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Graph-Based Bit-Wise Soft Channel Estimation for Superposition Mapping
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ABSTRACT: A novel channel estimator which performs channel estimation bit-wise instead of symbol-wise is proposed in
this paper. Combined with superposition mapping (SM), the proposed algorithm is able to provide multiple channel estimates
for a single channel coefficient. Numerical results indicate that bit-wise soft channel estimation (BWSCE) is able to outperform
symbol-wise soft channel estimation (SWSCE) even at lower computational cost.
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1. Introduction

Channel estimation is a challenging task for wireless communication channels, especially at high vehicular speeds and/or high
carrier frequencies. Iterative processing can help to improve the system performance. In the past decades, many iterative
channel estimation approaches have shown to outperform non-iterative approaches, see e.g. [1]–[6]. The concept of factor
graphs [7] is a powerful tool for the design of iterative estimation/detection algorithms. Several graph-based approaches have
been suggested [5], [6], [8]. In [5], a graphbased soft iterative receiver (GSIR) has initially been proposed in which joint data
detection, channel estimation and channel decoding are integrated in a single factor graph. Utilising the sum-product algorithm,
the messages exchange in the graph  is extrinsic and soft. Hence, both channel estimation and data detection can benefit from
channel coding. In [8], the GSIR has been extended to higher-order modulation schemes and timevarying channels. Graph-based
soft channel estimation has shown to provide a desirable performance using less training symbols than conventional channel
estimation schemes. All of the above mentioned algorithms are using symbol-wise channel estimation when considering higher-
order modulation. Thus, their complexities grow exponentionally with number of bits per symbol.

Superposition mapping (SM) [9] is a recently developed modulation/multiplexing/mapping scheme. SM can generate a Gaussian
distributed transmit signal, which has the ability to approach the channel capacity. In this paper, an additional advantage of SM
will be explored. In conjunction with graphbased iterative processing, the characteristic of SM allows to perform channel
estimation on individual bits, rather than on a per symbol basis as in [8]. In this way, unlike symbolwise soft channel estimation
(SWSCE) , multiple estimates of one channel coefficient will be obtained at the receiver side. Since messages are soft, exploiting
multiple estimates can improve channel estimation by further exploiting coding gain. Moreover, as superposition is a very



18    Journal of Intelligent Computing  Volume  4   Number  1    March    2013

natural composition in communication systems, it is straightforward to extend this algorithm to multiple antennas and multi-user
communications.

2. Fundamentals

2.1 Superposition Mapping
The procedure of superposition mapping is shown in Figure 1. The info bits are first BPSK mapped onto bipolar antipodal info
symbols. Then, each info symbol is multiplied by a weighting factor, and superimposed to create a complex valued data symbol
before transmission, represented in baseband notation as

x [k] = αn dn [k]Σ
N

n = 1

αn (1−2bn [k]), bn [k] ∈{0, 1}Σ
N

n = 1
=

Figure 1. Block diagram of superposition mapping with 4 info bits per symbol

where dn [k] denotes the nth binary antipodal symbol (chip) at time index k and αn represents its allocated complex-valued
weighting factor. N is the number of info bits per symbol.

SM provides a degree of freedom of generating the symbol constellation by properly choosing the values of αn. For instance,
if

[α1, α2, α3, α4] = [1 / 10, 1 / 10, 2 / 10, 2 / 10 ]

is chosen, we will have a 16-QAM constellation. If

e jnπ / Nαn =
1
N

is selected, the symbol constellation of x[k] is approximately Gaussian distributed. Due to Shannon’s channel coding theorem,
the capacity of a Gaussian channel can be achieved if and only if the channel output is Gaussian distributed. In other words, the
channel input is also required to be Gaussian distributed. For this reason, SM has the potential to achieve channel capacity. In
addition, the superimposing property of SM provides the foundation for bit-wise soft channel estimation.

(1)
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2.2 System Model
We consider bit-interleaved coded modulation (BICM) in conjunction with superposition mapping. After channel encoder and
interleaver, the signal stream is superposition mapped before transmission. Concerning a flat fading singleinput single output
(SISO) channel, the relationship between the nth chip dn [k] and the channel output y[k] can be represented as

y[k] = h[k] αndn [k] + w[k]Σ
N

n = 1

where h[k] is the channel coefficient, and w[k] is an additive white Gaussian noise (AWGN) sample. Based on (2), a factor graph
representing the joint iterative receiver for coded transmission over a time-varying SISO flat fading channel with N = 2 is
illustrated in Figure 2. Each column represents a different time index. A channel node h[k] carries the soft information of a
channel coefficient. The message exchange between neighboring channel coefficients is carried out by a transfer node ∆. An
observation node y[k] denotes the information of a received symbol. A chip node dn [k] represents the soft information of a
transmitted code bit, which is directly connected to the  observation node. A  denotes a code constraint. As the coderate is
1/3 and interleaving is taken into account, each  is randomly connected with three chip nodes. In the remainder, the time index
k is dropped to simplify the notation.

