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ABSTRACT: This paper describes an original and straightforward architecture for a logic circuit implementation of 

the RSA algorithms. The architecture is ideal for teaching advanced undergraduate or graduate students topics 

associated with public-key cryptography and digital system design. The system is designed with VHDL for execution 

on a FPGA. Software implementations of RSA running on standard PCs are relatively slow as standard 

microprocessors are not optimized for the operations that RSA must carry out. A key aspect of this approach is the 

use of Montgomery Multiplication, a method for performing fast modular multiplication. 
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1. Introduction 

In an important article in Electronic Engineering Times, John Fry and Martin Langhammer clearly describe the 

downsides of software based RSA systems as well as ASSP (application specific standard products) implementations. 

Software systems are too slow, while ASSPs are inflexible and expensive. They suggest that a programmable logic 

implementation would be ideal. Specifically, a VHDL (Very High-Speed Integrated Circuit Hardware Description 

Language) solution could offer a high performance, user-parameterized, synthesizable core. A RSA coprocessor could 

be integrated into a larger information system to provide strong RSA encryption for email communication. An FPGA 

implementation could easily connect to a high speed PC I/O port and provide all the encryption and decryption 

operations for secure email. In this concise paper, we describe our implementation of Fry and Langhammer’s proposal, 

one that could ideally be presented to advanced undergraduate or beginning graduate students interested in computer 

engineering and cryptography [1].  

2. Fundamentals of RSA 

RSA is a public-key cryptographic algorithm developed by Ronald Rivest, Adi Shamir, and Leonard Adleman (hence 

RSA). The goal of their research was to develop a cryptosystem whereby communicating partners could send and 
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receive secure messages without having to worry about key integrity. Their solution was to develop a public key that 

could be published in a directory. This would allow anyone to encrypt a message for a particular recipient. The public 

key would be generated with a one-way (non-reversible) function. To decrypt a message, the recipient uses his or her 

private key. If two partners want to communicate without a third party listening in, the pair no longer needs to securely 

exchange their respective keys [2]. 

 

The RSA algorithm is rigorously defined as follows [3]: 

1. Let p ≠ q be large primes, and define n = pq and φ = (p – 1)(q – 1). 

2. Choose random encryption exponent e, 1 < e < φ, so that (e, φ) = 1. 

(The notation (e, φ) = 1 denotes the greatest common divisor. Therefore e and φ are relatively prime.) 

3. Use the Euclidean algorithm to find the decryption exponent d, 1 < d < φ, so that ed ≡ 1 mod φ. 

4. Define f: ℤn → ℤn by f (m) = me mod n. 

 

Very interestingly, Roland Schmitz has shown that the security of RSA cryptographic systems, when interpreted as 

dynamical systems, relies on the discrete chaoticity of their orbits. His research demonstrates that the algebraic 

requirements for the RSA parameters may be translated into statements about the period lengths of the orbits [4]. 

Schmitz writes, 

The cipher c = me mod n, where m is the message, e is the public exponent and n is the public module, can 

be viewed as the e-th member of the orbit generated by x0=1 for the discrete iteration xk + 1 = Fm(xk), Fm(x) = 

m⋅x mod n, x0 = 1. The problem of finding m, when only c is known, can be stated as “Given the e-th point 

of an orbit with known initial value and parameterized map, find the value of the parameter.” The receiver 

of the cipher, however, can use her private key d to recover m through the identity m = cd mod n = med mod 

n. The additional knowledge provided by d can thus be stated in dynamical systems’ terms as “The orbit 

generated by x0=1 and the map Fm(x) = m⋅x mod n had period ed.” Since factorization of the public 

module n yields the private key d, the factorization problem can also be viewed as directly related to period 

finding in discretely chaotic orbits [5]. 

The following simple example clearly illustrates the steps involved in RSA protected communication. Suppose the 

fictional characters, Eric and Matt, want to communicate without Joe listening in to their conversation. Matt will 

encrypt an ASCII character using RSA. 

1. Eric must pick two large prime numbers, p and q. (This example uses very small numbers for simplicity.)  

p = 17, q = 11.  

