
                          Journal of Information Organization    Volume  2   Number   4   December  2012             149

Improving Student’s Modeling Framework in a Tutorial-Like System based on Pursuit

Learning Automata and Reinforcement Learning

Seyedeh Leila Javadi1, Behrooz Masoumi2, Mohammad Reza Meybodi3

1Sama Technical And Vocational Training College

Islamic Azad University Ayatolah amoly Branch

Amol, Iran
2Department of Computer and Information Technology Engineering

Islamic Azad University, Qazvin Branch

Qazvin, Iran
3Department of Computer and Information Technology Engineering

Amirkabir University of Technology

Tehran, Iran

Leila_javadi87@yahoo.com, Bmasoumi@Qazviniau.ir, mmeybodi@aut.ac.ir

ABSTRACT: Intelligent Tutorial Systems are educational software packages that occupy Artificial Intelligence (AI) techniques

and methods to represent the knowledge, as well as to conduct the learning interaction. Tutorial-like systems simulates a

Socratic model of learning for teaching uncertain course material by simulating the learning process for both Teacher and

a School of Students. The Student is the center of attention in any Tutorial system. The proposed method in this paper

improves the student’s behavior model in a tutorial-Like system. In the proposed method, student model is determined by high

level learning automata called Level Determinant Agent (LDA-LAQ), which attempts to characterize and improve the learning

model of the students. LDA-LAQ actually use learning automata as a learning mechanism to show how the student is

slow,normal or fast in the term of learning. This paper shows how learning model increases speed accuracy using Pursuit

learning automata and Reinforcement Learning.
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1. Introduction

Intelligent Tutoring System (ITS) is one of the best ways of one-to-one teaching. ITS instructs the subject to a student, who is

using it. The student has to learn the subject from an ITS by solving problems. ITSs are special educational software packages

that involve artificial intelligence techniques and methods to represent the knowledge, as well as conducting the learning

interaction [1-3]. ITSs are characterized by their responsiveness to the learner’s need. They get adapted according to the

knowledge/skill of the users. They also incorporate experts’ domain-specific knowledge.

According to various discussions on intelligibility concept and various practical fields, there are various suggestions for
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architectures and components on intelligent tutoring system. In general, these systems basically include three main components

and sometimes a communication component is added [4, 5]. Three components which form intelligent tutoring system are

Domain model, Student model and Pedagogical [3].

Student modeling is the focal point and one of the components of training system. This model is a representation of student

behavior and status, and also a paragon which models student status. The model can recognize Student Model fast and more

accurately. In the proposed model it is supposed that student can be modeled in three status of slow, normal and fast student [3,

7]. The system determines Student Learning Model with scrutiny of student continuous actions and using LDA-LAQ.

In some researches, using machine learning on didactic systems improvement was conducted. Frasson in 1996 have designed

main components of intelligent tutoring system (student model, domain model and Pedagogical model) as intelligent elements

[8]. Lelouche in 2000 used a set of interactive elements for student main modeling on intelligent tutoring system [9]. Legaspi and

Sison in 2000 have modeled instruction on intelligent tutoring system such as central learning procedure using reinforcement

learning [3]. Mooney and Baffes in 1996 utilize ASSERT which use reinforcement learning in Student model in order to calculate

new student’s error only by  means of using correct domain knowledge[7]. Hashem in 2007 utilized learner automata in intelligent

tutoring system [3].

The aim of the paper is to improve student modeling on Learning System and it is shown that how the modeling can be

successful in tutorial-like system frame work by the help of Learning Automata and reinforcement Learning. In order to improve

how to determine Student Modeling, three students type were modeled according to Q Learning Algorithms.

This paper structs as follows: section 2 gives a brief description of Learning Automata and Q Learning. In section 3 Tutorial–like

system is explained. In section 4 the model of student is represented. In Section 5 experimental results will be discussed and

finally the conclusion is in section 6.

