original data collection on the new lower-dimensional space, and from the
projection matrix, we can estimate our original information while minimizing the estimation error, in this sense the PCA can be
considered as a minimization technique of the estimation error, otherwise, the estimated data must be approximately near to the
original values.

However, the principal component analysis is a method of reducing the number of variables necessary to represent geometrically
a phenomenon. From a collection of n objects (individuals) in a space of m descriptors (variables), its goal is to find a
representation in a reduced space of dimensions (  << m) which preserves “the best summary.” the reduction is only possible
if the original variables m are not independent. This notion of independence is measured using the correlation coefficients, it
should that these coefficients are not null. PCA is a linear method called factorial, because the reduction is not a selection of
the basic variables but by a definition of new variables (principals) obtained by combining the original variables. The
mathematical tool associated with the PCA method is therefore based on linear algebra and calculation matrix.

Mathematically, we can interpret each variable as a vector of Rn. We denote x1, x2,. . . xm these m vectors of Rn. We can also
save the data in a matrix X of size (n ∗ m) with a coefficient xi j representing the ith position of the jth variable. The column
vectors of X are x1, x2,. . . xm and for j =1. . . m, xj ∈Rn represents the jth variable measurements at all instants. Similarly, we
denote e1, e2,. . . en the line vectors of X and i =1. . . n, ei ∈ Rm represent the time measures at sample i of m variables. This data
contains the measurements of variables (measuring temperature, flow,) at different instants (called events). When there are
only  variables that it is easy to represent the dataset on a graph to  dimensions. The tracing can be deduced:

- The absence of correlation between the variables
- The existence of a strong link
- The emergence of sub-populations or groups of variables.

If there is m variables measured and n events by variable, we search a feasible graphical representation (that is to say, on a
plan) the more faithful to reality as possible (that is to say, which minimizes the distortions). For this, we use an orthogonal
projection on a selected plan in order to maximize the square mean of the distance between the variables.

2.1 Mathematical calculation
We suppose X, a matrix of m variables and n number of observations for each variable. Where, the number of lines represents
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the data dimension. Beforehand, to make the independent result of the used units for each variable, a pretreatment is essential
to center and reduce the variables. For this we assume, that we subtract from each column of the start set the mean µj and we
divide on the standard deviation σj. We then obtain a new normalized matrix Y with its mean centered at zero. The calculation
of the PCA is defined in this way: Each column xj of the new matrix centered reduced is given by:

Yj =
Xj − Mj

σj

Once the data has been centered and reduced, the data correlation matrix, Σ, can be calculated as:

Σ = N − 1
1 Y TY

To calculate Y YT returns to produce a matrix containing the sums of the deviations. Y TY multiply by 1/(n −1) can obtain the
matrix Σ where the elements located on the diagonal correspond to the variance σij  and other to the covariance σi σj. Σ is often
called the covariance matrix of X. The eigenvalues of the covariance matrix Σ represents the projections variances t of data on
the directions shown by the eigenvectors pi (i =, ....m). In conclusion, the direction in which the data projection variance of the
vector X is maximal, is represented by the eigenvector pi corresponding to the maximum eigenvalue. The sub-vector space of
 dimension which ensures the maximum dispersion of observations is defined by an orthonormal basis consisting  eigenvectors

corresponding to the biggest eigenvalues of the matrix Σ. It is therefore possible to reduce the dimension of the data
representation by retaining the previous expression only the tj pj (j =1,. . . ) terms associated with the biggest eigenvalues . 
The PCA therefore determines an optimal transformation of the data matrix x:

T = XP  And  X = TPT

Where T ∈Rn×m et P ∈ Rm×m are the matrixes of the principal components and the corresponding eigenvectors outcome from
the spectral decomposition of the covariance matrix Σ. the relations (3) find their interest when we reduce the dimension
representation space. Once the number  < m components to retain is determined, the data matrix X can be approximated. For
this, the eigenvectors matrix is partitioned as:

