
Milan Nosál, Jaroslav Porubän

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00, Košice, Slovakia

{milan.nosal@tuke.sk} {jaroslav.poruban@tuke.sk}

ABSTRACT

The article explores mapping patterns between XML and annotations, focusing on their roles as metadata

formats in software system configurations. It discusses how XML represents external metadata while anno-

tations are embedded within the source code. The authors identify scenarios where each format is advanta-

geous: annotations offer simplicity and robustness, while XML provides flexibility for runtime changes and

multiple configurations. They present several mapping patterns—Direct Mapping, Nested Annotations, Enu-

meration, Wrapper, Distribution, Target, Parent, and Mixing Point—to facilitate the translation between

XML and annotations. These patterns enable developers to design configuration languages effectively, sup-

porting interoperability between XML and annotation-based systems. The work provides practical insights

into leveraging both formats based on specific configuration needs, thereby enhancing maintainability and

reducing complexity in framework design.

Keywords: XML Annotation, Software Configuration, External Metadata

Received: 18 November 2024, Revised 4 April 2025, Accepted 19 April 2025

Copyright: with Authors

1. Introduction

This paper addresses the formats of metadata for configuring software systems. We will refer to software

system metadata as the comprehensive collection of information that can be conveyed about any program

component, represented in a manner that is both understandable to machines and humans. This definition

aligns with the concept of software system metadata as described in the works of Guerra et al. [6] and Schult et

al. [12].

ISSN: 2230 – 8776

JISM 2025: 15 (3)
https://doi.org/10.6025/jism/2025/15/3/93-111

DLINE JOURNALS

 93 dline.info/jism

Journal of Information & Systems Management

Mapping Patterns between XML and Annotations for Software
Configuration

dline.info/jism 94

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

According to the association model proposed by Duval et al. [3], metadata can be classified into two catego-

ries. Embedded (or internal) metadata refers to metadata that resides within the same source file as the target

data. This type of metadata employs in-place binding, meaning it is linked to the target data based on its

location.

External metadata, on the other hand, is stored in separate source files from the target data. This type utilizes

navigational binding, wherein metadata contains references to the target data. Attribute-oriented program-

ming (AOP) is a technique for marking at the program level. This definition, shared by numerous sources in the

field [8, 11], supports the classification of AOP as a type of embedded metadata. An annotation serves as a

specific mark that denotes a program element. Conversely, XML is a traditional form of external metadata [4,

15, 9]. XML facilitates the structuring of metadata and its storage outside the source code. From a theoretical

perspective, XML functions as a generic language that can host specific domain-oriented languages [1].

Both of these formats are prevalent and utilized as notations for configuration languages within professional

frameworks. Java EE supports both formats across various technologies, including the Java Persistence API

(JPA) and Enterprise Java Beans (EJB). The .NET framework likewise employs both XML formats (e.g., in the

Enterprise Library) and .NET attributes (which can be used for annotations, as seen in MyBatis.NET or Win-

dows Communication Foundation (WCF)). Initially, most frameworks supported XML as a notation for con-

figuration languages, but with the advent of annotations, they expanded their configuration capabilities to

include annotations as well. Crafting a new notation for a configuration language that maintains equivalent

expressive power in terms of supported configurations can be challenging. Utilizing mapping patterns as a

foundation for designing (and consequently implementing) a new notation can greatly alleviate this challenge.

2. Annotations and XML

In this paper, we want to present mapping patterns between this two formats. But why would anyone want to

map a language in one format to the other? There are characteristics of these formats that make them comple-

ment each other. In some situations, annotations are better; in other the XML documents are advantageous.

Fernandes et al. [4] present a case study that compares three forms of configuration metadata – annotations,

databases and XML. They compare these formats according to three criteria: the ability to change metadata

during runtime of a system; the ability to use multiple configurations for the same program elements; and

support for the definition of custom metadata. Tilevich et al. [15] compares annotations and XML in few

aspects such as programmability, reusability, maintainability and understandability.

Annotations’ association model and their native support in a language is the reason why Tansey et al. [14] talk

about annotations as a tool for more robust and less verbose software system metadata. The XML navigational

binding is more fragile during refactoring and evolution of the program than in-place binding [13, 15]. Anno-

tations’ compactness and simplicity is a consequence of native support in a language, that lowers the redun-

dancy of structural information [10]. Since the annotations are a part of a host language, changes in annota-

tions need recompilation. If runtime changes of configurations are a requirement, external metadata are a

solution [6, 9].

The fact that annotations are scattered in the code puts a programmer into a situation when he/she needs to

dline.info/jism 95

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

search whole source code to understand configuration [15, 9]. On the other hand, when examining only one

program component a programmer can see the component code and configuration in one place [15].

