
 184 Journal of Information & Systems Management Volume 2 Number 4 December 2012

ABSTRACT: In order to make software assessment focused on object oriented principals, we propose a classification based
on ISO model using properties of the object-oriented design such as: abstraction, inheritance, encapsulation etc. In this
paper we present some quality models, then we make the relationship between sub-characteristics of ISO model and properties
of both the object-oriented design and the quality. At the end we present a classification for the most popular oriented object
metrics based on design and quality properties.

Keywords: Quality, Metric, ISO Model, Design Properties, Object-Oriented Model

Received: 21 August 2012, Revised 9 October 2012, Accepted 18 October 2012

© 2012 DLINE. All rights reserved

1. Introduction

To reduce the cost of software maintenance, it is essential to care about the quality of software. For measuring this quality,
several metrics have emerged to assess it. Our research is included in this aspect, focussing on quality and quality model applied
to object-oriented systems.

A quality model is generally defined by a several factors. Which are decomposed into several criteria and each criterion is
defined by a set of metrics that assesses it. Among the quality models there is the ISO standard which structures quality by six
characteristics and decomposes them into 22 sub-characteristics, which are on their turn connected to the metrics. In order to
bring out the properties of the object-oriented design, we have included some criteria of quality and design between the sub-
characteristics of ISO model and metrics.

In this paper, we begin by presenting the definition of quality and we present some quality models whose ISO model, in the
second section we propose some properties of design and quality and we join them with ISO model, in the third part of the paper
we present some popular metrics and discuss weaknesses and strengths of each one, then we classify them by properties.

2. Quality and model quality

2.1 Definition of quality
The word quality is often used to signify the relative worth of things in such sentences as “good quality”, “bad quality”. But

Joining ISO Model with Metrics Using Design Quality Properties

Zineb Bougroun, Adil Zeaaraoui, M.G. Belkasmi, T. Bouchentouf
Laboratory of Applied Mathematics
Signal Processing and Computer Science
Department of Computer Science
University Mohamed Premier
Oujda postal 60000, Morocco
bougroun.zineb@gmail.com

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 185

what do we know about the exact meaning of the word “quality”?

For JOSEPH M. JURAN. JURAN, this word has multiple meanings [20]. Two of those meanings dominate the use of the word:

1. Quality consists of those product features which meet the needs of customers and thereby provide product satisfaction.

2. Quality consists of freedom from deficiencies.

ARMAND V. FEIGENBAUM defines it as [20]: The total composite product and service characteristics of marketing, engineering,
manufacture and maintenance through which the product and service in use will meet the expectations of the customer.

The concept of the quality in ISO 9126 combines the key point of the two previous definitions; quality is “the totality of
characteristics of an entity that bear on its ability to satisfy stated and implied needs”. Otherwise, quality is determined by the
presence or absence of the attributes. This definition was derived from the ISO 8402 (Quality vocabulary) definition of quality.

2.2 Quality models

2.2.1 McCall model
Among the oldest model we find the McCall model and several others derived from it. The McCall quality model has three
perspectives: product revision, product transition and product operations. McCall started with 55 factors, and then he reduces
them to eleven characteristics, as shown in figure 1:

The model factors are related to 23 quality criteria which are related to metrics that are used to provide a scale and method for
measurement. The metric is achieved by answering yes and no questions. At this matter, answering an equally amount of “yes”
and “no” to the questions measuring of a quality criterion; will achieve 50% of quality on that criterion [21].

2.2.2 Boehm model
The second model that will be presented in this paper is that of Barry W. Boehm [21]. Boehm addresses the shortcomings of
models that automatically and quantitatively evaluate the quality of software. In essence his model attempts to qualitatively
define software quality by a given set of attributes and metrics. Boehm’s model is similar to the McCall Quality Model in that it
also presents a hierarchical quality model. Boëhm lists seven factors: efficiency, reliability, usability, portability, understandability,
flexibility, testability.

2.2.3. ISO model
The third model is the model of the standard ISO; this model was based on the McCall and Boehm models. It was structured in

Figure 1. McCall model factors

Portablity
Reusablity

Interoperablity

Correctness
Reliablity
Efficiency
Integrity
Usablity

Maintainablity
Flexiblity
Testablity

Product
revision

Product
transition

Product operations

 186 Journal of Information & Systems Management Volume 2 Number 4 December 2012

the same manner as these models as shown in Figure 2.

