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ABSTRACT: Thermodynamics, a concept thought of two centuries ago, refurbished and elaborated since, assimilated and
transposed to distinctive disciplines stretching from neuroscience to economics but still lacks in-depth exploration of its
impact on social networks. The aim is to model thermodynamic principles after social networks, to understand how different
variables of the system such as entropy, temperature, energy and pressure steers the communication between agents at a
broader sense. These innate synthetic variables of social thermodynamics can expose; varied and difficult to analyze dynamics
in a network with higher order of approximation. Quantifying these variables in this context has promising applications in
business intelligence, information diffusion and network analysis. This paper casts light on distinct attempts to measure
social entropy and other social thermodynamic variables, while presenting methods to construct various thermodynamic
processes to study these variables in a restricted environment. We further discuss our observations, findings and challenges
in modeling social network as a thermal gaseous system. The paper focus on how these variables behave and what the
standard relations signify in social context, more detailed analysis of Isochoric and Adiabatic process equivalents are
studied while addressing roadblocks encountered by theorists in the past. Our models are experimented with sample sets
collected over a period of 6 months from an enterprise social network for 250K users with over 860M connections. We aim to
extend the scope of social interaction analysis beyond today’s limitation, thus benefiting from many wide-established principles
in thermodynamics.
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1. Introduction

Resemblance between thermal gaseous system and social network is more than what meets the eye. The way agents interact
with each other, exchange emotions and opinions affecting the way other agents steer constantly, suggests the existence of
energy transfer in social system. Thus it is fair to think that social networks possess internal energy in some form and constantly
try to reach equilibrium state. Rise in complexity, change in energy states provides something to start with at ground level, to
work our way out towards social thermodynamics. Advantages of knowing social entropy, pressure and temperature are endless
with respect to information diffusion and communication modeling. Despite being decade’s old concept, very little work has
been done in the direction of applying these principles to social thermodynamics. Interdisciplinary collaboration and lack

Social Thermodynamics: Modelling Communication Dynamics in Social Network

Dinesh Pothineni, Pratik Mishra, Aadil Rasheed
Innovation Labs
Tata Consultancy Services
Chennai, India



                     Journal of Information & Systems Management   Volume   2   Number  4   December   2012         175

of proper test bed are most cited issues. Social network modeled in this fashion can help us study behaviors, affinities
betweenusers in terms of pressure and energy functions.

Despite the term ‘social thermodynamics’  being used first in early 70’s, lack of proper experimental platform to collect such
context sensitive dynamic empirical data in good volumes hindered further research. Few scientists began to model social
systems in the same decade from a far from equilibrium perspective. Ilya Prigogine, a Belgian chemist first explored non
equilibrium thermodynamics in social context. [1] Georgi Gladyshev, a Russian physical chemist put forward the idea of hierarchical
thermodynamics where social information networks could be studied by modeling systems with in systems approach by taking
their internal energy and work functions into account. [3]

Dawn of online social networks sparked interest in the social thermodynamics field again, with easily available relevant data
pools. Social systems fueled by rich interactions, in real time open doors for testing thermodynamic models for deep insights. [3]
stated “The value of ∆G ,Gibbs free energy corresponding to the formation of some human society, a complicated thermodynamic
system, can be estimated by calculating the work that went into the building of the structure of that society” [4] Modeling
interactions in networks after thermal system hints promising impact on communication constructs and information behavior.

Communication is the primary means for information diffusion. Information causes change in social dynamics using people as
a medium to move from one place to another. We tried to focus on how the synthetic thermodynamic variables relates, behaves
and their significance in social context. Adiabatic and Isochoric process for social networks are modeled and studied while
addressing roadblocks encountered by theorists in the past. This will extend the scope of social interaction analysis beyond
today’s limitation, benefiting from many well established thermodynamic principles. As an immediate result, we can estimate the
ideal time to infuse information in a network, targeting very specific areas.

Modeling diffusion of information is a promising area in aiding us to understand the kernels of systems behavior, but proved to
be tough to model the same for macrostates in social networks. Most of the current diffusion models in social networks highly
depend on influence functions of individual users which is again a microstate property. [12] The innate dependence on network
specific signals and attributes makes it more difficult to generalize these models to potential states. Ease of unambiguous
separation of macrostates and availability of ample relations to judge system’s perpetual synthetic properties with respect to
other states, give social thermodynamics an unique advantage in understanding these core factors.