All these arguments show that usages of both annotations and XML have their sense and meaning. Therefore,

we think that there are situations when one language format is no longer the better and there is a need to port

the configuration language to the other.

If it is expected that there will be situations in which annotations are more adequate and also situations in

which XML is better, then it is useful to support two notations for a configuration language, one annotation-

based and one XML-based. This we consider the main motivation for using our mapping patterns. An interest-

ing related work that deals with finding mapping between XML and other data format is a comprehensive

discussion of XML to objects mapping by Lämmel and Meijer [7].

2.1 XML to @OP Mapping Patterns

We were dealing with the abstraction of multiple configuration sources in our previous work [9]. We have

designed and implemented a tool called Bridge To Equalia (BTE) that facilitates unified access to @OP-based

and XML-based notations for one configuration language by combining the sources into a complete configura-

tion. One of the problems we had to deal with was finding a default mapping that would be common in existing

frameworks. In this paper, we present XML to annotations mapping patterns that we identified while working

on experiments with BTE.

XML to @OP mapping patterns are patterns that specify ways how an XML document or parts of it can be

mapped to its counterpart in annotations (and vice versa). The following catalogue contains patterns that we

have identified in experiments we have performed so far.

The patterns should be found useful in the following scenarios: Rewriting an existing system from one con-

figuration format to another – when a system author decides to change configuration notation from XML to

annotation or vice versa, the patterns can help him/her to do better decisions in designing a new configuration

language.

Adding a new configuration notation to a system – in this situation a system supports XML or anno-

tations but not both. A framework author wants to support a new configuration notation in order to gain

benefits of supporting multiple configuration formats.

Building a new framework supporting multiple configuration notations – mapping patterns can

be used even when the two configuration notations are designed simultaneously from scratch.

Designing a mapping apparatus for a configuration abstraction tool – in an abstraction tool there

has to be way to define a mapping between supported notations; there has to be a mapping language. In this

context, mapping patterns are perfect candidates for the concepts of such a language.

These situations can be abstracted and summarised by Figure 1. In short, there is a need to define mappings

between annotations and XML to define configurations both with XML and annotations. If the case is that

configuration is moving from one format to another, then mappings are needed to reuse domain knowledge

from the old configuration language.

dline.info/jism 96

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Figure 1. Supporting XML and annotation-based configuration

3. Pattern Catalogue

In the next sections we introduce a catalogue of XML to annotations mapping patterns. We have divided these

patterns into two groups according to their roots.

• The following describes the pattern’s description elements (inspired by [5]):

• The Motivation presents a problem context in which the pattern’s solution is suitable.

• The Problem states the question to which a pattern provides an answer.

• Forces lists conflicting forces that the pattern should help balance.

• The Solution describes the mapping pattern.

• Consequences lists the possible positive and negative consequences in a pattern.

• Known Uses lists known uses of the described pattern.

• The Example illustrates the pattern usage.

• Related Patterns describes how the pattern interacts with the other ones from this catalog.

3.1 Structural Mapping Patterns

The first group of the patterns are simple structural patterns. They aim to show the fundamental mappings

between XML and annotations. They do not deal with the relationship of a configuration to the program

structure, merely with the structural mappings between the languages.

An example when these patterns can be sufficient may be global configurations that are not configurations of

some program element but of a system as a whole. In case of configurations through annotations this means

that the binding of configuration annotations to program elements does not have to be significant. Probably

the best case would be if they could just annotate a system as a whole. In .NET framework there is an option to

annotate assemblies. However, currently the Java annotations do not support annotating a whole system.

Package annotations are usually used for this purpose. Another solution may be annotating an arbitrary class

or a class that is somehow significant for configuration.

Interesting example of such usage are configuration classes in the Spring framework.

dline.info/jism 97

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

3.1.1 Direct Mapping Pattern

Motivation: The first and basic problem when mapping a language from XML to annotation (or vice versa) is

the question of how to represent language constructs from one language in another. E.g., if there is an annota-

tion-based configuration language and the new language is supposed to be built on XML, there has to be a

simple and direct way to match constructs from the first language to the second to have a starting point.

Problem

What is the simplest way to map annotations’ constructs to XML and vice versa?

Forces

• An annotation-based and an XML-based language need to be able to represent the same configuration infor-

mation.

• Both languages do not have to conform to any special rules.

Solution

The most common and straightforward way is to use the Direct Mapping pattern. By default, the Direct Map-

ping pattern proposes to map annotation types to XML elements with the same name. Annotation type param-

eters are mapped to elements with the same name, too. This simple mapping is usually sufficient. From the

point of view of XML an XML element is by default mapped to an annotation that has its simple name identical

to the corresponding XML element’s name. XML attributes are mapped to annotation type parameters of the

same name.

