
46 Journal of Information Security Research Volume 11 Number 2 June 2020

An RSA Co-processor Architecture Suitable for a

User-Parameterized FPGA Implementation

Joseph R Laracy
Seton Hall University
400 South Orange Ave
South Orange, New Jersey 07079
USA

joseph.laracy@shu.edu

ABSTRACT: This paper describes an original and straightforward architecture for a logic circuit implementation of

the RSA algorithms. The architecture is ideal for teaching advanced undergraduate or graduate students topics

associated with public-key cryptography and digital system design. The system is designed with VHDL for execution

on a FPGA. Software implementations of RSA running on standard PCs are relatively slow as standard

microprocessors are not optimized for the operations that RSA must carry out. A key aspect of this approach is the

use of Montgomery Multiplication, a method for performing fast modular multiplication.

Keywords: Public-Key Cryptography, RSA, Digital Systems, Computer Engineering, Logic Design, Education

Received: Received: 12 December 2019, Revised March 5, 2020, Accepted March 12, 2020

DOI: 10.6025/jisr/2020/11/2/46-53

Copyright: with Authors

1. Introduction

In an important article in Electronic Engineering Times, John Fry and Martin Langhammer clearly describe the

downsides of software based RSA systems as well as ASSP (application specific standard products) implementations.

Software systems are too slow, while ASSPs are inflexible and expensive. They suggest that a programmable logic

implementation would be ideal. Specifically, a VHDL (Very High-Speed Integrated Circuit Hardware Description

Language) solution could offer a high performance, user-parameterized, synthesizable core. A RSA coprocessor could

be integrated into a larger information system to provide strong RSA encryption for email communication. An FPGA

implementation could easily connect to a high speed PC I/O port and provide all the encryption and decryption

operations for secure email. In this concise paper, we describe our implementation of Fry and Langhammer’s proposal,

one that could ideally be presented to advanced undergraduate or beginning graduate students interested in computer

engineering and cryptography [1].

2. Fundamentals of RSA

RSA is a public-key cryptographic algorithm developed by Ronald Rivest, Adi Shamir, and Leonard Adleman (hence

RSA). The goal of their research was to develop a cryptosystem whereby communicating partners could send and

47 Journal of Information Security Research Volume 11 Number 2 June 2020

receive secure messages without having to worry about key integrity. Their solution was to develop a public key that

could be published in a directory. This would allow anyone to encrypt a message for a particular recipient. The public

key would be generated with a one-way (non-reversible) function. To decrypt a message, the recipient uses his or her

private key. If two partners want to communicate without a third party listening in, the pair no longer needs to securely

exchange their respective keys [2].

The RSA algorithm is rigorously defined as follows [3]:

1. Let p ≠ q be large primes, and define n = pq and φ = (p – 1)(q – 1).

2. Choose random encryption exponent e, 1 < e < φ, so that (e, φ) = 1.

(The notation (e, φ) = 1 denotes the greatest common divisor. Therefore e and φ are relatively prime.)

3. Use the Euclidean algorithm to find the decryption exponent d, 1 < d < φ, so that ed ≡ 1 mod φ.

4. Define f: ℤn → ℤn by f (m) = me mod n.

Very interestingly, Roland Schmitz has shown that the security of RSA cryptographic systems, when interpreted as

dynamical systems, relies on the discrete chaoticity of their orbits. His research demonstrates that the algebraic

requirements for the RSA parameters may be translated into statements about the period lengths of the orbits [4].

Schmitz writes,

The cipher c = me mod n, where m is the message, e is the public exponent and n is the public module, can

be viewed as the e-th member of the orbit generated by x0=1 for the discrete iteration xk + 1 = Fm(xk), Fm(x) =

m⋅x mod n, x0 = 1. The problem of finding m, when only c is known, can be stated as “Given the e-th point

of an orbit with known initial value and parameterized map, find the value of the parameter.” The receiver

of the cipher, however, can use her private key d to recover m through the identity m = cd mod n = med mod

n. The additional knowledge provided by d can thus be stated in dynamical systems’ terms as “The orbit

generated by x0=1 and the map Fm(x) = m⋅x mod n had period ed.” Since factorization of the public

module n yields the private key d, the factorization problem can also be viewed as directly related to period

finding in discretely chaotic orbits [5].