1.2 Criticism
Precision matters in science. It counts on measurable, objective, repeatable, observable evidences. However social science
differs with this validation as most of the established research tends to identify phenomenons and general tendencies in the
ways people interact. Very often this occurrence always tends to have outliers, hence not consistent like physical laws. This
notion caused dismissal of theories contemplating about social thermodynamics. Paul Samuelson an economist criticized “the
sign of a half-baked speculator in the social sciences is his search for something in the social system that corresponds to the
physicist’s notion of entropy” [5]

1.3 Structure of Flow
Talking about flow of the paper, barring the overview quoted in abstract section, Introduction reads in depth background of the
problem space and benefits, roadblocks in solving it. Section 2 discusses more about social thermodynamics, barriers in
literature work on social entropy and modeling diffusion in thermodynamics fashion. In addition to arguments on existence of
thermodynamic models in social networks, criticism on molecular approach for the same casts light on divided opinions in the
field. In the next section i.e., 3 we’ve talked about our approach to model thermodynamic processes in social networks and
calculating various synthetic variables in conjunction with entropy. It continues to converse about feasibility of applying some
established relations and needed assumptions to maintain the process state of the system. Continuing to 4th section i.e.,
observations/ discussions depicts sample data obtained from our analysis and a short note about probable inference from
thermodynamic properties. Before citing the much helped references we d presented our conclusion in detail and further
directions to extend the work.

2. Social Thermodynamics

Thermodynamics digs into the association between energy transformation with respect to dynamic variables like volume,
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evolution of efficiency, temperature, entropy, work and pressure. There are quite a number of similarities here with social
networks adhering to certain properties of the system. When we start to think people as molecules in a gaseous state, molecules
gain/exchange energy in the form of interactions which guide the flow of temperature in the system. It states that they possess
potential energy as well. [7] People are in motion with change in network topologies, affinities between each other. First law
states {Q = U + W} when a fixed mass of gas is supplied with additional heat, it invariably gains internal energy and expands
corresponding to the amount of work done thus conserving the energy. This phenomenon is evident in social groups where
high energy in a pseudo macrostate affecting the entire system as an effect.

Definition of equilibrium is perpetual in social systems, as it allows a single molecule to be in different states of equilibrium with
respect to the pseudo macro state in consideration. In an example between two agents MA and MB of a system, the definition of
state of equilibrium varies from what they develop with external systems where both the agents are not mutual members. [15]

2.1 Macrostate Variables
We are trying to take a fresh look at social communication by observing microscopic properties and how they give rise to
various macrostate phenomenons scientifically. In an real social thermal system, emotions carry the real energy. Social interactions
generated by users act as carriers of these emotions. These interactions in turn mobilize through channel bridges, what to be
otherwise called connections between users. In near real system, ability of an interaction to get transmitted across multiple
channel bridges highly depends upon type and depth of the connection between hops. So to study such a complex evolving
system, one has to make certain assumptions about energy absorbed by molecules in each cycle, [17] work done which affects
the affinity, strength of channel bridge to establish and control certain thermal processes. Assumption is that in ideal social
thermodynamic system molecules interact without any energy dissipation or absorption, external work done has negligible
effect on affinity between people, all channel bridges are equi volume & all states are equi probable. With increase in the number
of people, energy increases in the system as long as there are new interactions. Assumption is that all channel bridges are of the
same volume and with the same ability to transfer information, where in reality with increase in affinity between agents increases
the volume of pipe (i.e., probability of information passing from one end to end), lso that there is no energy loss/absorption by
molecules to control the thermal state [11]. Thus ignoring strong ties vs weak ties classification as people alone doesn t matter
without the bridge between them and any disconnected agents (molecules) doesn t affect the above system.

Complex social systems generally adhere to elementary factors like Homophily, Confounding, Induction and can be clearly split
up across them. [7] An ideology or behavior is usually inducted from agent to agent, eventually leading to grouping similar
people which is homophily. It helps us to identify and observe a pseudo macrostate with more clarity as the flocks tend to be
easily predictable than individual microstates. [15] An ideology or behavior that spreads from user to user varies in pace and
energy. Higher the energy difference faster it spreads. Thus it is fair to think that social networks possess internal energy in
some form and constantly try to reach equilibrium state.[9] Change in energy states gives us something to work with, at ground
level to work our way out to system thermodynamics.

In a closed gaseous system, temperature T and pressure P are proportional to each other. In a social system modeled after a
gaseous state, people are swapped for molecules ‘N ’ and connection pipes contribute for volume ‘V ’ as they depict more
accurate meaning of system boundaries.

