Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-4143
Online ISSN:
0976-4151


  About JISR
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of Information Security Research

Analyzing Throughput for Cyber-Physical Systems modeled with Synchronous Dataflow
Philippe Glanon, Selma Azaiez, Chokri Mraidha
CEA-LIST Saclay, Gif-sur-yvette & France
Abstract: Time is the essence of the cyber-physical system which determines the efficiency of a system. While designing the Cyber Physical Systems, the performance indicator, the Throughput is used. When analyzing throughput reachable by a CPS at design-time implies to optimize the behaviour of the system in such a way that it may run with an optimal frequency. The synchronous dataflow graphs can be used as a formal model of computation that fosters the analysis of systems where performance is always prominent. We in this current work describe the throughput estimation for CPS applications modeled with the SDFGs. For assessing the optimal throughput reachable by a CPS application, we use SDFGs to describe computations and communications in the CPS application and we propose a mathematical formulation of scheduling and mapping decisions in order to deploy the behavioural model of the CPS onto a platform, which essentially consists of heterogeneous and distributed resources.
Keywords: Cyber Physical System, Throughput, Synchronous Dataflow Analyzing Throughput for Cyber-Physical Systems modeled with Synchronous Dataflow
DOI:https://doi.org/10.6025/jisr/2020/11/3/86-92
Full_Text   PDF 123 KB   Download:   291  times
References:

[1] Emeretlis, A., Tsakoulis, T., Theodoridis, G., Alefragis, P., Voros, N. (2017). Task graph mapping and scheduling on heterogeneous architectures under communication constraints, 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Pythagorion, p. 239-244.
[2] Lesparre, Youen. Efficient evaluation of mappings of dataflow applications onto distributed memory architectures. Mobile Computing. University Pierre et Marie Curie - Paris VI, 2017. English.
[3] Ariffin, W. N. M. (2015). Task Scheduling for Directed Cyclic Graph Using Matching Technique, Contemporary Engineering Sciences, 8 (17) 773 -788, HIKARI Ltd.
[4] Bodin, B., Munier-Kordon, A., Dinechin, De., B. D. (2012). K-periodic schedules for evaluating the maximum throughput of a synchronous dataow graph. In: 2012 International Conference on Embedded Computer Systems (SAMOS), pages 152159.
[5] Groote, De., R., Kuper, J., Broersma, H., Smit, G. J. (2012). Max-plus algebraic throughput analysis of synchronous dataow graphs. In 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), pages 2938. IEEE.
[6] Benabid-Najjar, A., Hanen, C., Marchetti, O., Munier-Kordon, A. (2012). Periodic schedules for bounded timed weighted event graphs. IEEE Transactions on Automatic Control, 57 (5) 12221232.
[7] Marchetti, O. (2009). Munier Kordon A sufficient condition for the liveness of weighted event graphs European Journal of Operational Research,197 (2) 532-540, (September).
[8] Sriram, S., Bhattacharyya, S. S. (2009). Embedded Multiprocessors: Scheduling and Synchronization, 2nd ed. Boca Raton, FL, USA: CRC Press, Inc.,.
[9] Hanen, C. (2009). Cyclic scheduling, chapter in Introduction to Scheduling, Y. Robert, F. Vivien (Eds.), p. 103-128, (Chapman and Hall/CRC Computational Science), (ISBN: 978-1420072730) (2009).
[10] Lee, E. A. (2008). Cyber Physical Systems: Design Challenges, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, 2008, p. 363-369.
[11] Ghamarian, A., Geilen, M., Stuijk, S., Basten, T., Moonen, A., Bekooij, M., Theelen, B., Mousavi, M. (2006). Throughput analysis of synchronous data ow graphs. In: ACSD06, Proc. (2006), IEEE.
[12] Ghamarian, A. H., Geilen, M. C. W., Basten, T., Theelen, B. D., Mousavi, M. R., Stuijk, S. (2006). Liveness and Boundedness of Synchronous Data Flow Graphs, 2006 Formal Methods in Computer Aided Design, San Jose, CA, 2006, p. 68-75.
[13] Topcuoglu, Haluk., Hariri, Salim., Wu, M. (2002). Performance-effective and low complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems. 13 (3) 260274.
[14] Calland, P.-Y., Darte, A., Robert, Y. (1998). Circuit retiming applied to decomposed software pipelining. IEEE Transactions on Paralllel and Distributed Systems, 9 (1) 2435.
[15] Gasperoni, F., Schwiegelshohn, U. (1994). Generating close to optimum loop schedules on parallel processors. Parallel Processing Letters, 4, 391403.
[16] Teruel, E., Chrzastowski-Wachtel, P., Colom, J., Silva, M. (1992). On weighted t-systems. In: Application and Theory of Petri Nets 1992, p. 348367.
[17] Lee, E. A., Messerschmitt, D. G. (1987). Synchronous data ow, In: Proceedings of the IEEE, 75 (9) 1235-1245, (September).


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info