The ISO/ IEC 9126-1 define a quality model with six characteristics [6]:

• Functionality: is the capability of the software to provide functions which meet the stated and implied needs of users under
specified conditions of usage.

• Reliability: is the ability of the software to perform its required functions under stated conditions for a specified period of time,
or for a specified number of operations.

• Usability: is the capability of the software to be understood, learned, used and liked by the user, when used under specified
conditions.

• Efficiency: is the capability of the software to provide the required performance, relative to the amount of resources used,
under stated conditions.

• Maintainability: is the ease with which a software product can be modified to correct defects, modified to meet new requirements,
modified to make future maintenance easier, or adapted to a changed environment.

• Portability: is the ease with which the software product can be transferred from one environment to another.

The six characteristics of ISO model are related to twenty two sub-characteristics which are explained in the following table [7]:

Figure 2. ISO model characteristics

ISO provides internal and external metrics for measuring the defined sub-characteristics quality. The internal metrics measure
the software. They may be applied to a non executable software product during its development stages such as a specification
design or source code. The external metrics measure the environment that includes the software. Our approach is to join the
metrics to the sub-characteristics of ISO model using the properties of quality related to the oriented object system.

In the next section we will explain some properties of the oriented object model then we will present the relationship between ISO
model and these properties.

2. Properties of design, of quality and their relation with ISO model

external and
internal
quality

functionality reliablity usablity efficiency maintainablity portablity

suitablity
acuracy

interoperablity
security

functionality
compliance

maturity
fault

tolerance
recoverablity

reliablity
compliance

understandablity
leamability
operality

attractiveness
usablity

compliance

time behaviour
resource

utilisation
efficiency

compliance

analysablity
changeablity

stablity
testablity

maintainablity
complance

adaptablity
installablity
co-existence
replaceablity

portablity
complaince

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 187

Allows drawing conclusions about the presence and
appropriateness of a set of functions for specified tasks.
The accuracy sub-characteristic allows drawing conclusions about
how well software achieves correct or agreeable results.
Measures the ability to interact with specified systems.
Measures the ability to adheres to application related standards,
conventions, and regulations in laws and similar prescriptions
It measures the ability to prevent unauthorized access, whether
accidental or deliberate, to programs or data.
Allows concluding about the frequency of failure by faults in the
software.
Allows to maintain a specified level of performance in cases of
software faults or of infringement of its specified interface
Attributes of software that relate to the capability to re-establish
its level of performance and recover the data directly affected in
case of a failure and on the time and effort needed for it
Attributes of software that relate to the users effort for recognizing
the logical concept and its applicability.
Attributes of software that relate to the users effort for learning
the application
Attributes of software that relate to the users effort for operation
and operation control
Attributes of software that relate to the capability of the software
product to be attractive to the user.
Attribute software that allows concluding about the time behavior
during testing or operating.
Attributes of software that relate to the amount of resources used
and the duration of such use in performing its function.
Attributes of software that relate to the effort needed for diagnosis
of causes of failures, or for identification of parts to be modified
Attributes of software that relate to the effort needed for
modification, fault removal or for environmental change.
Attributes of software that relate to the risk of unexpected effect
of modifications.
Attributes of software that relate to the effort needed for
validating the modified software.
Measure attributes of software that allow concluding about the
amount of changes needed for the adaptation of software to
different specified environments.
Attributes of software that relate to the effort needed to install the
software in a specified environment
The capability of the software to co-exist with other software in a
common environment sharing common resources.
Allows to draw conclusions about how well software can replace
other software or parts of it

Suitability

Accurateness

Interoperability

Compliance

Security

Maturity

Fault tolerance

Recoverability

Understandability

Learnability

Operability

Attractiveness

Time Behaviour

Resource utilization

Analyzability

Changeability

Stability

Testability

Adaptability

Installability

Co-existence

Replaceability

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Table 1. The sub-characteristics of ISO model

 188 Journal of Information & Systems Management Volume 2 Number 4 December 2012

2.1 Definition of properties used in classification
Design Size: measure the size of design elements, typically by counting the elements contained within.
Abstraction: is the manner that we can define a generic service.