2. Eric then computes N = pq = 187.  

3. Eric picks a number e = 7; e should be relatively prime to ((p−1)(q−1)) = φ. 

4. Eric can now post the pair (N, e) in a public directory.  

Everyone in the directory may share the same e, but have different N’s. 

5. Eric also computes d, where e × d ≡ 1 (mod φ).  

d = 23. d is Eric’s private key. 

6. Matt wishes to tell Eric he can attend the secret meeting so he sends the character Y (for “Yes”).  

The message in this case, M = “Y” (for “Yes”) = 89.  

7. Matt encrypts his message using the formula: C = Me(mod N) = C = 897(mod 187) = 166, and sends 166 

down the channel. 

8. Eric decrypts Matt’s message using the formula: M = Cd(mod N) = 16623(mod 187) = 89.  

89 = “Y” in ASCII. (Meaning “Yes”) 

Eric knows Matt can participate in the meeting. 

 

Because exponentiation in modular arithmetic is a one-way function, Joe cannot determine M from C. Joe’s one hope 

is to factor N into its respective primes. However, in real systems where N is a 2048-bit number, this is highly 

computationally expensive and therefore infeasible. 
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Menezes, van Oorschot, and Vanstone provide an elegant proof of decryption that we faithfully present here [6]. 

Since ed ≡ 1 (mod φ), there exists an integer k such that ed = 1 + k φ. Now, if gcd(m,p) = 1 then by Fermat’s 

theorem, 

mp-1 ≡ 1 (mod p). 

 

Raising both sides of this congruence to the power k(q − 1) and then multiplying both sides by m yields 

m1 + k(p − 1)(q − 1) ≡ m (mod p). 

 

On the other hand, if gcd(m,p) = p, then this last congruence is again valid since each side is congruent to 0 

modulo p.  

 

Hence, in all cases 

med ≡ m (mod p). 

 

By the same argument, 

med ≡ m (mod q). 

 

Finally, since p and q are distinct primes, it follows that 

med ≡ m (mod n) 

 

and, hence, 

cd ≡ (me)d ≡ m (mod n). 
Therefore, decryption works! 

3. Montgomery Reduction 

In 1985, Peter L. Montgomery developed a method for modular reduction that did not require explicit division. His 

method allows multiplications modulo an odd number to be replaced with multiplications modulo an even number, 2k 

[7]. Recall that division by a power of 2 is accomplished in a binary digital system simply by right shifts [8]. RSA 

cryptography requires modular exponentiation of very large numbers [9]. Traditional mathematical methods generate 

partial results in excess of 2048-bits and require division by a similarly large number.  

 

Montgomery defines n and r to be relatively prime integers where r−1 is the multiplicative inverse of r mod n and n−1 

is the multiplicative inverse of n mod r. He also defines n’ = −n−1 mod r and m = tn’ mod r where t is an integer 

defined by 

 

(t + mn)/r ≡ tr−1 mod n 

 

The right side of this congruence is much more computationally expensive than the left. On the left side of the 

congruence, we take congruences mod r and division by r. Because t + mn ≡ 0 mod r, the division has no remainder. 

By choosing r as some 2s, where 2s−1 ≤ n < 2s, x mod r can be computed by shifting x s-bits to the right. To apply this 

principle, and perform Montgomery Reduction, we shift our computation modulo n into a complete residue system. 

 

R = R(r, n) = {ir mod n | 0 ≤ i < n} 

 

One can then define a Montgomery Product “x” of a and b in R: 

 

a × b = abr−1 mod n 

 

Suppose 0 ≤ a, y < n. Define a’ = aR mod n, and y’= yR mod n. Therefore, the Montgomery Reduction of a’b’ is 

a’b’R-1 mod n = abR mod n.  
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Montgomery Exponentiation is the next logical step in this sequence. For example, to compute a5 mod n for integer 

a, 1 ≤ a < n, first compute a’ = aR mod m. After that, determine the Montgomery Reduction of a’a’, X = a’2R−1 mod 

n. Then compute the Montgomery Reduction of X2, X2R−1 mod n = a’4R−3 mod n. The last Montgomery Reduction is 

applied to (X2R−1 mod n) a’ = (X2R−1) a’R−1 mod n = a’5R−4 mod n = a5R mod n. The result must then be converted 

back into the integer domain by multiplying it by R−1 mod n and reducing modulo n, yielding a5 mod n [10].  