2. Learning Automata and Q-learning

In this section, concepts of Learning Automata and Q Learning as two Learning models have been described.

2.1 Learning Automata

Learning Automata are adaptive decision-making devices operating on unknown random environments [12]. The Learning

Automaton has a finite set of actions and each action has a certain probability (unknown for the automaton) of getting rewarded

by the environment around the automaton. The aim is learning to choose the optimal action (i.e. the action with the highest

probability of being rewarded) through repeated interaction on the system. If the learning algorithm be chosen properly, then the

iterative process of interacting with the environment leads to result in selecting the optimal action.

 Figure1 illustrates how a stochastic automaton works in feedback connection with a random environment. Learning Automata

can be classified into two main families: fixed structured learning automata and variable structured learning automata (VSLA)

[12]. In the following, the variable structured learning automaton is described. In a stochastic variable structured automaton, the

probabilities of the various actions are updated on the basis of the information the environment provides. Action probabilities

are updated at every stage using a reinforcement scheme. It is defined by a quadruple {α, β, P, T }in which α is the action or

output set of the automaton, β is a random variable in the interval [0,1], P is the action probability vector of the automaton or

agent, and T denotes an update scheme.

α(t) β(t)

{Φ, α, β, F, G}

Random

Environment

Learning

Automaton

Figure 1. Learning automata environment [12]

The output of the automaton is actually the input to the environment. The input β of the automaton is the output of the

{c}
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environment, which is modeled through penalty probabilities ci. Important examples of linear update schemes are linear reward–

penalty, linear reward–inaction, and linear reward–ε penalty. The philosophy of those schemes is essentially to increase the

probability of an action which results in a success and to decrease it when the response is failure [12].

2.2 Q-Learning

Q-learning is a popular RL algorithm that does not need a model of its environment and can used on-line. In Q-learning algorithm,

the values of state-action pairs are estimated. After these Q-values are obtained, action having the highest Q-value of any state

would be the optimal action for that particular state, this action is called greedy action. If the greedy action is selected then we

are exploiting the action values. Instead, if we select an action other than greedy action then we are exploring the action values

[13].

Generally, exploration is done to increase the total reward in long-run. Q-values are estimated on the basis of experience as in

Equation (1).

Q (s, a) ← Q (s, a) + α [r + γ max Q (s′, a′) − Q (s, a)] (1)

This algorithm converges to the correct Q-values with probability one if the environment is stationary and if the state is Markov.

In order to increase the total reward, actions are selected from these Q-values e-greedily, which means we are exploring the

action values with e probability, and for the remaining time we are exploiting [13].

3. Tutorial-Like Systems

Since our research involves tutorial-like systems, which are intended to mimic tutorial systems, a brief overview is represented

as follows.

In these systems, it’s not necessary to be real-life students, but rather, each student could be replaced by a student simulator

that mimics a real-life student. Alternatively, it could also be a software entity that attempts to learn. The teacher, in these

systems, attempts to present the teaching material to a school of student simulators. The students are also permitted to share

information between each other to gain knowledge [6].

Tutorial-like systems share some similarities with the well developed field of tutorial systems. Thus, they model the teacher, the

student, and the domain knowledge. However, they are different from “traditional ” tutorial systems in the characteristics of

their models.

The tutorial-like system derives a model for the student by assessing and determining the way he learns. To achieve this,

Hashem [7] assumed that the system has a finite set of possible learning models for each student and the domain knowledge will

be presented via multiple-choice Socratic-type questions. Thus, for each question, every choice has a corresponding probability

of being correct, implying that the choice with the highest reward probability is the answer to the question [21].

The finite set of learning models represents the different families that characterize the way the student learns. As mentioned, if

the tutorial-like system can understand how the student perceives knowledge, it will be able to customize the way in which it

communicates the knowledge to the student toward an optimal teaching strategy.