2.2 Entropy
Interpretation of term ‘entropy’  is quite ambiguous with respect to application context. It differs in meaning from thermodynamic
to statistical mechanics and other areas. In essence it s a measure of randomness/ energy that s unavailable for work. Going by
the laws, entropy of a closed/isolated system always tends to increase or remains same, while universe as a system is considered
to have the maximum entropy of all. Clausius R. (1850) was the first person to quantify entropy of an isolated system. Due to
shortcomings caused by excluding microscopic nature of system in his model, a new statistical definition was needed for deeper
understanding of systems. Later by studying microscopic elements Boltzmann L. (1870) proposed that statistical entropy is
similar to thermodynamic entropy and only differs by a constant multiplier (k = Boltzmann s constant) when taken into account.
This approach drills down to entropy being proportional to log of no. of all possible microscopic configurations that can give
rise to a referred macro state. Statistical definition S = − kB ln Ω says, it s a scale of uncertainty that reveals after eliminating all
the observable macroscopic properties like Temperature ‘T ’ , Pressure ‘P’  and Volume ‘V ’ [13]. Microstates reveal granular
details about the system like change in internal energy and local influence. [8] Entropy in the system would increase with more
such states being available in the system with high probability. [10] Entropy can be calculated for a set of these macroscopic
variables by measuring the extent to which total degree of the probability of system is spread out into different possible
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microstates. Basic equation measures entropy as logarithmic density of all the possible (i) states, proportional to Boltzmann
constant KB. For Ω  to be determined, all dynamic macroscopic variables should be included.

Most of the statistical thermodynamics work under an assumption that system is isolated and is in equilibrium, which makes
occupation of all microstates equally probable.

Pi = 1 / Ω

Pi is defined as probability of system being in ith state.

S = kB ln W For non-equilibrium systems, Ω (N, T, V, X..) is a function of complete set of macroscopic variables, that includes
everything that may change in the system under experiment, without which one might observe decreasing entropy due to non-
equilibrium states. This amazingly simple equation by Boltzmann proves that no. of degrees of freedom of a system is related to
number of possible microstates.

Shannon Entropy in Information theory measures the uncertainty factor accompanied with a random variable. This version of
entropy by Shannon quantifies expected value of information in units of bits. In other words it is an amount of information one
is missing when one does not know the complete manifestation of the random variable. This coding theorem has wide applications
in data encoding and compression. One can understand it better this way, Higher the entropy, lesser the compression ratio.
Highly random text can’t be compressed beyond a point as entropy increase. It shows that the average length of the shortest
probable way to encode information in a given set can be found with entropy / Log (no. of symbols) in the target set.

H = − pi ln (pi)
i = 1

n

∑
2.3 Social Entropy and Energy Functions
Quantifying entropy for social systems should be done with care by mapping all the constituents to right variables. Definition
of entropy largely depends on what we think it is with respect to the system. In a general closed gaseous system, temperature
‘T ’  & pressure ‘P’ are proportional to each other. In a social system that is modeled after a gaseous state, number of people are
swapped for molecules ‘N ’  and connections which acts as expandable pipes contributes for volume ‘V ’ as they depict more
accurate meaning of system boundaries.

Clausius thought heat has fluid nature while Carnot thought of it as a conserved property that transfers between multiple
systems. Joshua K. (2011) gave a good building block for social entropy. [6] Mainly the sensible expression to measure
multiplicity a function of Ω helps in deriving social thermodynamic entropy. Clausius saw entropy as a fixed quantity that
corresponds to heat and temperature S = Q / T

As molecular theory gained audience with kinetic energy of gases, definition has been reasserted that entropy can only be
defined for systems in thermal equilibrium. As T remains constant, increment can be represented as

δ S =
δ Q
δ T

Shannon’s coding theorem had managed to reduce entropy to no. of bits, to encode any data into H bits based on the
approximations closely to a coding system to convert any type of information into just bits. As mentioned above already,
entropy is what we define and perceive. So social thermodynamics need its own version of entropy, which depends totally on
locally available variables. Starting with the statistical logarithmic equation for entropy in physics,

S = Ks ln (Ω ( N, V, U))

Where Ks = Boltzmann constant

Ω is multiplicity, a function of all macroscopic variables that undergo change [14] during a process in social networks. Multiplicity
Ω is defined as number of microstates associated with macrostate. N, V, U are different microstate parameters considered by
Joshua for multiplicity equation.
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Ω ( N, V, U ) =
(n ( n −1 ) / 2)! (U − 1) !