The following simple example clearly illustrates the steps involved in RSA protected communication. Suppose the

fictional characters, Eric and Matt, want to communicate without Joe listening in to their conversation. Matt will

encrypt an ASCII character using RSA.

1. Eric must pick two large prime numbers, p and q. (This example uses very small numbers for simplicity.)

p = 17, q = 11.

2. Eric then computes N = pq = 187.

3. Eric picks a number e = 7; e should be relatively prime to ((p−1)(q−1)) = φ.

4. Eric can now post the pair (N, e) in a public directory.

Everyone in the directory may share the same e, but have different N’s.

5. Eric also computes d, where e × d ≡ 1 (mod φ).

d = 23. d is Eric’s private key.

6. Matt wishes to tell Eric he can attend the secret meeting so he sends the character Y (for “Yes”).

The message in this case, M = “Y” (for “Yes”) = 89.

7. Matt encrypts his message using the formula: C = Me(mod N) = C = 897(mod 187) = 166, and sends 166

down the channel.

8. Eric decrypts Matt’s message using the formula: M = Cd(mod N) = 16623(mod 187) = 89.

89 = “Y” in ASCII. (Meaning “Yes”)

Eric knows Matt can participate in the meeting.

Because exponentiation in modular arithmetic is a one-way function, Joe cannot determine M from C. Joe’s one hope

is to factor N into its respective primes. However, in real systems where N is a 2048-bit number, this is highly

computationally expensive and therefore infeasible.

48 Journal of Information Security Research Volume 11 Number 2 June 2020

Menezes, van Oorschot, and Vanstone provide an elegant proof of decryption that we faithfully present here [6].

Since ed ≡ 1 (mod φ), there exists an integer k such that ed = 1 + k φ. Now, if gcd(m,p) = 1 then by Fermat’s

theorem,

mp-1 ≡ 1 (mod p).

Raising both sides of this congruence to the power k(q − 1) and then multiplying both sides by m yields

m1 + k(p − 1)(q − 1) ≡ m (mod p).

On the other hand, if gcd(m,p) = p, then this last congruence is again valid since each side is congruent to 0

modulo p.

Hence, in all cases

med ≡ m (mod p).

By the same argument,

med ≡ m (mod q).

Finally, since p and q are distinct primes, it follows that

med ≡ m (mod n)

and, hence,

cd ≡ (me)d ≡ m (mod n).
Therefore, decryption works!

3. Montgomery Reduction

In 1985, Peter L. Montgomery developed a method for modular reduction that did not require explicit division. His

method allows multiplications modulo an odd number to be replaced with multiplications modulo an even number, 2k

[7]. Recall that division by a power of 2 is accomplished in a binary digital system simply by right shifts [8]. RSA

cryptography requires modular exponentiation of very large numbers [9]. Traditional mathematical methods generate

partial results in excess of 2048-bits and require division by a similarly large number.

Montgomery defines n and r to be relatively prime integers where r−1 is the multiplicative inverse of r mod n and n−1

is the multiplicative inverse of n mod r. He also defines n’ = −n−1 mod r and m = tn’ mod r where t is an integer

defined by

(t + mn)/r ≡ tr−1 mod n

The right side of this congruence is much more computationally expensive than the left. On the left side of the

congruence, we take congruences mod r and division by r. Because t + mn ≡ 0 mod r, the division has no remainder.

By choosing r as some 2s, where 2s−1 ≤ n < 2s, x mod r can be computed by shifting x s-bits to the right. To apply this

principle, and perform Montgomery Reduction, we shift our computation modulo n into a complete residue system.