This pattern can be parameterized with the name mapping and XML attribute/element mapping choice. Nam-

ing parameterization allows different names (in this context we can speak of keywords) for mapped constructs

in both languages. It allows keeping naming conventions in both formats, identifiers starting with uppercase

for Java annotation types and identifiers starting with lowercase in XML. For some language constructs in

annotation-based languages it might be interesting to use XML attributes instead of elements. This concerns

only marker annotations (see [16]) and annotation members that have as return type a primitive, string or a

class (if its canonical name is sufficient in XML). For example, arrays are excluded since XML attributes are of

simple type and there cannot be more than one attribute with the same name.

Consequences

[+] Simple XML structures can be mapped to annotations and vice versa.

[+] Naming parameterization allows different names in annotations and in XML.

[+] In some cases element/attribute choice parameterization allows more convenient notation in XML, be-

cause attributes are less verbose than elements.

[-] More complex mappings cannot be realised merely using this pattern.

Known Uses

JAX-WS’s mapping of the serviceName parameter of the @WebService annotation to wsdl:service element of

dline.info/jism 98

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

WSDL language.

JSF’s mapping of the @ManagedBean annotation mapped to managed-bean element.

JPA maps the @Table annotation to the table XML element and its name parameter to the XML attribute name.

Example: Figure 2 shows an example of the Direct Mapping pattern. A simple sentence states that there is a

book Heaven Has No Favorites in a library. The book element is mapped to the @Book annotation, its at-

tributes (in-library) and child elements (title and author) are mapped to corresponding parameters of the

@Book annotation. The naming parameterization can be seen in mapping the @Book annotation to the book

element (blue colour), where the name “book” has been capitalized in the annotation name. The attribute

parameterization is present in mapping between in-library attribute and inLibrary annotation parameter

(green colour).

Figure 2. An example of the Direct Mapping pattern

Related Patterns: The Direct Mapping pattern proposes only mappings of keywords one to one. Usually, it is

combined at least with the Nested Annotations pattern to define the simplest mappings between annotations

and XML.

3.1.2 Nested Annotations Pattern

Motivation: Another structural problem of mapping is handling the XML tree structure in annotations. A

tree structure of the XML is usually used to model some language property and therefore it is significant.

Problem: How to preserve XML tree structure in annotation-based languages?

Forces

• XML allows to structure configuration information to trees of element nodes and their attributes.

• Meaning of the tree structure is significant and therefore it has to be preserved in some form in annotations.

Solution: The Nested Annotations pattern proposes to nest annotations in order to model a tree structure in

annotations. The root of the tree in XML is modelled by an annotation type and its direct descendants (in XPath

the children axis of the XML element) are modelled by the parameters of the annotation type. If one of the

descendants has children itself, its type will be an annotation type too. This annotation type defines the

children by its parameters.

dline.info/jism 99

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Consequences

[+] XML tree structures can be mapped to annotations.

[-] Currently annotations’ implementations do not support cyclic nesting, so if the XML language has an

element that can have itself as a descendant, this pattern cannot be used. XML allows modelling arbitrary

trees, e.g., there can be a node XML element with child elements of the same type. The same is not allowed in

annotations (at least not in Java or .NET attributes).

[-] The sequence of annotation members is not preserved during the compilation; therefore if the order is

significant, this approach will fall short. The only way of preserving the order of the elements in annotations is

usage of an array as an annotation parameter type.

[-] In some programming languages, that do not support annotation nesting at all (e.g. .NET), the pattern is not

applicable.

[-] All nested annotations inherit the target program element from the root annotation. Therefore, the mod-

elled XML tree has to apply to the same target program element.

Known Uses

• In JPA there is a @Table annotation with the parameter uniqueConstraints that is of the type array of

@Unique annotations. The @Table is mapped to table element and uniqueConstraints are mapped to the

unique-constraint element with its own children.

• EJB and its @MessageDriven annotation with the parameter activationConfig that is of type array of

@ActivationConfigProperty annotations. This models a branch from XML, where the @MessageDriven anno-

tation is mapped to the message-driven element and the parameter activationConfig to the activation-config-

property element.

• Java Servlets technology uses nested annotations pattern in the @WebFilter annotation. Its parameter

initParams is an array of @WebInitParam annotations. The @WebFilter is mapped to the filter XML element

and the configuration branch represented by the initParams annotation parameter is mapped to an XML

subtree init-param (or in fact multiple subtrees, since the initParams parameter is an array).

Example: Figure 3 shows an example of the Nested Annotations pattern. The library language from the

example from the Direct Mapping pattern has been slightly changed. For simplification we have omitted the

Figure 3. An example of the Nested Annotations pattern

dline.info/jism 100

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

flag that specifies whether the book is in the library and decided to split the name of the author into first name

and surname. In XML this is easy to do using child elements (or possibly attributes). This splitting created a

new subtree (branch). In annotations it is mapped using the Nested Annotations pattern to @Book’s param-

eter author (yellow colour), that holds another annotation called @Author. @Author annotation deals with

structuring the author’s name using its own parameters.

