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ABSTRACT

Dysphonia, a voice disorder characterized by abnormal vocal quality, significantly impacts communication

abilities. Accurate and early detection is crucial for effective treatment and intervention. This study compares

the efficacy of various Recurrent Neural Network (RNN) variants in classifying dysphonia using the Uncom-

mon Voice dataset and provides an evaluation of standard RNN, Gated Recurrent Unit (GRUs) and Long

Short-Term Memory (LSTM) models. Each variant was trained and tested on the preprocessed dataset, split

into 80:20 ratio of training and testing sets. The finding shows variations in model performance, where the

standard RNN achieved an accuracy of 76%, while the LSTM and GRU models demonstrated superior accuraci

-es of 94% and 93%, respectively. These results underscore the potential of advanced RNN variants, partic

ularly LSTM and GRU, for dysphonia detection and classification. The analysis offers preliminary informa-

tion n about the relative advantages and disadvantages of each RNN variant, paving the way for future

resarch in the broader domain of speech sound disorder identification.
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1. Introduction

Our voices are central to everyday communication, enabling us to share ideas, build relationships, and express

ourselves. However, a condition known as Dysphonia, also commonly referred to as hoarseness, can disrupt this

vital function. Dysphonia encompasses a spectrum of voice disorders characterized by abnormal vocal quality,
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ranging from hoarseness and breathiness to weakness and complete voice loss. These changes can be sudden or

gradual and may include voice breaks, pitch variations, or even pain while speaking. One specific type of Dysphonia

is Spasmodic Dysphonia (SD). Unlike other forms of Dysphonia, SD is a neurological disorder affecting the

muscles in the larynx, or voice box, causing them to spasm involuntarily. These spasms manifest as breaks in the

voice, a strained or strangled quality, and breathiness. Understanding the specific causes and characteristics of

SD is crucial for developing effective treatment strategies. This condition significantly hinders an individual’s

ability to communicate effectively, impacting their quality of life. Early and accurate diagnosis is crucial, as

delayed intervention can lead to further complications.

Fortunately, researchers are actively working to improve speech recognition technology for individuals with voice

disorders. One valuable resource in this endeavor is the Uncommon Voice dataset. The Uncommon Voice dataset,

con-taining 3,693 instances of voice recordings, offers a rich resource for develop-ing and testing machine learning

models for various speech-related tasks [1]. It is composed of crowd-sourced speech recordings from 57 individuals

with voice disorders, primarily focusing on Spasmodic Dysphonia (SD). Developed in collaboration with Arizona

State University’s Center for Cognitive Ubiquitous Computing, this dataset aims to fill a niche by providing

extensive speech data specifically from individuals with dysphonia. Participants, recruited with the support of

the National Spasmodic Dysphonia Association, contributed through web-based recordings, covering tasks

ranging from sustained vowels to intelligibility assessments and image descriptions. Despite its potential, the

Uncommon Voice dataset remains underutilized in dysphonia classification research, presenting an opportunity

for exploring its full capabilities and contributing to the field’s understanding of voice disorders. Standard RNN
s
,

LSTM
s
, and GRU

s 
are advanced classes of deep neural networks that have been designed for identifying temporal

connections in sequential data. This makes them particularly adept at handling speech processing tasks, where

the order and timing of information are crucial. Despite their usefulness, traditional RNNs frequently have trouble

identifying long term dependencies because of the vanishing gradient issue. LSTM
s
 address this limitation by

introducing memory cells and gating mechanisms to preserve information over extended sequences, while GRU
s

simplify the LSTM architecture with fewer parameters and comparable performance. Importantly, to the best of

our knowledge, there has not been a comprehensive comparative analysis of these RNN variants specifically for

speech sound disorders, highlighting the significance of the study in this paper.

This study aims to fill this gap by conducting a comparative analysis of standard RNN
s
, LSTM

s
, and GRU

s
 for the

task of dysphonia classification using the Uncommon Voice dataset. By systematically evaluating the performance

of these variants, we seek to identify the most effective model for this specific application and provide insights

into the relative strengths and limitations of each variant. Notably this research fills a gap in the comparative

analyses of RNN variants for speech sound disorders, underscoring the novelty and importance of our work. Our

results contribute to the growing body of research on speech disorder identification, offering potential

improvements in voice-based diagnostic tools and assistive technologies.