R = R(r, n) = {ir mod n | 0 ≤ i < n}

One can then define a Montgomery Product “x” of a and b in R:

a × b = abr−1 mod n

Suppose 0 ≤ a, y < n. Define a’ = aR mod n, and y’= yR mod n. Therefore, the Montgomery Reduction of a’b’ is

a’b’R-1 mod n = abR mod n.

49 Journal of Information Security Research Volume 11 Number 2 June 2020

Montgomery Exponentiation is the next logical step in this sequence. For example, to compute a5 mod n for integer

a, 1 ≤ a < n, first compute a’ = aR mod m. After that, determine the Montgomery Reduction of a’a’, X = a’2R−1 mod

n. Then compute the Montgomery Reduction of X2, X2R−1 mod n = a’4R−3 mod n. The last Montgomery Reduction is

applied to (X2R−1 mod n) a’ = (X2R−1) a’R−1 mod n = a’5R−4 mod n = a5R mod n. The result must then be converted

back into the integer domain by multiplying it by R−1 mod n and reducing modulo n, yielding a5 mod n [10].

4. Algorithms

An algorithm used to accomplish Montgomery Multiplication (MM) is defined in pseudo code below. It interleaves

the multiplication and reduction steps, thereby preventing the partial sum from creating an overflow condition [11].

INPUT: integers m = (mn−1 … m1m0)b, x = (xn−1 … x1x0)b, y = (yn−1 … y1y0)b with 0 ≤ x; y < m, R = bn with gcd(m,

b) = 1, and m’ = −m−1 mod b.

1. H0. (Notation: H = (hnhn−1 … h1h0)b.)

2. For i from 0 to (n−1) do the following:

2.1 ui (h0 + xiy0)m’ mod b.

2.2 H (H + xiy + uim) / b.

3. If H ≥ m then H H − m.

4. Return(H).

OUTPUT: xyR−1 mod m.

MM is not the perfect solution for all applications. It requires substantial work to set up the system and convert the

result back to the standard integer domain. As a result, traditional algorithms are faster by a factor of two in the

computation of one modular multiplication. However, a substantial speedup is realized over classical systems when

one number is multiplied by itself under mod N a predefined number of times.

Montgomery Exponentiation (ME) is a special case of Montgomery Multiplication. It utilizes the multiplication

function to accomplish its computation. Exponentiation is accomplished by a sequence of squaring operations

followed by a multiplication. Assuming l-bit inputs to the system. The loop body of the algorithm requires 2l(l+1)

single-precision multiplications and no explicit division. Traditional algorithms would require the same number of

multiplications, but also l divisions. ME eliminates on the order of 1000 divisions in real systems. This improvement

greatly overshadows the small cost of pre- and post-computation [12].

INPUT: m = (ml−1 … m0)b, R = bl, m’ = −m−1 mod b, e = (et … e0)2 with et = 1, and an integer x, 1 ≤ x < m, s =

R2 mod m, A = R mod m

1. x’ MontMul(x, s).

2. For i from t down to 0 do the following:

2.1 AMontMul(A, A).

2.2 If ei = 1 then AMontMul(A, x’).

3. AMontMul(A, 1).

4. Return(A).

OUTPUT: xe mod m.

The pseudo code shows that all the steps of the algorithms can be implemented in logic circuits very easily. The main

loop of MM requires only AND & OR gates, as well as adders and shifters. A few comparators and control logic are

all this is necessary to realize the algorithm in hardware.

50 Journal of Information Security Research Volume 11 Number 2 June 2020

5. Circuit Design

Figure 1. RSA High Level Circuit Design

The multiplier circuit contains one register, H, which stores the result of the multiplication and passes this value to the

exponentiation circuit. A multiplexor selects between the two possible inputs to H, the result of step 2.2, or the final

result after step three. Bit rippers parse the 32-bit words entering the multiplier. The least significant bit (LSB) is

always required from register H and the multiplier. The bit selected from the multiplicand is dependent on the loop

iteration.