Related Patterns: A closely related pattern is the Parent pattern that can be used as an alternative for

mapping XML tree structures to annotations. The Parent pattern provides more expressiveness than the

Nested Annotations pattern, as we argue in its description.

3.1.3 Enumeration Pattern

Motivation: Sometimes there is a piece of configuration information represented by a set of mutually exclu-

sive marker annotations. Designing an XML language with “marker” XML elements might seem a little too

verbose and it increases the complexity of XML instance documents.

Problem: How to elegantly map a set of mutually exclusive marker annotations to XML? Forces.

• There is a configuration property that is in annotation represented by a set of mutually exclusive marker

annotations.

• The Direct Mapping pattern makes the XML language too complex.

Solution: The Enumeration pattern proposes to map a set of mutually exclusive marker annotations to XML

element values. Each of the marker annotations is mapped to an enumeration value.

This pattern can be extended for those that are not mutually exclusive merely by allowing more occurrences

of the enumeration element. Modifications may include allowing one annotation with parameter (such as in

case of JSF in the Known Uses paragraph) that is mapped to XML element’s values that are not a part of the

enumeration.

Consequences

[+] XML language can be more compact and comprehensible.

[+] At the same time marker annotations are more compact regarding readability.

[-] Such an indirect mapping may make mixing configurations from XML and annotations more complex.

Known Uses

• JSF technology uses this pattern to specify the scope of their managed beans. The annotations

@ApplicationScoped, @RequestScoped, @SessionScoped and other scoping annotations from the

javax.faces.bean package are mapped to single XML element – the managed-bean-scope element. It is modi-

fied pattern, because the @CustomScoped annotation has a parameter that is mapped to the managed-bean-

scope value that differs from the enumeration values. While the standard cases are handled by marker anno-

dline.info/jism 101

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

tations, specific cases are handled by using custom values.

• EJB use @Stateless, @Stateful and @Singleton annotations to configure session beans.

These three annotations are mapped to the value of the session-type XML element in the deployment descrip-

tor.

Example: Figure 4 presents a simple example of the Enumeration pattern. The example is based on the JSF

managed beans technology. Annotations are mapped to the value of the managed-bean-scope XML element

and not to the element itself.

Figure 4. An example of the Enumeration pattern

Related Patterns: Enumeration pattern is an alternative to the Direct Mapping pattern, but the Enumeration

pattern is applicable only in special cases. The Enumeration pattern can improve code and configuration

readability in a situation when in an annotation there is a set of mutually exclusive marker annotations, or vice

versa, in XML there is an XML element that has values of an enumeration type.

3.1.4 Wrapper Pattern

Motivation: In some situations there may be an implicit grouping property in annotations that has to be

mapped to XML. An example may be a grouping of some pieces of configuration information according to their

bound target elements. In annotations, this structuring is implicit according to their usage, for example they

annotate the members of the same class.

Problem: How to represent grouping in XML that is based on some implicit property of annotations?

Forces

• Annotations use some implicit grouping property that does not have appropriate language construct that

could be mapped to XML.

• Grouping is closed on branches and depth – grouping is defined strictly on one branch in a tree and it groups

merely constructs on the same level in the tree.

Solution: The Wrapper pattern proposes to map implicit groupings from annotations to so called wrapper

XML elements. Wrapper XML element is an element, that groups together elements according to some prop-

erty. A wrapper XML element does not have its counterpart in annotations, at least not an explicit language

construct like an annotation or an annotation parameter. The Wrapper pattern is usually just a notation

enhancement, for example, binding to the members of the same class can be recovered from target program

dline.info/jism 102

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

element specifications. The Wrapper pattern simply structurally enhances the notation in XML, for example,

for design reasons.

Consequences

[+] XML can model some implicit properties of the annotations or the target program.

[+] The Wrapper pattern may increase readability of the configuration in the XML language.

[+] @OP Wrapper pattern is used to overcome the problem of annotating the program element with more

annotations of the same type (so called Vectorial Annotation idiom [5]).

[-] Since the Wrapper pattern proposes a use of a language construct in one language that does not have a

corresponding counterpart in the other, this may increase complexity of mixing the configuration.

Known Uses

• JPA uses the attributes XML element to group column definitions in the entity element. The attributes

element does not have an @OP equivalent in the code.

• JPA also uses vectorial annotation @NamedQueries that is a Wrapper for an array of @NamedQuery annota-

tions. In XML, the @NamedQueries does not have an equivalent, the named-query XML elements (that are

equivalents to @NamedQuery) are directly situated in the root entity-mappings element.