2. Related Work

RNN
s 
are a type of neural network designed to handle sequential data, where the order of information matters.

They achieve this by incorporating a hidden state that carries information across processing steps. The basic

RNN update equation for the hidden state is:

(1)
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where:

f : Activation function(e.g., tanh, sigmoid)

zx
h
 : Weight matrix for the hidden state

w
x
 : Weight matrix for the input

b: Bias vector

h
t 
: hidden state at time step

This equation demonstrates how the hidden state at time step t is influenced by the previous hidden state , the

current input, and a bias term. By applying an activation function, the network introduces non-line arities,

enabling it to capture intricate patterns in the data. However, RNNs encounter challenges in preserving

information over long sequences due to the issue of vanishing gradients, where gradients diminish as they

propagate backward through the network, potentially causing earlier time steps to have less impact. In a

comparative study on voice pathology detection [2], CNN and RNN models were evaluated using the SVD dataset,

demonstrating CNN’s slightly higher accuracy of 87.11% compared to RNN’s 86.52%. The study employed a

complex architecture featuring 27 layers, combining convolutional and recurrent neural networks for feature

extraction and analysis highlighting the need for further exploration of comparative analyses with other neural

network variants. Another study [3] presents a deep learning approach for accurate detection of speech pathology,

concentrating on single-vowel analysis (e.g., /a/) and omitting analysis of phrases and other vowels. The research

introduces a novel CNN-RNN architecture tailored for voice pathology detection, achieving notable performance

with an accuracy of 88.84% and an F1 score of 87.39%. However, different variants like GRU and LSTM were

still left unexplored.

LSTM, one of the variants of RNN, tackles the vanishing gradient problem by employing a sophisticated cell

structure featuring gates [4]. These gates regulate the flow of information inside the cell, enabling it to retain

important information over extended sequences LSTMs have similar components to RNNs, but their hidden

state is replaced by a cell state and a hidden state is derived from the cell state. Additionally, LSTMs introduce

three gates:

 Forget Gate: Determines which information from the previous cell state to discard.

 Input Gate: Chooses which data from the current input should be retained in the cell state.

 Output Gate: Decides which data from the current cell state should be included in the hidden state output.

The LSTM update equations involve several calculations for each gate and the cell state:

(7)

(6)

(5)

(4)

(3)

(2)
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These equations show how the gates regulate information flow. The forget gate f
t 
determines which information

to remove from the cell state, the input gate i+t chooses new information to store, and the output gate o
t

dictates what the network retains at the current time step. Various studies have used this LSTM with different

features set and for various pathologies. One study presents a deep learning approach using an LSTM auto

encoder with multi-task learning to detect pathological voice disorders from continuous speech signals [ 5]. It

achieves high accuracies of 85% for Parkinson’s disease, 86% for dysphonia, and 90% for depression across

evaluation datasets. Another study compares SVM, BiLSTM, and CNN algorithms for detecting spasmodic

dysphonia using MFCCs from the Saarbrucken Voice Database. BiLSTM and CNN achieved accuracies of 96.20%,

outperforming SVM (96.15%), showing promise for automated detection of this voice disorder [6]. Research

has also been done to classify various dysphonia categories. This study [7] categorizes vocal pathologies into

functional, organic, and organo functional types using the Saarbruecken Voice Database. It utilizes spectrogram-

based classification with a Convolutional Neural Network (CNN). Results indicate that the CNN achieved

75.4% accuracy for organic dysphonia, 67.5% for functional dysphonia, and 52.9% for multi-label classification.

As summarized by the author in her study [8] of systematic literature review, the majority of the researchers have

used CNN for classification of voice pathology. Gated Recurrent Units (GRU) simplify the LSTM architecture by

combining the forget and input gates into a single update gate and eliminating the output gate [9]. The GRU

equations are:

(11)

(10)

(9)

(8)

Where z
t 
is the update gate, r

t
 is the reset gate, and h

t
 is the candidate hidden state. These modifications enable

GRUs to capture dependencies over longer sequences with fewer parameters, making them computationally

efficient. Author in his study introduces a combined CNN-GRU model integrating convolutional neural net works

and gated recurrent units for dysarthria detection [10]. Experimental findings indicate that the proposed CNN-

GRU model achieves a leading accuracy of 98.38%, surpassing other models in the field. Apart from this GRU

has been widely used in the task of speech recognition. Author assesses the performance of RNN, LSTM, and