Encapsulation: data hiding or data abstraction, the private members of a class, the encapsulated data can only be accessed by
local methods.

Modularity: extends to which software is divided into components.

Coupling: is the degree of mutual interdependence between modules components.

Cohesion: is the degree of relationship between elements in a design unit (package, class etc.)

Composition: is to structure an object in parts (Jacobson).

Inheritance: is the process of creating new classes, called derived classes, from existing classes. The derived class inherits all
the capabilities of the base class. In the mean time, new properties can be added.

Polymorphism: is the characteristic of being able to assign a different meanings or usage to something in different contexts.

Messaging: is the exchange of to a messaging server , which acts as a message exchange program for client programs

Complexity: measures the degree of connectivity between elements of a design unit.

2.2 Relationship between ISO characteristics and design properties
In our classification we are interested to the characteristics of the ISO model as much as combining them with object-oriented
design and quality properties. In the following table we will explain this relationship.

3. Object-Oriented metrics and their classification by properties of design and quality

In this part we present some popular metrics with their classification using the properties already explained.

3.1 Metrics of Moreau and Dominick
The earliest researchers whose work in the Object-Oriented metrics were Moreau and Dominick[10] who defined three general
metrics :

• Message Vocabulary Size (MVS): The number of different types of message sent by a particular object.

• Inheritance Complexity (IC): “Compound ” and “multilevel ” inheritance.

• Message Domain Size (MDS): The numbers of distinct procedures manipulate the state of object.

These metrics are not clear, such as what exactly is meant by “sending messages”, and how the metrics are to be computed and
they are not tested nor validated.

3.2 Moose metrics
The next metrics presented are those of Chidamber and Kemmerer introduced in the MOOSE (Metrics for Object Oriented
Software Engineering) project [1], known as C.K. Many other OO metrics are built upon this metrics suite:

• Weighted Methods per Class: WMC measures the complexity of an individual class.

WMC = ciΣ
i = 1

n

The sum of the complexity of each method contained in the class.

• Depth of Inheritance Tree of a Class: DIT is defined as the length of the longest path of inheritance ending at the current class.
More the class is profound, more it was complex

• Number of Children: NOC represents the number of immediate subclasses subordinated to a class in question. A high value
of NOC indicates an inappropriate abstraction in the design and high complexity.

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 189

characteristics

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Sub- characteristics

Suitability

Accurateness

Interoperability

Security

Compliance

Maturity

Fault tolerance

Recoverability

Understandability

Learnability

Attractiveness

Time behavior

Resource utilization

analizability
changeability

Stability

Testability

Adaptability

Installability
Conformance
Replaceability

Quality criteria

Ease to use (Check list)
user satisfaction (Check
list)

Check list
difficulty in accessing to
the data
Quality of
documentation (Naming,
documentation)
Modularity

Precision

Consistency

Fault correlation

memory efficiency

Execution efficiency

Response time

Documentation
Friendly interface
(Check list)

Documentation quality
norms and standard
(Naming)
Quality of
documentation

unmarked data
unmarked
communication

Check list

Check list

code architecture

size

Documentation

Dependence interne

code complexity

Modularity

Documentation

auto-description

Modularity

Machine independence

System independence

Design and quality properties

Abstraction, composition,
coupling, inheritance, encapsulation

Modularity

Precision

consistency, cohesion

tolerance, instability, dependence

Complexity

Complexity

Complexity

Modularity

Modularity, messaging

coupling, inheritance, specialization
of the class, Modularity
Number of method, size method

Dependence, stability, coupling

Complexity

Modularity

Modularity

Table 2. Relationship between ISO model and the properties of design and quality

 190 Journal of Information & Systems Management Volume 2 Number 4 December 2012

• Coupling between Objects: CBO is defined as the count of the number of other classes to which it is coupled. A class is
coupled to another class if it uses the member method and/or instance variables of the other class. A nonzero value of CBO
indicates weakness of class encapsulation and may inhibit reuse.