Tutorial-like system in [3] incorporates multiple LAs that are indirectly interconnected with each other. The student modeler will

itself utilize an LA in the meta-LA level to represent the different potential learning models for the student. Furthermore, as the

student interaction with the tutorial-like system increases, this LA would hopefully converge to the model that most accurately

represents the way the student learns [3].

4. Proposed model

In this section, a new model based on learning automata and Q-learning is proposed. In the proposed model, Meta LA mentioned

in [3] is restructured based on LA and Q-learning. The structure of the proposed model which we call it LDA-LAQ is given with

more details in Figure 2.

The LAD-LA\Q in Tutorial-like system LA and Q learning which are, indirectly, interconnected with each other. We observe that
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our system represents a synchronous model.

Figure 2. Proposed Model Using a Network of LA and Q learning

However, our system has a rather unique LA and Q learning interaction model. While the Student Q is affecting the LDA-LAQ,

there is no direct connection between them. The LDA-LAQ Environment monitors the performance of the Student Q over a

period of time, and depending on that, the Environment would penalize or reward the action of the LDA-LAQ.

This model represents a new structure of interconnection which can be viewed as a composition of two levels: a higher-level

automaton, i.e., the LDA-LAQ, and a lower-level agent Q, which is the Student Q. The convergence of the higher-level automaton

is dependent on the behavior of lower-level agent Q. observing the uniqueness of such interactive modules, organizes as the

following consequence:

1. The LDA-LAQ has access to the environment of the lower level, including the set of the penalty probabilities that are

unknown to the lower-level Q agent.

2. The LDA-LAQ has access to the actions chosen by the lower-level Q agent.

3. Finally, the LDA-LAQ has access to the responses made by the lower-level environment.

In conclusion, items 1-3 above collectively constitute the environment for the LDA-LAQ. Such a modeling is unknown in the

field of Q agent.

In this paper, to speed up student learning, Q Learning Algorithm is considered without learners’ simulation and DP
RI

 is used to

increase student model determination accuracy in LDA-LAQ. So by means of this method we are able to increase two mentioned

factors simultaneously on Student Model determination.

Student Model will use Q-Learning without status with three different learning rates for slow, normal and fast instead of LA in

[3]. Each of them is used as an action for high level Automata.
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Stateless Q-learning yields a temperature parameter that allows balancing exploration and exploitation. It proceeds in two steps:

Action selection based on the temperature and applying a Q-value update to the played action. The Q-value update rule

Equation (2) features a learning rate and is applied to the selected action i played in joint action s
t
, after receiving the payoff

r
t
 = u

i 
(s

t
).

Q 
(t+1) 

(a) ← Q
t 
(a) + λ (r − Q

t
 (a)) (2)

Given the Q-values, an action is selected based on the Boltzmann distribution, with probability P
i
 for action i:

P
i 
(action) = (3)

EV(action)
τe

EV(action)
τeΣ

(action∈A
i
)?

In normal status EV(action) = Q(action) is chosen [26].

In the proposed model, the LDA-LAQ is used to learn the best possible model for the student simulator as a 4-tuple: {α, β, P, T},

where the variables are described as follows.

Which the actions set is {α
1
, α

2
, α

3
}. α

1 
shows action is respondent with slow learner, α

2 
shows action is respondent with

normal learner and α
3 
shows action is respondent with fast learner.

β ={0,1}, β = 0 implies the selected reward for this action and β =1 implies the selected fine for the action. P = [p
1
, p

2
, p

3
]T, P

 i (n)

is
 
student simulation current probability which is shown with α

i 
and T is probability updating T: (P, α, β ) → P. Each of these will

now be clarified.

The student simulator was implemented to mimic three typical types of students as follows:

• Slow learner (α
1
): For this type of students, the student simulator uses a stateless Q learning with λ = 0.3 to mimic the student’s

behavior.

• Normal learner (α
2
): For this category of students, the student simulator uses a stateless Q learning with λ = 0.5 to simulate the

student’s behavior.