GRU models using a downscaled TED-LIUM speech dataset in his study [11] [12]. Findings indicate that LSTM

achieves the lowest word error rates, although GRU optimization exhibits faster convergence while maintaining

competitive word error rates similar to LSTM. Another study compares GRU and LSTM models for large vocabu-

lary continuous speech recognition using TED talks [13]. Author concludes that GRU, simpler than LSTM, con-

sistently outperforms LSTM across all network depths in speech recognition tasks. Apart from these deep learn-

ing models, spasmodic dysphonia is also classified using machine learning algorithms. Authors used three widely

employed classifiers—k-nearest neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT) on

Saarbruecken Voice Database (SVD) [14]. The Decision Tree algorithm achieved the highest classification accura

-cy, approximately 86.66%. Another study [15] compared six machine learning algorithms for automatic identi-

fication of dysphonia, with KNN showing the best accuracy among all of them (87%-92%).

In the realm of voice pathology detection, particularly in dysphonia, deep learning models such as RNN,
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LSTM, and GRU have not been extensively studied despite their successful application in various domains

such as speech recognition and natural language processing. This study aims to fill this gap by thoroughly

investigating the performance of these core RNN variants. By focusing on their basic structures and avoiding

unnecessary complexity, we aim to uncover their potential for accurately classifying dysphonia. This research

fills a crucial gap by systematically evaluating these RNN variants, providing insights into their efficacy in a

domain where they have been underutilized. This exploration not only contributes to the field of voice disorder

diagnostics but also lays the ground work for future enhancements in voice pathology detection and treatment

strategies

3. Methodology

The study utilized the Uncommon Voice dataset, which contains crowd-sourced voice recordings from 57

speakers with various speech disorders, primarily focusing on Spasmodic Dysphonia (SD). The Uncommon

Voice dataset underwent preprocessing steps to prepare it for model training. This included. feature extraction

and standardization. Three recurrent neural network (RNN) variants—Standard RNN, Long Short-Term

Memory (LSTM), and Gated Recurrent Unit (GRU)—were selected for comparative analysis. Each model’s

architecture was configured as follows: Standard RNN Configured with a simple RNN layer. LSTM Structured

with an LSTM layer to capture long-term dependencies in the voice data. GRU Utilized a GRU layer known for

its simplified architecture compared to LSTM, yet capable of capturing temporal dependencies effectively.

Models were trained on an 80:20 split of the dataset, optimizing with categorical cross-entropy and Adam

optimizer. Evaluation metrics included accuracy, precision, recall, and F1 score to gauge classification

performance. The study maintained consistency in experimental settings across all RNN variants. Hyper

parameters such as batch size, number of epochs, and model complexity were kept uniform to facilitate fair

comparisons of their performance metrics. Figure 1 demonstrate the complete flow of methodology. Each step of

the diagram is further explained in the below sub sections.

3.1 Dataset Description

The Uncommon Voice dataset is a publicly available collection of speech recordings contributed by 57 speak-

ers, primarily focusing on individuals with voice disorders such as Spasmodic Dysphonia (SD). Participants,

both with and without voice disorders, completed surveys detailing their voice conditions and provided self-

reported ratings of voice quality. The data collection comprised tasks involving sustained corner vowels, DDK

rate measurements, reading sentences from the TIMIT corpus, performing CAPEV intelligibility assessments,

describing images from the MSCOCO dataset, and additional non-word tasks to track changes in voice over

time.

3.2 Dataset Preprocessing

Before feeding the data into deep learning models, rigorous preprocessing steps were essential to ensure the

quality and compatibility of the data. Each audio file was initially processed to extract Mel-Frequency Cepstral

Coefficients (MFCCs),which are effective in capturing spectral features essential for speech analysis. MFCC

extraction involves segmenting audio signals into frames and computing coefficients that represent the power

spectrum of each frame. This process computed 13 coefficients per frame, offering a comprehensive

representation of each audio segment. To ensure uniformity in data dimensions for model compatibility,

extracted MFCCs were standardized by either truncating to a maximum length or padding with zeros to achieve

a consistent frame size which is 300 in our case. This step was crucial in handling variable-length audio inputs,

thereby facilitating seamless integration into the training pipeline.
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Following feature extraction and standardization, the dataset was structured in to arrays containing the

extracted MFCC features, and comprising binary labels indicating the presence or absence of dysphonia. The

labels were encoded to facilitate binary classification, aligning with the requirements of the deep learning

framework. To assess the model’s performance, we partitioned the dataset in to training and test sets using an

80-20 stratified split, ensuring 80% of the data was allocated for training and 20% for testing. This split was

executed with a fixed random state of 42 to ensure consistency in the evaluation process. This approach

provided a robust measure of the model’s ability to generalize unseen data and detect dysphonia effectively.

