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ABSTRACT: Stabilization conditions are proposed in this paper leading to master and slave hyperchaotic systems
synchronization. They are, essentially, based on the use of a new state feedback controller and of the aggregation techniques
for stability study associated to the arrow form matrix for system description. Indeed, the synchronization property is considered
as the main way guaranteeing the design of one high dimensional cryptosystem. The security of this proposed communication
scheme is investigated through its key sensitivity study. Numerical simulation results point up the efficiency of these contributions
as well as the success of image signal transmission for the considered cryptosystem, by means of two identical 4-D chaotic
Lorenz Stenflo maps as transmitter and receiver keys.
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1. Introduction

The synchronization phenomenon is an interesting and well-known property of chaotic systems. Since its introduction by
Pecora and Carrol in 1990 [1], chaos synchronization has attracted increasing interest in both theory and applications [2-4], as
far as several fields are concerned. As a matter of fact, the synchronization of chaotic systems has been successfully applied in
secure communication and image encryption, information processing, life science [5-12], and so on. Recently, chaos
synchronization has been studied from various angles and a variety of different synchronization phenomena have been discovered,
such as generalized synchronization [13-14], phase synchronization [15], lag synchronization [16], anti-synchronization [17],
hybrid synchronization [18-20], observer-based synchronization [21-23], etc.

The chaos-based encryption has suggested, from several applications, new and efficient way to deal with the intractable
problem of fast and highly secure image encoding [23-26].

Without a doubt, chaotic systems have many important properties, such as the sensitive dependence on initial conditions and
system parameters, pseudorandom property, no periodicity and topological transitivity, etc. In such a way, most properties meet
some requirements, such as diffusion and mixing, in the sense of cryptography.

As a result, chaotic cryptosystems have more useful and practical applications [23-26].
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The most important contribution, in this paper, consists on the original approach leading to synchronize hyperchaotic systems
and its application in the field of secure image transmission. The proposed algorithm is based on pixel scrambling where the
randomness of hyperchaos is used to mix up the position of the data. Indeed, the position of the data is knotted in the order of
randomness of the elements obtained from the hyperchaotic system and again rearranged back to their original position in
decryption process. The same algorithm is tested with the 4-D Lorenz Stenflo chaotic systems and performance analysis is done
to put in prominent position the efficiency of the chosen map as a cryptosystem.

The outline of this paper is as follows: synchronization behaviour of two identical 4-D Lorenz Stenflo systems is, firstly, studied.
Then, the proposed approach dealing with the proposed nonlinear state feedback design viewpoints, relatively to the coupled
master-slave Lorenz Stenflo hyperchaotic system, is developed. Afterwards, the problem of synchronization between two
hyperchaotic systems is investigated through the concept of secure image transmission. Finally, the high security of the
proposed cryptosystem is performed.

2. Problem Statement

Throughout the present paper, the use of the aggregation techniques [28-29] associated to the arrow form matrix [3, 20-21, 30-32],
is, firstly, applied to synchronize two identical Lorenz Stenflo systems. Then, a simple secure image communication scheme
based on the hyperchaotic Lorenz Stenflo system and chaos synchronization is proposed, showing that the developed approach
guarantees high security and can be easily implemented.

3. New State Feedback Control Law Synchronizing Two Coupled Lorenz Stenflo Hyperchaotic Systems [26]

The stability study of the dynamical error system is considered, in this part, in order to synchronize two identical 4-D chaotic
Lorenz Stenflo systems.

3.1 Error System Description
The studied hyperchaotic system is formulated by Stenflo from a low frequency short wavelength gravity wave equation. It is
described by the following nonlinear differential equations [4]:
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It is crucial to denote that the considered Lorenz Stenflo system exhibits a chaotic attractor, shown in Figure 1., for the following
parameter values: α  = 1, β = 0.7,  γ = 1.5 and r = 26.

Consider a master Lorenz Stenflo system given by:
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which drives a slave Lorenz Stenflo system described by:
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(t), ∀i = 1, 2, are the appropriate control functions to be determined.
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and leading to the error dynamics equations below:
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which can be rewritten in the following form:
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The synchronization of the coupled master-slave Lorenz Stenflo hyperchaotic dynamical system needs the stabilization of the
resulting error system (5), which can be achieved when the proposed following nonlinear active feedback control laws, in the
form:
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Therefore, the controlled dynamical 4-D error system can be described by:
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So, the nonlinear matrix elements a
c
   (.), A

c 
(.) = {a

c
  (.)}, ∀i, j = 1, ..., 4, depend on system’s parameters, control gains, slave and

master state variables.

Now, in order to study the stability of the closed-loop error system (9), our task is restricted to choose the control gains in order
to simplify the complexity of the dynamical error system, in one hand, and to make efficient the following proposed stability
method, in the other hand.

3.2 Proposed Sufficient Stability Conditions
When the obtained error system (5) is stabilized by the state feedback control law , u defined by (8), the error will converge to
zero as ; t → +∞; then, the master and slave hyperchaotic Lorenz Stenflo systems (2) and (3) will be globally synchronized.