• Fast learner (α
3
): To simulate students of this type, the student simulator utilizes a stateless Q learning with λ = 0.7 to represent

the student’s behavior.

β is the input that the LDA-LAQ receives. LDA-LAQ must observe a sequence of decisions made by the student simulator, and

based on this sequence, it must deduce whether its current model is accurate or not. We propose to achieve it as follows:

For a fixed number of queries, which we shall refer to as the “window”, the LDA-LAQ assumes that the student simulator’s model

is αi. Let θ (t) the rate of learning associated with the lower RL agent at time “t,” measured in terms of the number of penalties

received for any action, weighted by the current action probability vector.

By inspecting the way by which the student simulator learns within this window, it infers whether this current model should be

rewarded or penalized. We propose to achieve this by using two thresholds, {θ j |1 ≤ j ≤ 2} (as shown in Table 1).

If the current observed θ (t) of the student simulator is less than θ1, we assert that the student simulator demonstrates the

phenomenon of a fast learner. Now, if the LDA-LAQ has chosen α 3, this choice is rewarded. Otherwise, this choice is penalized.

If the current observed θ (t) of the student simulator be equal or greater than θ 1 and less than θ 2, we assert that the student

simulator demonstrates the phenomenon of a normal learner. Thus, if the LDA-LAQ has chosen α 2, this choice is rewarded.

Otherwise, this choice is penalized.

Finally, if the current observed θ (t) of the student simulator is equal or greater than θ 2, we assert that the student simulator
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demonstrates the learning properties of a slow learner. Thus, if the LDA-LAQ has chosen α1, this choice is rewarded. Otherwise,

the LDA-LAQ is penalized.

Type Of Student Boundary Threshold

Slow Learner      θ (t) < θ
1

Normal Learner             θ
1
 ≤ θ (t) < θ

2

Fast Learner       θ
2
 ≤ θ (t)

P is the action probability vector that contains the probabilities that the LDA-LAQ assigns to each of its actions. At each instant

t, the LDA-LAQ randomly selects an action α (t) =αi. The probability that the automaton selects action αi at time t is the action

probability.

p
i 
(t) = pr [α (t) =α

 i 
] ,

(4)

Table 1. Threshold used LDA-LAQ [3]

Σ p
i 
(t) = 1 ∀t, i = 1, 2, 3where,

i = 1

r

Initially, the LDA-LAQ will have an equal probability for each of the three learning models as Equation (5):

p (0) = [0.333, 0.333, 0.333] T (5)

T is the updating algorithm or the reinforcement scheme used to update the LDA-LAQ’s action probability vector and is

represented by Equation (6):

p
 
(t + 1) = T [ p (t), α 

 
(t), β 

 
(t)] (6)

Learning Automata model is an continuous schema in which actions’ probability can be a value between [0,1]. Thathachar and

Oommen posed discretized learning Automata concept by choosing probability restrict form a finite set of values between [0,1].

The most important advantage of using discrete algorithm is to speed up [23]. Oommen have proved that discrete Automata in

all environments have faster convergence in comparison with their continuous counterparts [24]. Pursuit algorithms as DPRI are

used in the proposed models which are sort of estimator algorithm and follow optimized action.

In the proposed model, DP
RI 

schema is used instead of DL
RI

 in [3]. the action probability vector is updated in a discrete manner

when the LDA-LAQ is rewarded and unchanged when the LDA-LAQ is penalized. When the chosen action is rewarded, the

algorithm decreases the probability for al1 the actions that do not correspond to the highest estimate, by a step A, where

A= l / rN. In order to keep the sum of the components of the vector P(t) equal to unity, the LA can be described entirely by the

following action probability updating equations [25].

As presented in Section IV, the LDA-LAQ was implemented as a higher level LA, which had access to the learning environment

and the actions and penalties of the lower level agent Q associated with the student simulators, while the latter learned the

teaching material. The LDA-LAQ was implemented as a discrete LA, the DP
RI

 scheme.