• The @MessageDriven annotation from EJB has a parameter that is of type array of @ActivationConfigProperty.

While using the nested annotations pattern this would be mapped to a set of activation-config-property XML

elements that would be direct descendants of the message-driven XML element, EJB uses the Wrapper pattern

to wrap the activation-config-property elements into the activation-config element.

Example: Figure 5 presents an instance of the Wrapper pattern. The binding to program elements is done

with the Target pattern combined with the Parent pattern (introduced in Section 3.2.2), mapping of the ele-

ments is highlighted with colours (to keep it simple the binding to program elements is not considered). The

important thing here is the attributes XML element that has no direct equivalent in annotation-based language

and is only used to wrap column elements.

Figure 5. An example of the Wrapper pattern

dline.info/jism 103

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Related Patterns: The Parent and the Nested Annotations patterns are related to this pattern. The Parent

and the Nested Annotations are used to group and structure configuration information too, but they have

direct and explicit representations in both languages. They carry significant configuration information. The

Wrapper pattern is more of a design decision (e.g., to make the language more readable).

3.1.5 Distribution Pattern

Motivation: Sometimes the same configuration information is supposed to be distributed in one configura-

tion language differently than in the other. There may be some configuration information that in XML is due to

design reasons separated from its logical tree structure, but it still has to be somehow associated together as a

logic unit. An example may be dealing with so called Fat Annotation annotations’ bad smell (Correia et al. in

[2]). While an XML element with many children elements might be good, overparameterized annotation might

increase code comp lexity and reduce code readability.

Problem: How to handle different distribution of configuration information in XML and annotations?

Forces

• Due to design decisions one or more constructs in the first language are mapped to one or more constructs

in the second language, while the mapping is not straightforward.

• Distributed constructs need to be tied together to form a logical unit.

• Logical units in both languages need to be unambiguously mapped to their counterparts.

Solution: The Distribution pattern proposes to map distributed constructs by sharing a unique identifier.

This identifier is unique in the configuration. The complete model for the corresponding configuration infor-

mation is built up from all the constructs with the same identifier. This unique identifier may even be a target

program element, as in case of mapping one XML element to more simple annotations. The unique identifier is

shared between both languages to serve for mapping between logical units.

Consequences

[+] More complicated tree structures of configuration languages are possible that do not have to strictly

follow each other, and therefore there is more space to adapt the languages to good design.

[-] Such differences in the languages may increase the complexity and readability of the mapping itself and

therefore of the configuration as well.

Known Uses

• Java Servlets technology is a nice example (since it is quite simple, we used it in the example section). The

@WebServlet annotation annotates a servlet implementation and through parameters specifies its name and

its URL mappings. XML configuration distributes these pieces of information to the servlet XML element, that

specifies the servlet and binds it to its implementation, and to possibly multiple servlet-mapping XML ele-

ments (one for each URL mapping in annotations). The servlet-mapping, the servlet elements are tied together

by the servlet’s name, which is servlet’s identifier.

• Java Servlets use the same approach with the @WebFilter annotations.

dline.info/jism 104

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Example: Figure 6 shows an example of the Distribution pattern. In this example the PersonServ servlet

configuration information is represented by one construct in the annotations – the @WebServlet annotation.

In the XML language the same annotation is distributed to two XML elements – the servlet and the servlet-

mapping elements. These elements are bound through the servlet name in servlet-name elements –

“PersonServlet” (highlighted in red). In the example there is again used the Target pattern (yellow colour),

that is explained in Section 3.2.1.

Figure 6. An example of the Distribution pattern

Related Patterns: The Target pattern binds the XML constructs to target program elements. The Distribu-

tion pattern can be used to indirectly bind scattered XML elements to program elements. The Target pattern

can be used to bind one of the distributed constructs to target element, then the Distribution pattern that ties

distributed constructs together propagates this binding to the rest of them.

3.2 Program Elements Binding Patterns

The structural patterns are fundamental for mapping between annotations and XML. However, in practice

they are combined with program elements binding patterns. That is because most of the configuration usually

directly concerns program elements. Annotations deal with this easily, because annotations by definition

annotate program elements. They are a form of embedded metadata and they bind themselves to program

elements using in-place binding. Annotations are written before (annotate) program elements. Metadata of an

annotated program element are enriched by the metadata represented by its annotation.

This of course raises a question of how to take into account this binding to program structure in an XML-based

language. This group of patterns deals with this issue and shows how XML structures can be bound to their

target program elements.

3.2.1 Target Pattern

Motivation: @OP is a form of embedded metadata. Annotations are always bound to program elements. The

same way the configuration author wants the XML elements to be bound to program elements.

Problem: How to bind XML elements and/or attributes to program elements?