4. Algorithms 

An algorithm used to accomplish Montgomery Multiplication (MM) is defined in pseudo code below. It interleaves 

the multiplication and reduction steps, thereby preventing the partial sum from creating an overflow condition [11]. 

 

INPUT: integers m = (mn−1 … m1m0)b, x = (xn−1 … x1x0)b, y = (yn−1 … y1y0)b with 0 ≤ x; y < m, R = bn with gcd(m, 

b) = 1, and m’ = −m−1 mod b. 

 

1. H0. (Notation: H = (hnhn−1 … h1h0)b.) 

2. For i from 0 to (n−1) do the following: 

2.1 ui (h0 + xiy0)m’ mod b. 

2.2 H (H + xiy + uim) / b. 

3. If H ≥ m then H H − m. 

4. Return(H). 

 

OUTPUT: xyR−1 mod m. 

 

MM is not the perfect solution for all applications. It requires substantial work to set up the system and convert the 

result back to the standard integer domain. As a result, traditional algorithms are faster by a factor of two in the 

computation of one modular multiplication. However, a substantial speedup is realized over classical systems when 

one number is multiplied by itself under mod N a predefined number of times. 

 

Montgomery Exponentiation (ME) is a special case of Montgomery Multiplication. It utilizes the multiplication 

function to accomplish its computation. Exponentiation is accomplished by a sequence of squaring operations 

followed by a multiplication. Assuming l-bit inputs to the system. The loop body of the algorithm requires 2l(l+1) 

single-precision multiplications and no explicit division. Traditional algorithms would require the same number of 

multiplications, but also l divisions. ME eliminates on the order of 1000 divisions in real systems. This improvement 

greatly overshadows the small cost of pre- and post-computation [12]. 

 

INPUT: m = (ml−1 … m0)b, R = bl, m’ = −m−1 mod b, e = (et … e0)2 with et = 1, and an integer x, 1 ≤ x < m, s = 

R2 mod m, A = R mod m 

 

1. x’  MontMul(x, s). 

2. For i from t down to 0 do the following: 

2.1 AMontMul(A, A). 

2.2 If ei = 1 then AMontMul(A, x’). 

3. AMontMul(A, 1). 

4. Return(A). 

 

OUTPUT: xe mod m. 

The pseudo code shows that all the steps of the algorithms can be implemented in logic circuits very easily. The main 

loop of MM requires only AND & OR gates, as well as adders and shifters. A few comparators and control logic are 

all this is necessary to realize the algorithm in hardware.  
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5. Circuit Design 

 

Figure 1. RSA High Level Circuit Design 

The multiplier circuit contains one register, H, which stores the result of the multiplication and passes this value to the 

exponentiation circuit. A multiplexor selects between the two possible inputs to H, the result of step 2.2, or the final 

result after step three. Bit rippers parse the 32-bit words entering the multiplier. The least significant bit (LSB) is 

always required from register H and the multiplier. The bit selected from the multiplicand is dependent on the loop 

iteration. 

 

Step 2.1 requires that the LSB of H is added to the logical AND of the LSB of the multiplier and current iteration bit 

of the multiplicand. The result of this add can be a two-bit number, so a two-bit adder is used. M’ = −m−1 mod 2 = 1 

in all cases in this system, so no additional work must be done to compute it. To finish the computation of ui, the 

previously computed sum must undergo the mod 2 operation. A serial shifter shifts the LSB out of the sum and routes 

ui to a parallel array of 32 AND gates. This component simultaneously computes the result of uim. Another instance 

of this component ANDs the current iteration bit of the multiplicand with all the bits of the multiplier. The one-bit 

outputs of the ANDER components are then zero-extended and add together. Their sum is then added to the present 

value of register H.  