5. Evaluation

This section presents the experimental results obtained by testing the prototype implementation of the LDA-LAQ. To obtain

these results, we performed numerous simulations to accurately simulate how the student modeler is able to recognize the

learning model of the student.

The simulations were performed for many different types of environments. These environments represent the teaching “problem”,

which contains the uncertain course material of the domain model associated with the tutorial-like system. In all the tests

performed, a LA algorithm was considered to have converged if the probability of choosing an action was greater than or equal

to a threshold T (0 < T ≤ 1) and Q learning was considered to have converged if difference between Q
t+1

(a) and Q
t 
(a) was greater

than or equal to a threshold T, If the Q learning converged to the best action (i.e., the one with the highest probability of being

rewarded), it was considered to have correctly converged.
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As mentioned, the simulation has been performed for the different existing benchmark environments, for which the threshold T

was set to 0.99 for LA and 0.00001 for Q learning , and the number of experiments NE = 75, in which the results were averaged.

The results of these simulations are described below.

5.1 Environment With Four Actions

The four-action environment represents a multiple-choice question with four options. The student needs to learn the content of

this question and conclude that the answer to this question is the action that possesses the minimum penalty probability. Based

on the performance of the student, the LDA-LAQ is supposed to “learn” the learning model of the student. The results of this

simulation are presented in Tables 2, 3. The two different settings for the two environments are specified by their reward

probabilities given in Tables 2, 3. The results obtained were quite remarkable. Consider the case of EA, where the best action was

α 1.

In this paper we achieved upper accuracy from main model and with less iteration, determine student model, for instance in

suggested model whereas fast learner with 34 iteration and 97% accuracy recognize correctly, but in main model number of

iteration is 607. In normal learner with 28 iteration and 96% accuracy and in slow learner with 35 iteration and 100% accuracy

reach a correct convergence.

The analogous results for EB were 100% (at its best accuracy) and 97% for the normal learner.

Table 2. Compare Convergence of Meta LA [3] And LDA-LAQ in E 
(A, 4)

Table 3. Compare Convergence of Meta LA [3] And LDA-LAQ in E 
(A, 4)

Table 4. Compare Convergence of Meta LA [3] And LDA- LA/Q in E
(A, 10)
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5.2 Environment With Ten Actions

The ten-action environment represents one with multiple choice questions with ten options. The respective environments’

reward probabilities are given in Tables 4, 5. Similar to the environments for example, consider the case of EA, where the best

action was α 1. While a slow learner converged in 12 iterations, normal learner converged in 36

Iterations and the fast learner converged in 53 iterations. By using the values of θ1 and θ 2 as specified in Tables 4, 5 the LDA-

LAQ was able to determine the true learning capabilities of the student 100% of the time, when slow learner.

For EB, the best accuracy was 100% for the fast leaner and slow learner, and the worst accuracy was 96% for the normal learner.

Indeed, in a typical learning environment, the teacher may incorrectly assume the wrong learning model for the student.

Table 5. Compare Convergence of Meta LA[3] And LDA- LA/Q in E
(B, 10)

6. Conclusion

This paper presents a new model for tutorial like system which imply with student modeling. Student modeler use   automata

learner as an internal mechanism to determine student learning model, as it can be used in tutorial like system for learning

exercise determination for each student. To reach this, student modeler uses higher level Automata which is called LDA-LAQ

that can follow student simulation automata and teaching environment and try to determine student learning.

By means of Q Learning Algorithm for modeling various students, student this paper proves that learning model determination

is highly speeded up and helps tutorial-like system for better student model determination. Simulations’ results showed this

method is a validated mechanism for student learning process execution and also showed student model is successful on

student learning model determination and using Q Learning on students’ modeling help for student learning model determination

with lower iterations.
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