Overall, these preprocessing steps, including feature extraction, standardization, label encoding, and train-

test splitting, were crucial in preparing the Uncommon Voice dataset for binary classification tasks focused on

dysphonia detection.

Figure 1. Methodology 3.1

3.3 Model Architecture

In this study, we evaluated three Recurrent Neural Network (RNN) variants for dysphonia classification using

the Uncommon Voice dataset.

Experimental Settings and Environment The experiments were conducted with the following

settings:

Hardware: The models were trained on an Dell core i7 3m4 GHz 6700 cpu with 8 GB memory which enabled

efficient training and computation.

Software: The models were implemented using Tensor Flow 2.0 with the Keras API for building and training

the neural networks. Librosa was used for preprocessing the audio data, and NumPy for handling data arrays.

Results were visualized using Matplotlib.

Each model was configured with similar architectural components and minimal layers to ensure a consistent

experimental setup. The models assessed in this study include a Gated Recurrent Unit (GRU) model, a Simple
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RNN model, and a Long Short-Term Memory (LSTM) model, each configured with specific architectural details.

The GRU model utilized a GRU layer with 128 units followed by a dense hidden layer comprising 64 units,

culminating in an output layer for binary classification. This architecture resulted in a total of 63,298 trainable

parameters. Similarly, the Simple RNN model consisted of a Simple RNN layer with 128 units followed by a

dense hidden layer with 64 units and an output layer, totaling 26,562 trainable parameters. The LSTM model

employed LSTM cells with 128 units followed by a dense hidden layer and an output layer, contributing to a total

of 81,090 trainable parameters. Each model was trained for 50 epochs with a batch size of 32, optimized using

the Adam optimizer, and trained using categorical cross-entropy as the loss function. ReLU activation function

was also utilized in these models for its ability to introduce non-linearity and capture complex patterns within

shorter and longer sequences, respectively. To mitigate over fitting, L2 regularization with a regularization

parameter of 0.01 was applied to all model layers. Additionally, early stopping with a patience of 5 epochs was

employed during training to halt the training process if validation loss did not improve, thereby preventing over

fitting and ensuring the best performing model parameters were retained. However, each model was initially set

to train for 50 epochs, despite this setting, the training of the RNN stopped at 40 epochs, while the LSTM and

GRU models halted at 24 epochs as shown in the training loss and validation loss graphs of each model. These

standardized settings allowed for a direct comparison of their performance in dysphonia classification, aiming

to identify the most effective model architecture for this specific application. Table 1 summarizes the information

regarding model architectures.

Model                                       Architecture                                                                      Parameters

GRU                   GRU layer (128 units) Dense hidden layer (64 units)                      63,298

                             Output  layer for binary classification.

RNN                 Simple RNN layer (128 units)  Dense hidden layer                              26,562

                           (64 units)Output layer.

LSTM               LSTM layer (128 units)  Dense hidden layer (64 units)       81,090

                          Output layer.

Table 1. Model Architecture

3.4 Performance Evaluation

In evaluating the performance of various RNN variants for dysphonia classification using the Uncommon Voice

dataset, this study employed multiple performance metrics to assess each model’s efficacy. Accuracy served as a

primary indicator of overall prediction correctness, measuring the proportion of correctly classif ied instances

out of the total predictions made by the model. Precision was utilized to evaluate the model’s ability to correctly

identify positive instances of dysphonia, minimizing false positives. Recall measured the model’s sensitivity in

correctly capturing all positive instances within the dataset. Additionally, the F1 score, which combines preci-

sion and recall into a single metric, provided a balanced evaluation of the models’ predictive capabilities across

both positive and negative classes of dysphonia. Through the systematic application of these metrics, this study

aimed to provide a comprehensive analysis of the GRU, Simple RNN, and LSTM models, offering insights into

their respective strengths and limitations in the context of dysphonia classification.
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Figure 2. Training and validation Accuracy and loss of each model