Figure 2. Factor graph for the GSIR over a time-varying channel assuming a rate 1/3 channel code and 2 info bits per symbol

3. Bit-Wise Soft Channel Estimation (BWSCE)

The meaning of soft information in the factor graph is twofolded. One is that the soft information of the binary symbols is
represented by log-likelihood ratio (LLR) values. The other is that the soft information of the channel estimates is depicted by
the probability density function (pdf) of h. Approximating h by a Gaussian variable, h ∼ CN (µh, σ 2 ), with h denoting the hard
channel estimate and σ 2 measuring the reliability of this estimate. The procedure of the iterative receiver works as follows. First,
initial LLRs and initial pdfs of h at the pilot positions are obtained using training symbols, i.e. reference symbols known to the
receiver. Afterwards, the soft information is spread to the data positions via forward/backward propagation. Later on during
iterations, both training and data symbols contribute to iterative channel estimation and data detection. The message passing
algorithm concerning data detection has been elaborated in [8]. Different from [8] where channel estimation is performed
symbol-wise, in this work the principle of bit-wise channel estimation is proposed.

For channel estimation during iterations, the goal is to calculate the pair (µh, σ 2 ) (pdf of h) given the corresponding LLRs from
the chip nodes obtained in the preceding iteration. Revisiting (2) and considering a certain chip dn, we obtain

h

h

h

(2)
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y = hαndn + ∑
j = 0; j ≠ n

N
hαjdj + w

⎩⎨⎧

ICI

The received symbol  y  is composed of the desired chip, interchip interference (ICI), and noise w. According to the central limit
theorem, the interfering part

vn = ∑
j = 0; j ≠ n

N
hαjdj + w = ∑

j = 0; j ≠ n

N
γj + w

can be approximated by a Gaussian random variable with mean µv  and variance σ 2 if N is sufficiently large. Assuming that
different values of γj = hαjdj are independent, the mean and variance of the interfering part µv  and σ 2 are computed as

 n

 n nv

vn

µv  = ∑
j = 1; j ≠ n

N
µ

r n

σ 2 =vn
∑

j = 1; j ≠ n

N
σ 2 + σ 2r w

where

µr  = µhαj (Pj, + 1− Pj, −1)

σ 2 = σ 2 + 4Pj, +1 Pj, −1 |
 µhαj |

2
rj h

The pair (µh,  σ 2) in (6) is the soft estimate of h obtained from the previous iteration. Pj, ± 1 stands for the probability of dj = ±1,
this can easily be computed by the LLR of dj from the preceding iteration. After obtaining µv and σ 2 , the soft estimate of h from
the nth chip (defined hn here) is calculated as follows:

nvn

h

µ
h
 =

(y − µh  )(Pn, +1 − Pn, −1)n

αn
n

σ 2 =
σ 2 + 4Pn, +1 Pn, −1|y − µ

v  
|2v

|αn|2n

n

h

n

Since each chip provides one estimate for one h, we will have N channel estimates for a certain channel coefficient h. According
to the sum-product algorithm, p(h) can be attained by multiplication of p(hn) with the formula

p(h) =
N

n = 1
p(h

n
)Π

After some derivations, the pair (µh , σ 2) is of the form
h

µh = ∑
n = 1

N µh

σ 2
n

hn

∑
n = 1

N 1
σ 2hn

, σ 2 = 1h ∑
n = 1

N 1
σ 2hn

BWSCE has two advantages. First, several observations contribute to one channel estimate. Thus, weaker estimates can be
compensated by stronger estimates through interleaving and channel decoding during iterations. Second, BWSCE involves a
lower computational cost. Since for SWSCE the probability of each complex-valued symbol must be know a priori, the complexity
of SWSCE is exponential w.r.t. N, whereas the complexity of BWSCE is linear w.r.t. N.

αn =
1
Ν

e jnπ / N

4. Numerical Results

In order to examine the performance of the BWSCE, Monte Carlo simulation are conducted. A superposition mapper with

is chosen. A concatenated code composed of a rate 3/4 Turbo code and a rate 1/3 repetition code is used for

(3)

(4)

(5)

(6)

(7)

(8)

(9)

j

j

j
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Figure 3. BER performance between SW and BW channel estimation, N = 4, 6

Figure 4. MSE performance between SW and BW channel estimation, N = 4, 6

N = 6 Symbolwise
N = 6 Bit-wise
N = 6 Perfect CSI
N = 4 Symbolwise
N = 4 Bit-wise
N = 4 Perfect CSI

0             2          4            6          8          10         12       14         16        18        20

 100

10-1

10-2

10-3

10-4

10-5

Eb / N0 in dB

Bi
t E

rro
r R

at
io

N = 6 Symbolwise
N = 6 Bit-wise
N = 4 Symbolwise
N = 4 Bit-wise

0           2          4            6          8          10         12       14         16        18        20

 100

10-1

10-2

10-3

Eb / N0 in dB

M
SE

channel coding. Training symbols are inserted every 8 data symbols. The symbols are transmitted over a Rayleigh time-varying
channel with a maximum Doppler frequency of fDTS = 0.02. At the receiver side, a graph-based iterative receiver with 10 iterations
is adopted. The performance of SWSCE [8] and the receiver knowing perfect channel state information (CSI) with the same
simulation setup is also studied for comparison. From Figure 3, it can be observed that the MSE for the BWSCE converges earlier
than that for SWSCE for both N = 4 and N = 6. At N = 6, there is a considerable performance gain of BWSCE over SWSCE for both
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BER and MSE results. As is shown on the left hand side of Figure 2, at BER = 10−5, BWSCE provide an approximately 1 dB and
2 dB gain over SWSCE in case of N = 4 and N = 6, respectively. Meanwhile, the complexity for BWSCE is lowerthan SWSCE,
especially when N increases.

5. Conclusion

In this paper, a novel graph-based bit-wise channel estimation technique has been proposed. This algorithm can outperform
symbol-wise channel estimation in many situations meanwhile maintaining a lower computational complexity.
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