Forces

• XML elements/attributes have to be bound to the same program elements as their corresponding annotation

constructs.

dline.info/jism 105

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

• XML elements/attributes are a form of external metadata so they do not provide in-place binding of embed-

ded metadata.

Solution: The Target pattern proposes to use a special dedicated XML element or attribute to set a target

program element for an XML element. An attribute is preferred to make the notation more compact. The name

of the dedicated element/attribute has to be unique in a given context for the node to be distinguishable from

other nodes used to carry configuration information. By default the generic name is used, like “class” for

binding elements to class definitions. By means of parameterization a special name can be used, that may suit

better for the language. Another reason may be preventing name clashes if the language already defines a node

with the same name that is used to represent configuration information. To make the notation shorter, the

target program element is inherited in XML branch, the same way as XML namespaces are. Thus, by default a

whole branch is bound to the same target program element.

A more structured approach can be used as well. The reference can be structured to more XML elements/

attributes. For example, a canonical name of the class member can be split to the class name and to the simple

name of the member. This can be useful when there is a need to use both of these pieces of configuration

information. Then the canonical name does not have to be parsed every time configuration is read.

Consequences

[+] XML elements and attributes can be bound to target program elements.

[-] Navigational binding using canonical name of the target program element is error-prone due to the absence

of code refactoring that would take into account the composition of languages. If the programmer changes the

name of a method, thanks to in-place binding, an annotation will be still valid while XML will need manual

refactoring (or implementing a tool that would be able to automate it).

Known Uses

• JSF technology uses the Target pattern for example in the managed-bean element to bind it to the program

element, to which its counterpart – the @ManagedBean annotation, is bound. The managed-bean XML ele-

ment has a child of name managed-bean-class that states the target program element canonical name.

• Servlets have the XML servlet element with a child servlet-class element that binds the servlet to its imple-

mentation.

• The JPA entity XML element is bound to its class using the class attribute.

• EJB uses the resource-ref XML element as an equivalent to the @Resource annotation.

The resource-ref element is bound to its target program element by injection-target element, that has two

descendants, injection-target-class specifying the target class, and injection-target-name identifies the actual

field to be injected.

Example: Figure 7 shows an example of the Target pattern. The table XML element is navigationally bound to

class tuke. Person exactly as its corresponding annotation @Table.

dline.info/jism 106

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

The binding uses the canonical name of the class (highlighted in yellow), the pattern uses the generic name for

binding the XML attribute (highlighted in green).

Figure 7. An example of the Target pattern

Related Patterns: The Target pattern is related to the Distribution pattern. The Target pattern proposes a

way to define bindings between XML and program elements by using a program element’s identifier. The

Distribution pattern proposes a way to bind distributed language structures together using a custom identi-

fier. The Distribution pattern can be used to indirectly bind distributed XML constructs to program elements

by binding constructs without explicit target program elements to a construct that is already bound to a target

program element.

3.2.2 Parent Pattern

Motivation: Sometimes the Nested Annotations pattern is not suitable for modelling the XML tree. In the

ORM the columns of the table belong to the table. In XML this is modelled by putting the column element into

the table element. Using the Nested Annotations pattern this would be modelled by a single annotation @Table

with a member which would have the type of array of @Column annotations. But these annotations have a

different target program element type than the @Table that annotates the class. They enhance metadata of the

class members. According to the Target element pattern, in the Nested Annotations pattern, the parameters of

annotations are bound to the same target program element as the annotations themselves.

Problem: How to model XML tree structure in annotations when the descendants of some element belong to

a different target program element then their parent does?

• XML allows to group elements by their meaning and to create trees of element nodes.

• Meaning of the structure is significant and therefore it has to be preserved in some form in annotations.

• Some of the XML elements or attributes in the tree belong to different target program element than the root.

Solution: The Parent pattern proposes to define parent-child relationships between annotation types. This

relationship defines two roles, parent and its children. Parent-child relationships can be used to define logical

tree structures consisting of annotations. Metadata carried by annotations in the children role are considered

to be on the same level as the parent’s members.

The matching of child annotations with their parents has to be unambiguous. Usually, a matching based on

program structure axes is sufficient. For example, in the Java programming language a program structure is

built from packages, classes and class members. Commonly used axis is the descendant axis, where the chil-

dren annotations annotate descendants of the program element annotated by the parent annotation. A con

dline.info/jism 107

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

crete example of using this axis can be found in the example section of this pattern. Another example can be

the self axis.

In this case all children annotations annotate the same program element as their parent. In the XML tree the

new target program element of some of the descendants can be specified both using absolute name – full

canonical name of the program element; or using relative name, specifying merely the identifier relative to the

current target element context1. This pattern allows overriding the inherited target program element. In XML

that is easy, just by explicitly specifying a new target element. However, annotations have to use this logical

relationship to preserve the desired structure and to still properly annotate different target progra elements.