(U − V) ! (V − 1) !V! (N ( N −1 ) / 2) − V)! ⎣
⎡

⎦
⎤

The network we’d considered for study uses follow model to make connections. So (n (n−1) / 2)! will be just (n (n−1))

2.3.1 Energy function of U (internal energy)
Before going into the details: calculating the unknown variable ‘U’, energy function is very important, where social coefficient
λ varies according to the type of interaction. α, β and γ are social network dependent constant.

U = λi Ni  Ii∑

Where , λ =
α, I ∈ Initiated Interaction
β, I ∈ Received Interaction
γ, I ∈ Indirect Interaction

N = number of users in an interaction
⎭
⎬
⎫

⎩
⎨
⎧

Once we know S and U, it is easy to define and contain environmental configuration of the system, to work out synthetic
parameters.

3. Experimental Models

Carnot cycle is an established ideal thermodynamic process in which macrostate of the system goes through a cycle of phases.
This cycle accurately mirrors the dynamics of social networks except the concept of heat sinks. So, we chose a thermal system
profoundly used in automobiles ‘Otto Cycle’ as the closest analogous process. It cycles through four phases. Adiabatic
compression: Work done increases the temperature without dissipating heat; Isochoric heating: Heat supplied at constant
pressure raises the temperature; Adiabatic cooling: drastic decrease in pressure results in heat loss; Isochoric cooling: sudden
decrease in temperature at constant volume due to heat loss.

We modeled and mapped isochoric heating and adiabatic cooling as in ‘otto-cycle’  to social system. Volume is considered as the
total connections in the network; Energy is the measure of total interactions happening in the system; Entropy is number of
possible states in which the users can exist and Work is effort done by force in changing the state of social system. We assume,
the mass of each user is constant and is negligible. In reality, they gain energy from the interactions performed and the
connections established in a network; which in turn acts as a significant influence measure.

Isochoric process can be observed in a closed group of users with established and stable connections assuming negligible
change in connections. All the energy in the system is proportional to the interactions occurring in the system. Reversible
adiabatic cooling was difficult to model as quantification of external system is not feasible in our model. So we modeled adiabatic
free expansion of gas where users make connections in absence of any external pressure from the network. Being an irreversible
process, it cannot be described using ideal gas equations, hindering the process of calculating derived thermodynamic variables.

3.1 Case1: Isochoric Heating
Isochoric heating of social system happens when systems reach a maturity of volume by forming enough connections, after
which it just gets heated up by interactions happening due to various external influences

At this point, system adheres to the condition (V is constant, ‘∆V’ = 0) making it feasible to calculate temporal pressure,
Temperature, change in internal energy over time.

Ideal gas law equation says pressure ‘P’  times volume ‘V ’ equals to no. of moles ‘n’  times gas constant ‘R’ and temperature ‘T’

PV = nRT

There is a problem with this useful relation. It s quite hard to rely on number of moles, an ambiguous undefined unit in social
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context, also the unknown gas constant which is not much of a use. Instead going by this other relation,

PV = N kBT = nRT,

Universal Boltzmann constant is much better to rely on, while holding the same variables that we needed. Instead of moles we
have N on the right side, which accounts for density of gas i.e., number of particles per volume. It corresponds to number of
agents (molecules N) inside the macrostate.

As in Isochoric process, Volume becomes constant when system stops expanding after reaching the maturity level,

Also pressure and energy density aren t same but related. When you look at ‘kBT ’,  kinetic energy density of gas, it appears
same at the first glance. When looked closely pressure is momentum flux applied in spatial direction while energy corresponds
to temporal direction.

P α T ; V is constant

T = Q / S

Let’s consider this second relation between temperature, heat and entropy. Thermal system in which entropy is an independent
externally measured variable, temperature can be defined as derivative of the internal energy with respect to the entropy.

Qheat = UInt’ Energy + Wworkdone
While work done is 0, ∆V = 0

T =
dU
dS

Heat ∆Q = ∆U (change in internal energy as new interactions get created and information flows)

∆Q = λi Ni  Ii∑
λi – Social coefficient
Every interaction doesn’t carry equal energy and varies on interaction type. We call this a social network dependent variable. |
Social coefficient

Ni = no. of people involved in an interaction (depends on type of interaction, group message, share, comment or whatever)
Vy - subjective volume based on my connections
Iz - change in interactions

S = Ks ln (Ω ( N, V, U))

The macroscopic variables that are chosen for this function set Ω (N,V , U, X..) should comprise everything that may alter during
the experiment. This is important as otherwise, one  might observe decline in entropy which is again paradox to the property of
entropy.