Step 2.1 requires that the LSB of H is added to the logical AND of the LSB of the multiplier and current iteration bit

of the multiplicand. The result of this add can be a two-bit number, so a two-bit adder is used. M’ = −m−1 mod 2 = 1

in all cases in this system, so no additional work must be done to compute it. To finish the computation of ui, the

previously computed sum must undergo the mod 2 operation. A serial shifter shifts the LSB out of the sum and routes

ui to a parallel array of 32 AND gates. This component simultaneously computes the result of uim. Another instance

of this component ANDs the current iteration bit of the multiplicand with all the bits of the multiplier. The one-bit

outputs of the ANDER components are then zero-extended and add together. Their sum is then added to the present

value of register H.

After thirty-two iterations of step two, the contents of register H and M are passed into a 32-bit comparator. If H ≥ M,

the comparator output asserts, and the SUB_PASS component will subtract M from H. However, if H < M, the

SUB_PASS component will simply pass H through to the multiplier circuit output port.

The higher level circuit responsible for exponentiation uses the multiplier circuit for four different purposes. Initially,

it is used to compute the temporary value X’. Next it is used to either square the contents of register A or multiply the

contents of register A and register X’. Finally, the Montgomery Multiplier is used to convert back to the integer domain

in step three.

51 Journal of Information Security Research Volume 11 Number 2 June 2020

Register A is initialized to R mod m, but is overwritten during each iteration of step two. The loop represented by step

2 is executed t+1 times where t is the bit position in register E where the most significant one is found. A combinational

circuit determines this value and the finite state machine providing system control uses this value. At each instance of

step 2.2, another component rips the current iteration bit from E and checks if it is one. If so, it will execute step 2.2.

Two multiplexors select from the possible inputs to the Montgomery multiplier. The multiplicand accepts either

register A or X. The multiplier accepts either register A, S, or X’.

Figure 2. Montgomery Multiplier Circuit

52 Journal of Information Security Research Volume 11 Number 2 June 2020

6. First-Order Performance Analysis and Practical Considerations for Deployed Systems

Assuming a 1ns delay for each logic gate, the Montgomery Multiplier circuit takes 592ns to execute. In a worst case

scenario where register E is all ones, the total execution time for the system is 2368ns. This means the coprocessor

can run at 422kHz. 32-bit words contain four ASCII characters, so 1.69 million characters can be processed in one

second.

The longest operation in Montgomery Multiplication is addition. The logic and shift operations are effectively

instantaneous. The loop represented by step 2 must be executed n times where n is the number of bits that can be

processed. Within each iteration of the loop, step 2.2 requires an n-bit addition. Carry look-ahead adders must be

exploited to perform the addition, because ripple-carry adders are infeasible with such large data words. The total

system execution time for exponentiation scales according to 2 Tmm [multiplication time] + (Le [length of E] ⋅ 2 ⋅ Tmm).

The system built for the purposes of this research utilized 32-bit data words. State of the art commercial systems must

require more rigorous constraints on the input variables. Per Menezes et al., we suggest the following:

• Recommended size of modulus N: N should be 2048-bits or higher in order to beat the quadratic sieve and

number field sieve factoring algorithms.

• Recommended criteria for selection of p & q: Both primes should be about 1024-bits and close to the

same length in order to beat the elliptic curve factoring algorithm. Also, p – q should be large. If the

difference is very small, then p ≈ q and therefore p ≈ sqrt(N). Finally, p and q should be strong primes:

o p – 1 has a large prime factor, r

o p + 1 has a large prime factor

o r – 1 has a large prime factor

in order to beat Pollard’s p−1 factoring algorithm.

• Recommends size of exponent e: The exponent does not need to be a large number. In fact, e =3 or 65537

are common exponents. However, (p – 1) nor (q – 1) should not be divisible by e [13].