 

After thirty-two iterations of step two, the contents of register H and M are passed into a 32-bit comparator. If H ≥ M, 

the comparator output asserts, and the SUB_PASS component will subtract M from H. However, if H < M, the 

SUB_PASS component will simply pass H through to the multiplier circuit output port. 

 

The higher level circuit responsible for exponentiation uses the multiplier circuit for four different purposes. Initially, 

it is used to compute the temporary value X’. Next it is used to either square the contents of register A or multiply the 

contents of register A and register X’. Finally, the Montgomery Multiplier is used to convert back to the integer domain 

in step three. 
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Register A is initialized to R mod m, but is overwritten during each iteration of step two. The loop represented by step 

2 is executed t+1 times where t is the bit position in register E where the most significant one is found. A combinational 

circuit determines this value and the finite state machine providing system control uses this value. At each instance of 

step 2.2, another component rips the current iteration bit from E and checks if it is one. If so, it will execute step 2.2. 

 

Two multiplexors select from the possible inputs to the Montgomery multiplier. The multiplicand accepts either 

register A or X. The multiplier accepts either register A, S, or X’. 

 

Figure 2. Montgomery Multiplier Circuit 
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6. First-Order Performance Analysis and Practical Considerations for Deployed Systems 

Assuming a 1ns delay for each logic gate, the Montgomery Multiplier circuit takes 592ns to execute. In a worst case 

scenario where register E is all ones, the total execution time for the system is 2368ns. This means the coprocessor 

can run at 422kHz. 32-bit words contain four ASCII characters, so 1.69 million characters can be processed in one 

second. 

 

The longest operation in Montgomery Multiplication is addition. The logic and shift operations are effectively 

instantaneous. The loop represented by step 2 must be executed n times where n is the number of bits that can be 

processed. Within each iteration of the loop, step 2.2 requires an n-bit addition. Carry look-ahead adders must be 

exploited to perform the addition, because ripple-carry adders are infeasible with such large data words. The total 

system execution time for exponentiation scales according to 2 Tmm [multiplication time] + (Le [length of E] ⋅ 2 ⋅ Tmm). 

The system built for the purposes of this research utilized 32-bit data words. State of the art commercial systems must 

require more rigorous constraints on the input variables. Per Menezes et al., we suggest the following: 

• Recommended size of modulus N: N should be 2048-bits or higher in order to beat the quadratic sieve and 

number field sieve factoring algorithms. 

 

• Recommended criteria for selection of p & q: Both primes should be about 1024-bits and close to the 

same length in order to beat the elliptic curve factoring algorithm. Also, p – q should be large. If the 

difference is very small, then p ≈ q and therefore p ≈ sqrt(N). Finally, p and q should be strong primes: 

o p – 1 has a large prime factor, r 

o p + 1 has a large prime factor 

o r – 1 has a large prime factor 

in order to beat Pollard’s p−1 factoring algorithm. 

• Recommends size of exponent e: The exponent does not need to be a large number. In fact, e =3 or 65537 

are common exponents. However, (p – 1) nor (q – 1) should not be divisible by e [13]. 

7. Conclusion and Future Work 

In this brief paper we have described a straightforward architecture for a logic circuit implementation of the RSA 

cryptosystem. The architecture and implementation suggestions are ideal for educational purposes, e.g., advanced 

undergraduate or beginning graduate students. An effort is made to communicate salient, fundamental topics 

associated with public-key cryptography and digital system design in a clear and straightforward way.  

 

Future work could entail developing a high throughput pipelined implementation for use in a network interface card, 

whether wired or wireless. Through effective load balancing, the total execution time to process a long string of input 

words would decrease by a constant factor likely in the range of two to five. There is also work to be done interfacing 

the FPGA implementation of the circuit with a PC. The most appropriate bus must be determined and a protocol 

developed to maximize throughput. Finally, a program should be written to interface with email clients, e.g., Microsoft 

Outlook, to support seamless RSA encryption in email. 
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