Any new information that s being infused into the system is some sort of interaction between agents. We think these interactions
are responsible for energy addition into the system. Similar to photons they ve negligible mass but are responsible for energizing
the system in every possible way, thus affecting the communication dynamics.

People are molecules who emit energy in terms of interactions, whereas connections between them are similar to pipes which
constitute for actual volume. With increase in people, energy increases. Assumption is that all pipes are of the same volume with
equal ability to transfer information, where in reality, with increase in affinity between agents increases the volume of pipe (i.e.,
probability of information passing from one end to end)] Ideally strong ties and weak ties should be factored in future models, as
people alone don t matter without the bridge between them, In other words an isolated molecule cannot affect the system in any
way.

In ideal scenario, molecules gain energy from the heat generated in the system. Some form of potential energy which affects the
social affinities between connected molecules and in turn diffusion of data exists. This is an interesting direction to explore by
quantifying these general properties.
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Work = pdV (work done = 0 in this case)
3.2 Case 2: Adiabatic Cooling
Adiabatic thermodynamic process does not allow heat transfer between system and surrounding. It s mostly an abrupt event,
with not enough time to facilitate heat exchange. Free expansion is a process of expansion in vacuum, which in social system
corresponds to people making connections in absence of external pressure.

It can be triggered with the arrival of an influential user, creating a huge impulse in the network. Despite arrival of an external user,
network is still considered close because of negligible impact on number of users, when the number is high. Impulse generated
sets the system in state of abrupt expansion in the absence of external pressure. Change in internal energy is ignored as there
is probability of new interactions in this short-span of time is negligible.

      ∆H= ∆U+∆W
∆H=∆W {as ∆U = 0}

The entire process is irreversible, as the system goes into free expansion there is abrupt variation in pressure across the system
with sudden dip in entropy and volume. So, the quantification of derived macrostate variables is infeasible.

4. Observations and Discussions

We think the unique advantage of observing an evolving network would lead to many interesting observations that are difficult
to study with much established networks like twitter, without accurately predicting the macroscopic evolution in advance.
Meaning, unless one has a holistic view of the entire system, it is quite hard to pinpoint the exact macrostate that might adhere
to the conditions we intend to observe.

The above model has been tested on Knome, an internal social network in TCS connecting 250K users. It works on a follow model
for building connections, an apt test bed for our proposed model. It is still an emerging network with about 877 Million recognized
connections since its inception 6 months ago. To simulate the appropriate environment for the experiments, we selected mature
connections that undergo minimal changes and ignored the budding connection networks. These set of connections and
connected users represent a macro state. For these macro states the volume (V) remains constant as there is no new connections
being developed and it can be considered as an isochoric socio-thermodynamic process.

We started by secluding the network from the other interfering data. We quantified the energy of the closed macro state using the
amount of interactions observed using the equation 1. The entropy is calculated using equation 2 as a measure of all possible
micro states possible. Using these values we calculated the temperature and pressure of selected macro state by comparing the
change in energy and entropy over time.

Table 1. a) Isochoric Heating
Various thermodynamic variables in action across time

Energy

2092.6

2374.6

2631.8

2721.8

2971.6

3037.4

3129.8

3203.2

3340.2

3408.6

  Entropy

1621.2075

1731.60254

1819.21564

1847.52559

1920.75794

1938.9053

1963.45951

1982.61775

2016.79129

2033.16812

Change in
   Entropy

  110.395

  87.6131

 28.30994

 73.23236

 18.14735

 24.55422

19.15823

 34.17354

 16.37683
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Change in
   Entropy

  110.395

  87.6131

 28.30994

 73.23236

 18.14735

 24.55422

19.15823

 34.17354

 16.37683

Change in
   Entropy

     282

   257.2

     90

  249.8

   65.8

   92.4

   73.4

   137

   68.4

   2.554463

  2.935634

  3.179095

   3.41106

  3.625873

  3.763101

  3.831251

 4.008949

 4.176632

74.07943

85.13339

92.19376

98.92074

105.1503

109.1299

111.1063

116.2595

121.1223

Temperature Pressure

Change in temperature corresponding to pressure when pegged to entropy at zild.