Consequences

[+] Tree structures of XML can be mapped to annotations.

[+] Different target program elements of the configuration information in the tree are preserved in the

annotation’s concrete syntax.

[+] In programming languages that do not support annotation nesting this pattern can substitute the nested

annotations pattern (using the self axis).

[-] Using unnatural or complicated matching algorithms can make annotation languages difficult to under-

stand and use. We believe using the direct descendant axis is easiest to understand.

Known Uses

• JPA provides a classical example of the Parent pattern on the direct descendant program axis. The @Entity

annotation annotates a class. The annotations @Id, @Basic and @Column annotate members members of the

same class. In XML, their equivalents are logically structured as descendants of the entity element, the equivalent

of the @Entity annotation.

• JSF uses the Parent pattern on the self axis with annotations @ManagedBean and scope annotations, such as

@RequestScoped or @SessionScoped. Scope annotations are logical descendants of the @ManagedBean an-

notation.

Example: Figure 8 shows an example of the Parent pattern. The @Column annotation is on the descendant

program axis of the @Table’s target program element. Class members are descendants of the class itself in the

program structure in Java. The @Table is in this example a parent of the @Column annotation. This relation-

ship models the structure in XML, where the table element is the parent of the column element (while the

column have different target program elements than the table). The table’s simple descendants are mapped to

@Table’s members using the Direct Mapping pattern.

Related Patterns: Related pattern is the Nested Annotations parent. Both of these patterns are used to

model the tree structure of XML languages, but the Parent pattern is more flexible.

1E.g., if the context is tuke. Person and a subtree has as target program element the surname field of the

tuke.Person class (the tuke.Person.surname field), its relative name in this context is merely surname.

dline.info/jism 108

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Figure 8. An example of the Parent pattern (using relative naming)

Related Patterns: Related pattern is the Nested Annotations parent. Both of these patterns are used to

model the tree structure of XML languages, but the Parent pattern is more flexible.

3.2.3 Mixing Point Pattern

Motivation: If the system supports both XML and annotations, there has to be the mechanism to recognize

whether some configuration information is in both annotations and XML or merely in one of the formats. The

common situation may be using an annotation based configuration language to define a default configuration

and an XML-based language to override the default configuration. In such a situation processing only one

configuration format based on users choice is not sufficient, finer granularity in mixing is required than

merely on the root construct level. The languages should not only be substitutable but rather be able to

complement each other.

Problem: How to provide finer granularity for duplicity checking in XML and annotations configuration

languages?

Forces

• The annotation-based and XML-based configuration languages can both be used to define the configuration.

• Some pieces of the configuration information are duplicated in either XML and annotations.

• Both XML and annotations configuration are not complete, a complete configuration is a combination of

both.

Solution: The Mixing Point pattern proposes to define so called mixing points in a tree structure of the

languages. A node that is a mixing point has to be unambiguously identified, e.g., by its name and target

program element (or another policy may be used, like merely by its name). These two properties are easily

represented in both formats using the Direct Mapping pattern and the Target pattern. When a node in a tree is

a mixing point, the checks for duplication on its level must be performed in both annotation and XML-based

trees and the configuration information is mixed from both sources. If a node is not a mixing point, no mixing

is performed and simply the configuration information is taken from the language with higher priority. The

Mixing Point pattern is parameterized by the priority parameter that specifies which format has higher prior-

ity and thus overrides the duplicated configuration information. A root node is always by default a mixing

point.

dline.info/jism 109

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

Consequences

[+] A finer granularity of combining two partial configurations in XML and annotations.

[-] Sometimes even this granularity might be too coarse-grained. The same name and the target element can be

found in array annotation members. So if there is a need to combine two arrays without duplicates, some more

adequate duplication detection mechanisms must be used (for example based on values).

Known Uses

• The Spring framework currently supports mixing of both annotations and XML configuration, an example

may be using both approaches to configure dependency injection, where the XML configuration can be comple-

mented by annotations (@Autowired can be considered one of the mixing points in this example). XML has the

higher priority in the Spring framework.

• Hibernate (ORM framework) supports mixing too; it allows specifying mappings in both annotations and

XML. However, as mixing points there are classes and not fields, it is possible to configure one class through

annotations and one through XML, but it is not possible to configure one class by mixing both formats. The

annotations have higher priority in Hibernate.

Example: Figure 9 shows an example of the Mixing Point pattern. The configuration information specifing

column for the field tuke.Person.name is duplicated. The duplication is detected using the naming parameter

of the Direct Mapping pattern (@Column to column XML element – blue colour) and using the target element

identifier (green colour). If there is a configuration information that is not duplicated, this information is

directly used in whole configuration (configuration information for tuke.Person.id and tuke.Person.surname).