• Response for a Class: RFC gives the number of methods that can be executed in response to a message received by an object
of that class. If a large number of methods can be invoked in response to a message, the testing and debugging of the class
becomes more complicated.

• Lack of Cohesion in Method: LCOM is the number of pairs of methods operating on disjoint sets of instance variables,
reduced by the number of method pairs acting on at least one shared instance variable. For example, a class that has three
instance variables (Ia , Ib ,Ic) and five methods (M1, M2,..., M5) where M1 and M2 only uses Ia, M3 and M4 only uses Ib and
M5 uses Ia and Ic.This class will get a LCOM value of two (2).

Chidamber and Kemmerer metrics are focused on class level. Churcher and Shepperd [12] note that some definitions are
imprecise. Such as the decision to count inherited methods as belonging to the class, whether to count methods with the same
name (but different signatures), whether operators should be considered in the count, and so on.

In a reply to these remarks, Chidamber and Kemerer[13] clarify their position by stating that “the methods that require additional
design effort and are defined in the class should be counted, and those that do not should not”.

3.3 Metrics of Li and Henry
Li and Henry [2,3] present ten metrics in their system; five metrics of CK: DIT, NOC, RFC, LCOM, WMC, and they define five
more metrics:
• Message-Passing Coupling (MPC) measures the complexity of message passing among classes. MPC is the (static) number of
send statements defined in a class, where a send statement is a message sent out from a method in a class to a method in another
class.
• Data Abstraction Coupling (DAC) is the number of abstract data types used as instance variables by a
class.
• The Number of Methods (NOM) = number of local methods.
• The number of semicolons (SIZE1) in a class is a LOC traditional metric.
• Number of properties (SIZE2) is the number of attributes plus the number of local methods.

The DIT metric is used as a measure of complexity, more the value of DIT increases more the system is complex. Trying to
minimize DIT (in order to decrease complexity) leads to the disuse of inheritance, which is one of the major advantages of the OO
paradigm.

3.4 Metrics of Chen & Lu
Chen and Lu [14] present eight new metrics for OO design:

 Operation Complexity (OpCom) of a class: The OpCom is the sum of the complexity of each operation in the class.
 OpCom = ΣO(i) where O(i) is operation “i” complex value, and is evaluated from Table 3.

 Operation Argument Complexity (OAC): is the sum of the value of each argument in each operation in the class.
 OAC = ΣP(i) where P(i) is the value of each argument “i” in each operation in the class; it is evaluated from Table 4.

 Attribute Complexity (AC) metric: is the sum of the value of each attribute in the class.
 AC = ΣR(i) where R(i) is the value of each attribute in the class, and is also evaluated from Table 4

 Operation Coupling (OpCpl) metric: Measures the coupling between operations in the class and operations in other classes.

 Class Coupling (ClCpl) metric: Measures the coupling between a class and other classes

 Cohesion (Coh): Consider a class with N operations (function) : F(1), F(2), ..., F(N), with N sets of arguments I(1), I(2), ... , I(N);
 M is the number of disjoint sets of arguments formed by the intersection of these N sets. The cohesion metric is (M/N) *100%
 Class Hierarchy (CH): is the sum of the following:

• The depth of the class in the inheritance tree.

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 191

• The number of sub-classes of the class.
• The number of direct super classes of the class.
• The number of local or inherited operations available to the class.

 Reuse (Re): It measures whether a class is a reused one. A value of 1 is given to the class if it is reused from the current or from
another project and 0 otherwise.

Table 3. Operation complexity value (from Chen and Lu [18])

Boolean or integer 1
Char 1
Real 2
Array 3-4
Pointer 5
Record, Struct, or Object 6-9
File 10

Null 0
Very low 1-10
Low 11-20
Nominal 21-40
High 41-60
Very high 61-80
Extra high 81-100

Rating Complexity value

Type Value

Table 4. Argument/attribute value (from Chen and Lu [18])

3.5 MOOD Metrics
Brito and Abreu[15] defined six metrics in the MOOD (Metrics for Object Oriented Design) project.

• Method Hiding Factor (MHF): is the sum of the invisibilities of all methods defined in all classes. The invisibility of a method
 is the percentage of the total classes from which this method is not visible.