Table 1. b) Isochoric Heating

Table 1 lists the data from one such macro-state with 723 connections gathered over a month’s period from interactions
generated within these connections. They exhibit approximate linear increments in temperature and pressure with corresponding
increase in energy which is plotted in Graph 1. We further divided this graph into 4 scenarios and compared those with the live
data.

Scenario 1 Scenario 3 Scenario 4Scenario 2

Temperature

En
er

gy

Figure 1. Graph T vs P across multiple scenarios

Scenario 1, 3 and 4 are the usual behavior of most of macro-states, with the significant increment in pressure with the increase
in energy of the system. Interestingly the first and third half shows drastic pressure increments with less than average increase
in energy and the second half show the lower increments for higher energy values. This behavior when referenced with the live
data shows that the scenario 2 is a period of extended weekend with low participation in the network. The first half starts along
with a major influential user initiating interaction causing a sudden surge in pressure value which attains equilibrium and second
half has most of the interactions derived from this parent interaction and doesn’t have any visible impact in pressure. The third
part of the scenario marks the release of new features of the platform, exhibiting the effect of external pressure on the macro-
state.
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In our initial assumption we assumed that users in the macro-state have no mass. The first phase of scenario 2 exhibits the impact
of mass of the user in the system as interactions generated by heavy users exert more pressure. The model does show the
relevant dips and highs based on the mass but will need a major remodeling to consider masses for defining other major
equations. We also assumed that there is a constant external pressure for the macro-state at any given time, but as evident from
the phase 3 of scenario 2 the external force to affect the pressure in the macro-state and the algorithm needs to be tweaked for
measuring and quantifying these impacts.

While modeling the socio-thermodynamic model and referencing it with live-data, we made few interesting observations as
listed below:

Observation 1: The model assumes that there is negligible resistance to the information flow and every user acts as a perfect
information dissipation in macro-state. The information diffusion though is highly dependent on the number of connections;
increase in connections impacts the interaction patterns. So with increase in volume in the system, accession of information
diffusion becomes more apparent. This may be defined as lowering of diffusion threshold with increase in connections, which
in social networks means more interest groups to share information by lowering resistance for information flow. The diffusion
threshold is defined as the ratio of heat generated to the heat absorbed for a user. In other words, it’s a ratio of interactions
generated to interaction. It is also observed that Influencers have a very low value for diffusion threshold, proving its inversely
proportional to the mass of the user.

Observation 2: Under the constraint of constant heat, introduction of a probable high mass, influential and frequent user,
referred as influential will have an explosive effect in social thermodynamics. Assuming the small time interval after the influential
joins, the macrostate acquires new connections in this very short span. As the interaction remains constant during this period,
there is a rapid drop in entropy of the macrostate since the possible microstates system can be with the now reduced energy
drops significantly.

Increase in Volume   Change in entrophy

2 23.5

3 32

1 10

3 28.4

5 42

2 15

Pr
es

su
re

Volume
Figure 2. Change in P of the macrostate vs VTable 3. Entropy change with the change in volume

The arrival of influential user [2] exerts an imploding force on other users, leading to a rapid expansion in connections. This
sudden surge in connection reduces the overall pressure of the macrostate, stabilizing the system and marking a new equilibrium.
This is a hyper-expansion period for the macro-state in social network, new connections are made at a very high speed and there
isn’t enough data to keep the pressure and temperature constant at this stage causing a sudden drop in the temperature and
overall pressure in the system. This scenario models the adiabatic expansion for socio-thermodynamic process.

Figure 2 shows the change in pressure of the macrostate with change in volume and Table 3 compares the entropy change with
the change in volume.

This doesn’t infer that the interactions have gone down, this just means that the average interaction per connection has reduced
for the considered time. So the low temperature and pressure is not due to lack of enough interaction but due to decrease in
overall entropy of the system.

5. Conclusiom

After analyzing and inferring from the recent work that has been done in the field of socio-thermodynamics, we mapped and
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modeled the same on an established enterprise social platform. We started with defining apparent thermodynamics variables in
social context and used them to derive other dependent variables. We realized the simulation of isochoric process, selecting a
group with matured, stable and non-changing connections to derive temperature and pressure. The impact of these variables on
interaction patterns, information diffusion and influence analysis in social network are then observed and analyzed. We also
modeled the impact of external impulse in the social system parallelly observing and analyzing it with real-data. We later
discussed about the possible exploration areas to quantify individual influence and map diffusion patterns in social network.
We concluded the paper with the discussions of scenarios the current model flounders and the possible recommendations for
future research.
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