P = PP where P Σ Rn×

The first  eigenvectors P makes the principal space while the (m − ) last eigenvectors P makes the residual space. From the
equation (3), we then can explain the part of the data explained by the first  eigenvectors and the residual part explained by
the remaining components:

X = XC where C = PPT

and
E = X − X = X(1 − C ( ) )

The identification of the PCA model is therefore to estimate its parameters by the decomposition on eigenvectors and
eigenvalues of the matrix Σ and to determine the number  of principal components to retain. In the absence of noise on the
measures, the null eigenvalues of Σ indicate the existence of linear relations between the components of X. In the presence
of noise on the measures, the smaller eigenvalues compared to the other indicate the existence of linear or quasilinear relations
between the different components of X. we see here the key role played by the  number components in determining the
relations of redundancy between variables and also the difficulty of determining this structural parameter.

3. Non Linear Principal Component Analysis

The principal component analysis has interesting properties for industrial processes monitoring. Unfortunately, in the industry,
the most physical systems has a non-linear behavior and then the linearity property of the linear PCA, Figure (figure 2), pose
always the problem of the inaptitude of this method to represent nonlinear data, since it is a linear projection and only the
linear dependencies between the variables can be revealed.

Hastie [1] proposes an approach for a generalization of PCA in the nonlinear case based on the principle of principal curves,
this generalization is performed by a projection of data on curves instead of lines. Kramer [2] proposes the extension of the
non-linear principal component analysis (NLPCA) using a neural network with five layers whose the weights are calculated
by learning by minimizing the squared error between the network inputs and outputs.
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Figure 1. Principle of linear PCA

This section is dedicated to non-linear extension of PCA (NLPCA) which allows to extract the linear and nonlinear relations
between variables. The figure (Figure 3) shows the principle of the general PCA, the overall model is composed of two sub-
models: a sub-model of data compression projects the data of dimension m into principal components space of dimension 
and the second sub-model performs the reverse operation, namely a projection of  R  to Rm. Thus, in the linear case these two
sub-models are characterized by the eigenvectors orthogonal matrix of the data correlation matrix P and the overall model is
given by the projection matrix C  = PP T.

In the nonlinear case, the goal is to find two non-linear functions Ψ and Φ. Φ is the nonlinear model of compression to
calculate nonlinear principal components from the data, and Ψ is the decompression nonlinear model for estimating the
original variables from the nonlinear principal components given by the compression model, the projection model gives from
the data matrix X the principal components T and the non-linear model allows to give the matrix X an estimate of X, based on
principal components T. In this case, we can write:

Figure 2. Difference between linear and nonlinear PCA

T = Φ(X)

x1

x2

x1

x2

(7)
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Where Φ is a non-linear function equivalent to the eigenvectors matrix “P” of the linear PCA. While:
X ∈Rn×m the data matrix, and T ∈ Rn×  the principal components matrix. The decompression model provides an estimate x of x
from the nonlinear components t (such as x and t are the lines of X and T, respectively):

x = Ψ(t)

Thus, the data matrix X containing m variables can be expressed as a function of  first nonlinear components.

Figure 3. Basic principles of PCA model

And then the data matrix X can be represented by the estimate X plus the estimation error X (residual matrix) :

X = X + X = Ψ(T) + E

Where T = Φ (X) is the nonlinear principal components matrix such as T = [T1, .....T ] and E the residuals matrix. The problem
is then to identify the nonlinear projection functions Φ and Ψ. Where X ∈Rn×m the data reconstruction matrix with X = Ψ(t),
Ψ represents the nonlinear function of reconstruction or generation. We note E(k) the squared error obtained from the
resulting errors on m output neurons, by a learning algorithm of neural network based on the principle of optimization, we
search to minimize, by nonlinear optimization methods, the following cost function:

|| X(k) − X(k)2|| =min
k =1

N

Σ min
k =1

N

Σ || X(k) − Ψ(Φ(X(k)) ||2

4. Neural Approach of NLPCA

The nonlinear principal component analysis (NLPCA) based on neural networks, has known a considerable progress and
interest in recent years and has been widely used in the field of diagnosis. In this section, we will present a neural network with
five layers for extracting nonlinear principal components.