MHF =
∑ i =1

TC Mh (Ci)

∑ i =1
TC Md (Ci)

The number of methods defined in class Ci

Md (Ci) = Mv(Ci) + Mh(Ci)

Mv(Ci) number of visible methods (interface) in class Ci

Mh(Ci) number of hidden methods (implementation) in class C

• Attribute Hiding Factor (AHF): is the sum of the invisibilities of all attributes defined in all classes. The invisibility of an
attribute is the percentage of the total classes from which this attribute is not visible.

About this suite metrics there is some ambiguity surrounding the difference between the “operation coupling” and “class
coupling” metrics. The latter metric uses the number of accesses from a class to another; but it is not specified what constitutes
a class access, thus the value of the class coupling metric is either 0 or 1 when taken between two classes; it does not take into
consideration the number of messages passed between the class.

 192 Journal of Information & Systems Management Volume 2 Number 4 December 2012

the number of attributes defined in class Ci by :

Ad (Ci) = Av(Ci) + Ah(Ci)

Av(Ci) number of visible methods (interface) in class

Ah(Ci) number of hidden methods (implementation) in class C

• Method Inheritance Factor (MIF): is the sum of inherited methods in all classes of the system under consideration.

AHF =
∑ i =1

TC Mi (Ci)

∑ i =1
TC Ma (Ci)

The number of available method defined in class Ci by

Ma (Ci) = Md(Ci) + Mi(Ci)

Md (Ci) is the number of the defined method

Mi (Ci) is the number of inherited method

• Attribute Inheritance Factor (AIF): is the sum of inherited attributes in all classes of the system under consideration.

AIF =
∑ i =1

TC Ai (Ci)

∑ i =1
TC Aa (Ci)

The number of available attribute defined in class Ci by:

Aa (Ci) = Ad(Ci) + Ai(Ci)

Figure 3. The design Metric of the reusability

Reusablity

Coupling

Cohesion

Design size

Messaging

Direct Class coupling

Cohesion Among
Methods

Design Size in
Classes

Class Interface SIze

Quality Attribute Design Property Design Metric

AHF =
∑ i =1

TC Ah (Ci)

∑ i = 1
TC Ad (Ci)

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 193

Properties Metrics

Design Size NOM (Number Of Methods)
SIZE1 (number of semicolons)
SIZE2 (number of properties)

Abstraction NOC (Number Of Children)
DAC (Data Abstraction Coupling)

Encapsulation AHF (Attribute Hiding Factor)
MHF(Mathod Hiding Factor)

Inheritance DIT (Depth of Inheritance Tree of a class)
MIF (Method Inheritance Factor)
AIF (Attribute Inheritance Factor)
CH (Class Hierarchy)

Coupling CBO (Coupling Between Object)
COF (Coupling Factor)
OpCpl (Operation Coupling)
ClCpl (Class Coupling)

Cohesion LCOM (Lack of Cohesion in Method)
Coh (Cohesion)

Complexity WMC (Weighted Methods per Class)
NOC (Number Of Children)
MPC (Message-Passing Coupling)
OpCom (Operation Complexity)
OAC (Operation Argument Complexity)
AC (Attribute Complexity)

Messaging RFC (Response For a Class)
MPC (Message-Passing Coupling)

Polymorphism POF (Polymorphism Factor)

Table 5. The classification of some popular metrics by properties of quality and design

Ad (Ci) is the number of the defined attribute

Ai (Ci) is the number of inherited attribute

• Polymorphism Factor (POF): represents the actual number of possible different polymorphic situations.

• Coupling Factor (COF): is the maximum possible number of couplings in a system.

This metrics are validated and applied to eight projects representing eight variations of the design for the same requirements
document [9]. The results show that most of the metrics were good predictors of the quality measures: complexity, size and
coupling.

3.6 QMOOD Metrics
The QMOOD [16] (Quality Model for Object-Oriented Design) project is a comprehensive quality model that establishes a
clearly defined validated model to assess objects oriented design quality attributes, and relates it through mathematical formulas,
with structural OOD. The QMOOD model consists of six equations that establish relationship between six OOD quality attributes
(reusability, flexibility, understandability, functionality, extendibility, and effectiveness) and eleven design properties.