Otherwise the information from the language with higher priority is used, in our example it may be XML

overriding the column value “NAME” to “FIRSTNAME”.

Figure 9. An example of the Mixing Point pattern

4. Conclusion

This pattern catalogue presents common mapping patterns between XML and @OP. These patterns are the

basis for designing new annotation-based or XML-based configuration languages that are based on existing

configuration languages. Its contribution lies in recognizing and formalizing mapping patterns from practice.

Future work can address mappings between other configuration formats – YAML, .properties, INI files or

dline.info/jism 110

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

even proprietary domain-specific languages, if they are built upon generic languages.

Acknowledgements

This work was supported by VEGA Grant No. 1/0305/11 Co-evolution of the Artifacts Written in Domain-

specific Languages Driven by Language Evolution.

References

[1] Chodarev, Sergej., Kollár, Ján. (2012). Language development based on the extensible host language. In:

Proceedings of CSE 2012 International Scientific Conference on Computer Science and Engineering (pp. 55–

62). EQUILIBRIA, s.r.o.

[2] Correia, D. A. A., Guerra, E. M., Silveira, F. F., Fernandes, C. T. (2010). Quality improvement in annotated

code. CLEI Electronic Journal, 13(2).

[3] Duval, Erik., Hodgins, Wayne., Sutton, S. A., Weibel, Stuart. (2002). Metadata principles and practicalities.

D-Lib Magazine, 8(4).

[4] Fernandes, Clovis., Ribeiro, Douglas., Guerra, Eduardo., Nakao, Emil. (2010). XML, annotations and data-

base: A comparative study of metadata definition strategies for frameworks. In: Proceedings of XATA 2010:

XML, Associated Technologies and Applications, XATA 2010 (pp. 115–126).

[5] Guerra, Eduardo., Cardoso, Menanes., Silva, Jefferson., Fernandes, Clovis. (2010). Idioms for code anno-

tations in the Java language. In: Proceedings of the 17th Latin-American Conference on Pattern Languages of

Programs, SugarLoafPLoP (pp. 1–14).

[6] Guerra, Eduardo., Fernandes, Clovis., Silveira, Fábio Fagundes. (2010). Architectural patterns for metadata-

based frameworks usage. In: Proceedings of the 17th Conference on Pattern Languages of Programs, PLoP2010

(pp. 1–14).

[7] Lämmel, Ralf., Meijer, Erik. (2007). Revealing the X/O impedance mismatch: Changing lead into gold. In:

Proceedings of the 2006 International Conference on Datatype-Generic Programming, SSDGP’06 (pp. 285–

367). Springer-Verlag.

[8] Noguera, Carlos., Pawlak, Renaud. (2007). Aval: An extensible attribute-oriented programming validator

for Java: Research articles. Journal of Software Maintenance and Evolution, 19(4), 253–275.

[9] Nosál, Milan., Porubän, Jaroslav. (2012). Supporting multiple configuration sources using abstraction.

Central European Journal of Computer Science, 2(3), 283–299.

[10] Pawlak, Renaud. (2006). Spoon: Compile-time annotation processing for middleware. IEEE Distributed

Systems Online, 7(11), 1.

[11] Rouvoy, Romain., Merle, Philippe. (2006). Leveraging component-oriented programming with attribute-

dline.info/jism 111

 Journal of Information & Systems Management Volume 15 Number 3 September 2025

oriented programming. In: Proceedings of the 11th International ECOOP Workshop on Component-Oriented

Programming, WCOP’06. Karlsruhe University.

[12] Schult, Wolfgang., Polze, Andreas. (2002). Aspect-oriented programming with C# and .NET. In: Proceed-

ings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, ISORC’02

(pp. 241). IEEE Computer Society.

[13] Song, Myoungkyu., Tilevich, Eli. (2012). Metadata invariants: Checking and inferring metadata coding

conventions. In: Proceedings of the 2012 International Conference on Software Engineering, ICSE 2012 (pp.

694–704). IEEE Press.

[14] Tansey, Wesley., Tilevich, Eli. (2008). Annotation refactoring: Inferring upgrade transformations for

legacy applications. SIGPLAN Notices, 43(10), 295–312.

[15] Tilevich, Eli., Song, Myoungkyu. (2010). Reusable enterprise metadata with pattern-based structural

expressions. In: Proceedings of the 9th International Conference on Aspect-Oriented Software Development,

AOSD’10 (pp. 25–36). ACM.

[16] Wada, Hiroshi., Takada, Shingo. (2005). Leveraging metamodeling and attribute-oriented programming

to build a model-driven framework for domain specific languages. In: Proceedings of the 8th JSSST Conference

on Systems Programming and Its Applications.