4.1 Auto-associative neural network
Non linear principal component analysis (NLPCA) which is an extension of linear PCA, has a particular interest in the last
years. Most of researchers use a neural approach to calculate the NLPCA model proposed by Kramer [2]. In the case of a
single non-linear principal component, the structure of such a network is illustrated in figure (Figure 4). To make the NLPCA,
the auto-associative network contains three layers between the input and output variables. A transfer function Ξ1 makes a
projection of the input column vector of dimension m, to the first hidden layer (coding layer), represented by h j   (j = 1,..., r) a
column vector of dimension r (r is the number of neurons in the first hidden layer):

(x)

h j   = Ξ1 ( Σ
i = 1

m
vij   + bj   )

(x) (x)(x)

V (x) is the weight matrix of dimension (r × m), is a vector containing the r bias parameters. The second transfer function Ξ2
projects the outputs data of the first hidden layer (coding layer) to “bottleneck layer” containing a single neuron, which

Projection

(Extraction)

Reconstruction

(Generation)

ReconstructionProjection
X∈Rn × m

(g) T∈Rn × l X∈Rn × m
(f)

(8)

(9)
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represents the nonlinear principal component t. The transfer function Ξ1 is generally nonlinear (using the hyperbolic tangent
function or sigmoid function), while the Ξ2 function is the identity function (Ξ2 (x) = x):

t = Ξ2 (Σ
i = 1

r
wj   hj   + b      )(x) (x) −(x)

Next, the transfer function Ξ3, which is a nonlinear function, projects the data from t to the latest hidden layer (decoding
layer): h j   (j = 1,..., r) where r represents the number of neurons in the third hidden layer:(t)

h j  = Ξ3 (wj   t + bj  )
(t) (t) (t)

The last transfer function Ξ4 is the identity function which projects the outputs data from hj   to x: the output column vector
of dimension m:

(t)

xi = Ξ4 ( vij  hj  + bj   )
(t) (t) (t)Σ

i = 1

r

The cost function E = || X(k) − X(k)2 ||  is minimized to find the optimal values of the V (x), b(x), w(x), b−(x),w(t) , b(t), v(x), and b−(t)

It should be noted that the extraction of principal components can be done in two ways. The first is to extract the principal
components sequentially with a single neuron in the middle layer “bottleneck layer” (sequential NLPCA) (Figure 4). The
second is to extract the desired components simultaneously inserting the neurons in the middle layer (NLPCA parallel or
simultaneous).

Figure 4. Auto-associative network with a five layer for extracting one nonlinear principal component
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5. Sensors Fault Detection based on Spe Indicator

Once the NLPCA model is obtained, we present in this section its use in sensor fault detection. The indicator of detection SPE
(Squared Prediction Error) performs the fault detection in the residual space. At sample k, is given by:

(12)

(13)

(14)
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SPE(k) = e(k) e(k)T

e(k) = x(k) − x(k)

Where, e (k) represents the vector of estimation errors. The process is considered abnormal operating (presence a default at
the sample k) if:

SPE(k) > δ 2α

Where α 2 is the upper control limit of SPE(k), determined theoretically by BOX [3] , such that θi =

λj  is the jth eigenvalue of the matrix Σ to the power of i. The upper control limit theory, for the confidence threshold α given,
is then δ 2 = gχ2     :

Where g = θ2 /θ1, h = integer (θ1  /θ1 ) (integer(z) is integer number of z) and χ2    is the distribution of the χ2 with h degree of
liberty.