For example (see figure 3), reusability is a function of the coupling measure, cohesion measure, messaging measure, and the

 194 Journal of Information & Systems Management Volume 2 Number 4 December 2012

design size. The coupling measure is quantified using Direct Class Coupling (DCC) metric. The cohesion measure is quantified
using Cohesion Among Methods in a class (CAM) metric. The Messaging metric is quantified by Class Interface Size (CIS)
metric. Finally, design size is quantified by Design Size in Classes (DSC) metric.

QMOOD distinguishes itself by providing mathematical formulas that links design quality attributes with design metrics. This
allowed computing a Total Quality Index (TQI). Then the QMOOD suite is the most complete, comprehensive, and supported
suite.

3.7 Classification of the metrics by properties of design
In the following table we present the classification of the metrics cited above by the properties of design already explained.

4. Conclusion

There are several metric models for software components, and many classifications are used to organize it, but in these
classifications some quality attributes are unknown. It is unclear whether any fundamental of objectoriented, such as neglecting
the use of inheritance to reduce complexity. To progress in this area, it is essential to rely on a model that allows classifying and
systematizing metric use.

The work we are presenting in this paper is classified in this approach. It allows us to evaluate a software project taking as basis
the ISO Model as much as taking in consideration the principal characteristics of the objectoriented design. For these reasons,
we recovered properties concerning quality and object-oriented design from the characteristics of the ISO model. This work is
our database that will be used to evaluate software projects in future works.

References

[1] Hoyer, R. W., Hoyer, B. B. Y. (2001). What is quality?.

[2] Chidamber, S. R., Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design, IEEE Transactions on Software Engineering,
20 (6), June.

[3] Li, W., Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal of Systems and Software.

[4] Li, W., Henry, S., Kafura, D., Schulman, R. (1995). Measuring object-oriented design. Journal of Object Oriented Programming.

[5] ISO 8402. (1994). Quality management and quality assurance -Vocabulary.

[6] ISO/IEC 9126. (1991). Software product evaluation - Quality characteristics and guidelines for their use.

[7] ISO/IEC FCD 9126-1. (1998). Software product quality - Part 1: Quality model.

[8] Mohamed El-Wakil, Ali Fahmy. Object–Oriented Design Quality Models: A Survey and Comparison, IEEE.

[9] Jagdish Bansiya, Carl G. Davis. (2002). A Hierarchical Model for Object-Oriented Design Quality Assessment, IEEE, January,
QMOOD.

[10] Brito, F., e Abreu, Melo, W. (1996). Evaluating the impact of object-oriented design on software quality. March, IEEE.

[11] Moreau, D. R., Dominick, W. D. (1989). Object-oriented graphical information systems : Research plan and evaluation
metrics. Journalof Systems and Software.

[12] Hatton, L. (1998). Does OO sync with how we think? IEEE Software, 15 (3).

[13] Churcher, N. I., Shepperd, M. J. (1995). Comments on : a metrics suite for object oriented design. IEEE Transactions on
Software Engineering, March.

[14] Chidamber, S.R., Kemerer, C.F. (1995). Authors’ reply to : comments on : A metrics suite for object oriented design. IEEE,
March.

[15] Chen, J.-Y., Lu, J. F. (1993). A new metric for object-oriented design. Information and Software Technology, April.

[16] Brito e Abreu, F. (1992). Object-oriented software design metrics. In: Proc.of the OOPSLA’ 92 workshop on OO metrics.

 Journal of Information & Systems Management Volume 2 Number 4 December 2012 195

[17] Bansiya, J., Davis, C. (2002). A hierarchical model for object-oriented design quality assessment. Transaction on Software
Engineering, IEEE.

[18] Fernando Brito e Abreu, Rogério Carapuça. Object-Oriented Software Engineering: Measuring and Controlling the
Development Process.

[19] Chen, Lu, J. F. (1993). A new metric for object-oriented design. Information and Software Technology, 35 (4) 232-240, April.

[20] Hoyer, R. W., Hoyer, B. B. Y. (2001). What is quality?.

[21] Ronan Fitzpatrick. (1996). Software Quality: Definitions and Strategic Issues, April.