4. Results and Discussion

In this study, we evaluated the performance of three recurrent neural network (RNN) variants Simple RNN,

LSTM, and GRU on the task of dysphonia classification using the Uncommon Voice dataset. The models were

trained and evaluated using standard metrics including accuracy, precision, recall, and F
1
 score. Table 2 summa

rizes the performance metrics including accuracy, F1 score, precision, and recall for each RNN variant evaluated

in our study.
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Model       Accuracy         F1 Score        Precision        Recall

RNN                77%                0.5949                 0.7713              0.6717

LSTM              94%                 0.9396                   0.9425            0.9390

GRU                93%                 0.9390                  0.9391             0.9372

Table 2. Results

The Simple RNN variant achieved an accuracy of 0.77, with precision, recall, and F1 score values of 0.5949,

0.7713, and 0.6717, respectively. Despite its simpler architecture, the Simple RNN demonstrated moderate

performance in classifying dysphonia from voice recordings. This is due to the lower complexity of the RNN

architecture with fewer parameters and simpler calculations. Although easier to implement and faster to

train, Simple RNNs suffer from the vanishing gradient problem, limiting their ability to capture long-term

dependencies in this specific speech disorder. The LSTM model demonstrated significantly higher performance

with an accuracy of 0.94, indicating that 94% of the model’s predictions were accurate. Precision value was

0.9408 and recall was 0.9390 , indicating that the LSTM correctly identified dysphonia instances with high

precision and sensitivity. The F
1
 score of 0.94075 further confirms the model’s balanced performance, reflecting

its ability to maintain high precision while effectively capturing all positive instances in the dataset. The

LSTM’s ability to capture long-term dependencies in sequential data proved advantageous in accurately

identifying instances of dysphonia, showcasing its effectiveness in this classification task. However, as shown

by the complexity of the architecture (more parameters), LSTM is known for high computational cost, longer

training times, and increased memory requirements. Similarly, the GRU model achieved an accuracy of 0.93,

demonstrating its strong performance in dysphonia classification. Precision was 0.9390, indicating that when

the model predicted dysphonia, it was correct 93.90% of the time. Recall was 0.9391, showing its ability to

capture a high proportion of positive instances in the dataset. The F1 score of 0.9372 underscores the GRU

model’s effectiveness in achieving both high precision and recall, providing a comprehensive evaluation of its

performance. The GRU’s efficiency in training and its ability to handle sequential data contributed to its

competitive performance alongside the LSTM. These results highlight the comparative strengths of LSTM and

GRU models over the Simple RNN in dysphonia classification using voice recordings. The higher accuracy and

robustness of LSTM and GRU variants underscore their suitability for applications requiring precise classification

of voice disorders. The LSTM’s capability to learn and retain long-term dependencies in sequential data, along

with the GRU’s efficiency in training and handling sequential data, contribute to their superior performance in

this task. Future research could explore further enhancements in model architectures or feature engineering to

improve classification accuracy and generalization across different datasets and conditions.

5. Conclusion and Future Work

In this study, we evaluated three recurrent neural network (RNN) variants Simple RNN, LSTM, and GRU on

dysphonia classification using the Uncommon Voice dataset. Our findings demonstrate that LSTM and GRU

models outperform the Simple RNN in terms of accuracy, precision, recall, and F1 score. Specifically, LSTM

achieved the highest performance with an accuracy of 0.93, followed closely by GRU with an accuracy of 0.94.

These results underscore the effectiveness of LSTM and GRU architectures in capturing temporal dependencies
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with in voice recordings, essential for accurate dysphonia classification. The study also highlights the importance

of model selection and architecture in achieving robust performance in voice disorder identification tasks.

Future studies could delve deeper into the activation sequences of GRU variants, exploring specific

configurations such as Candidate + Reset + Update + Forget + Activation + Output and Candidate + Update +

Forget + Activation + Reset + Output + Activation to gain insights into how different gate sequences impact

model performance and learning dynamics. Further comparative analyses among various GRU variants,

including those with modified gate structures or activation functions, can expand our understanding of their

capabilities and limitations in dysphonia classification tasks. This exploration could lead to the development

of optimized GRU architectures tailored specifically for voice disorder identification.
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