Σ
j =  + 1

m
λj , for i = 1, 2, 3 andi

α h, α

h, α
2

6. Localization

After detecting a fault, it is necessary to identify the faulty sensor or sensors, it is through the principle of fault localization,
for this, among the methods used in fault localization within of NLPCA, we find the approach partial NLPCA which uses the
benches of NLPCA models with different sets of variables, the contribution plots to the SPE of each variable it is an approach
to localize the faults, such as the variable with the highest contribution is considered as a default variable. In this paper we
present two methods to identify the faults:

6.1The first method
The localization method based on the contribution plots contSPE of jth variables to the SPE detection index In this case the
contribution of jth variable at time k is defined by the equation:

j

contSPE (k) = (ej(k))2 = (xj(k) − xj(k))2
j

6.2 Second method
The localization via a sensor validity index (SVI) [4] This method is based on the principle of reconstruction. Consists to
suspect a faulty sensor and reconstruct the value of the measure based on the PCA model already calculated and the
measurements of other sensors. The procedure is repeated for each sensor. The localization is performed by comparison of the
detection index before and after reconstruction. The Sensor Validity Index is a measure of sensor performance. It should have
a standarized range regardless of the number of principal components, noise, measurement variances or type of faults. The
SVI should also distinguish the abnormal operational conditions from the sensor fault situation. The ratio of SPEj and the SPE
can provide these desired properties for the identification of a sensor fault:

SPE
SPEj

ηj  =
2

Where the SPE is the global squared prediction error calculated before reconstruction and SPEj is calculated after the
reconstruction of the jth sensor.

7. Application

In this section, we will particularly interest by an application of sensor fault diagnosis used in Water Treatment Plant of
AZZABA which was built recently with a capacity of 300 l/s. This WTP takes charge the waters of these areas and contribute
to improve the quality of water for 80000 subscribers. The monitoring is done continuously through sensors for process
monitoring, measuring : turbidity, pH, pressure, level, temperature, oxygen level, etc. In order to model the process using the
NLPCA, we collect dataset “already available” measured by sensors on line during normal functioning modes of the process
for 300 days. After modeling, the next step of the study is to detect and locate the sensors fault, the following figures present
the results simulation obtained during our studies about the diagnosis applied on the process of water treatment.

7.1 Simulation Results
In this context, we will give the results obtained from the developed procedure of diagnosis for fault affecting the sensors.
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(19)



     Journal of E -Technology  Volume  4   Number  3   August   2013                                     145

Figure 5 Evolution of the SPE index during normal stat (no fault)

Figure 6. Evolution of the SPE index with a default in the variable PH at sample 350
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The figure (Figure 6) Presents the evolution of SPE indicator, that exceeds the upper control limit, it is clear that we detect a
fault, at sample 350. For localization anything we can observe in this figure, for this we want to locate the incriminated variable,
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Figure 7. Evolution of filtered SPE and the fault localization affecting the 9th sensor measuring the NTU at sample 150
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Figure 8. localization from the evolution of SVI with a fault affecting the 2th sensor measuring the PH
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firstly; with the procedure of contribution plots, secondly; with the method based on reconstruction principle. To avoid false
alarms we use the EWMA to filter the effect of outliers and noise, the figure (Figure 7) presents the evolution of the filtered
SPE in the presence of a fault affecting the 9th sensor measuring the turbidity NTU and the fault localization affecting the same
variable based on the contribution plots, the figures (Figure 8) present the evolution of SVI with a fault affecting at sample 350
the sensor measuring the variable PH these figures we can locate the fault from the decreases variable, which is the 2nd SVI
corresponding the sensor measuring the PH.

8. Conclusions

In recent years, the fault detection and diagnosis methods have been widely developed and used to improve the process
operation; particularly the fault detection based on Principal Components Analysis “which does not require prior knowledge
about the process mechanism” had known a big progress and has been widely developed. The PCA is a modeling tool based
on the selection of an optimal number of principal components. In this paper we present, the principle of linear PCA to
introduce its nonlinear extension, the NLPCA model is obtained using a neural network with five layers in cascade. For
monitoring a process, the statistical SPE is used to detect abnormalities, to identify the faulty variables, two diagnosis
algorithms are used such as the localization based on the contribution plots and the localization based on reconstruction
principle via sensor validity index (SVI). The filter applied to the SVI and SPE adds an important feature for sensor fault
localization because reduces the effect of false alarms. The principal idea of this article is to apply the diagnosis of sensors
operating state used in WTP, the simulation results obtained in this work show the effectiveness of the proposed approaches.
Although the efficacy of this method, it can be improved for the better in the future.
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