7. Conclusion and Future Work

In this brief paper we have described a straightforward architecture for a logic circuit implementation of the RSA

cryptosystem. The architecture and implementation suggestions are ideal for educational purposes, e.g., advanced

undergraduate or beginning graduate students. An effort is made to communicate salient, fundamental topics

associated with public-key cryptography and digital system design in a clear and straightforward way.

Future work could entail developing a high throughput pipelined implementation for use in a network interface card,

whether wired or wireless. Through effective load balancing, the total execution time to process a long string of input

words would decrease by a constant factor likely in the range of two to five. There is also work to be done interfacing

the FPGA implementation of the circuit with a PC. The most appropriate bus must be determined and a protocol

developed to maximize throughput. Finally, a program should be written to interface with email clients, e.g., Microsoft

Outlook, to support seamless RSA encryption in email.

Acknowledgments

The author is very grateful for the guidance and insights of Dr. Julian Palmore and Dr. Sanjay Patel during this

research.

53 Journal of Information Security Research Volume 11 Number 2 June 2020

8. References

[1] John Fry and Martin Langhammer, “FPGAs Lower Costs for RSA Cryptography,” Electronic Engineering Times,

September 26, 2003, accessed April 18, 2019, https://www.eetimes.com/document.asp?doc_id=1271927.

[2] Ronald L. Rivest, Adi Shamir, and Leonard Adleman, “A Method for Obtaining Digital Signatures and Public-

Key Cryptosystems,” Communications of the ACM 21, no. 2 (1978): 120–126.

[3] D. C. Hankerson et al., Coding Theory and Cryptography, 2nd ed. (New York: Marcel Dekker, 2000), 284.

[4] See Neal Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation in Mathematics 3 (New York:

Springer, 2004), 1–16. For a detailed overview of salient number-theoretic issues involved in RSA cryptography, see

Valery V. Yaschenko, Cryptography: An Introduction, Student Mathematical Library 18 (Providence, RI: American

Mathematical Society, 2002), chap. 4.

[5] Roland Schmitz, “Public Key Cryptography: A Dynamical Systems Perspective,” in Proceedings of the 2008

Second International Conference on Emerging Security Information, Systems and Technologies (Cap Esterel, France,

2008), 211.

[6] Alfred J. Menezes et al., Handbook of Applied Cryptography (Boca Raton, FL: CRC Press, 2001), 286–287.

[7] The early modular multiplication and exponentiation algorithms based on the Montgomery reduction technique

required that the modulus be an odd integer. Koç work shows that with the help of the Chinese Remainder Theorem,

the Montgomery reduction algorithm can be used to efficiently execute these modular arithmetic operations with

respect to an even modulus. See Ç. K. Koç, “Montgomery Reduction with Even Modulus,” IEE Proceedings -

Computers and Digital Techniques 141, no. 5 (September 1994): 314–316.

[8] Peter L. Montgomery, “Modular Multiplication Without Trial Division,” Mathematics of Computation 44, no. 170

(April 1985): 519–521.

[9] The efficient computation of the modular exponentiations is very important for public-key cryptosystems. For

example, see Chia-Long Wu, Der-Chyuan Lou, and Te-Jen Chang, “An Efficient Montgomery Exponentiation

Algorithm for Cryptographic Applications,” Informatica 16, no. 3 (2005): 449–468 as well as Corinne McIvor, Maire

McLoone, and John V. McCanny, “Modified Montgomery Modular Multiplication and RSA Exponentiation

Techniques,” IEE Proceedings - Computers and Digital Techniques 151, no. 6 (November 2004): 402–408.

[10] Michael Welschenbach, Cryptography in C and C++, 2nd ed. (New York: Apress, 2005), 106–109.

[11] Menezes et al., Handbook of Applied Cryptography, 602.

[12] Ibid., 619–620.

[13] Ibid., 290–291.