Taking into account the importance of arrow form choice for instantaneous characteristic matrices, to obtain useful sufficient
stability conditions for nonlinear systems, as shown in [3-4, 17-18, 21-23, 26-30], let design a suitable state feedback controller,
so that the closed-loop error system (10) being described by the following nonlinear differential equations form:
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which leads to an instantaneous characteristic matrix under the arrow form, such that non zero elements are located in its main
diagonal, its first row and its first column.

The application of the aggregation techniques [26-27], for the stability study, associated to the arrow form matrix [3-4,17-18,21-

.
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23, 28-30], for the system description, leads to the following theorem.

Theorem. The error system (5) is stabilized by the proposed nonlinear state feedback control law (8), if the matrix A
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The error system (5) is then stabilized by the proposed control law (8), if the matrix M (A
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(.)) is the opposite of an M −  matrix [27],

or if, by application of the aggregation techniques [26], the sufficient stability conditions, for ε > 0, are formulated in the
subsequent manner:
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achieves easily the proof of the above-mentioned theorem.

3.3 Application of the Proposed Stability Conditions to Synchronize the Coupled Master-Slave 4-D Lorenz Stenflo Chaotic
System
The concept of chaos synchronization emerged much later, not until the gradual realization of the usefulness of chaos by
scientists and engineers. Synchrony is the simplest effect of coupled identical systems: two identical systems display the same
dynamical pattern in their common phase space [4]. For that reason, the developed state feedback control technique is applied,
in this subsection, to achieve chaos synchronization of two identical 4-D Lorenz Stenflo systems.

In fact, the characterization of the closed-loop error system (10) by an arrow form matrix is easily checked by choosing the
correction parameters, in the instantaneous characteristic matrix (11), k
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are chosen linear, such that:
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to guarantee the asymptotic stability of the dynamical error system (9).

Hence, ∀ k
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This choice ensures that the synchronization between master and slave systems is achieved. This is also confirmed by the
exponential convergence of the synchronization quality defined by the error propagation on the error states:
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Figure 2 and Figure 3 show the error dynamics in the uncontrolled state, while Figure 4. illustrates the error dynamics when
controller is switched on.

Obviously, the two hyperchaotic Lorenz Stenflo systems evolve in the same direction as well as the same amplitude; that’s to
say, they are globally asymptotically synchronized by means of the proposed nonlinear state feedback controller.
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Figure 2. Evolutions of master and slave states of the
Lorenz Stenflo system when controller is switched off

4. Feedback-Based Synchronization of 4-D Chaotic Systems for Secure Image Transmission – Basic Idea

In this section, the problem of feedback-based synchronization between two identical hyperchaotic systems is applied to a new
chaos-based image cryptosystem, to illustrate the feasibility of the theoretical proposed approach. The input of the considered
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cryptosystem is the plain image which is to be encrypted. The cryptosystem consists of two stages. The first step is the
confusion stage and the second one is the diffusion stage, Figure 5 (a) and Figure 5 (b). Among several hyperchaotic dynamic
systems, the Lorenz Stenflo one is selected and it is applied to the digital color image encoding. The second step of the masking
process is to encrypt the shuffled image by changing its pixel values based on the 4-D Lorenz Stenflo chaotic system. This is
referred to as the diffusion stage. The resulting image is the cipher image.

Figure 3. Error dynamics between two coupled Lorenz Stenflo systems when controller is deactivated

Figure 4. Error dynamics of the coupled master-slave Lorenz Stenflo system when controller is switched on
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Figure 5 (a). Selective encryption procedure

Figure 5 (b). Encryption proposed technique

Systems parameters of the master Lorenz Stenflo hyperchaotic system, painstaking as transmitter system, are chosen to further
enhance the complexity of the considered cryptosystem and thereby improving the security of the image diffusion process.

Firstly, we form a vector with three layers in the RGB format containing the image colors. After that, the chaotic signal of the

Figure 6 (a). Original Lena image and its actual RGB intensity plots
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Figure 6 (b). Encoded Lena image and its RGB intensity plots after encryption

Figure 6 (c). Decoded Lena image and its RGB intensity plots after decryption

master transmitter system is added to the image, to further enhance the complexity of the considered cryptosystem and thereby
improving the security of the image transmission process. Subsequently and thanks to the synchronization property, the image
is successfully recovered through the subtraction between the encrypted image and the slave chaotic signal. At last, the three
layers are joined in order to form the color image.

Experimental results of the proposed image encryption scheme are shown in this section using Lena image, Figure 6 (a). The
image encryption is based on the Lorenz Stenflo hyperchaotic system and generated elements have been stored within the 4-D
chaotic matrix.

The pixel position permuted of Lena image, after applying Lorenz Stenflo hyperchaotic system, is obtained and shown, as the
diffused image, in Figure 6 (b).
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In the stage of decryption, the parameters of the slave hyperchaotic system, assumed to be as the receiver system, are set to
their real values, thanks to the successful hyperchaotic synchronization property obtained between master and slave systems,
which assures the perfect depiction of the original transmitted Lena image, Figure 6 (c). Figure 6 (a), 6 (b). and 6 (c). show the
original image, pixel scrambled encrypted image and decrypted image with their RGB levels.

5. Performance Analysis

To measure the performance of the proposed encryption algorithm, we have calculated the correlation coefficient, in the first part
of this Section. Moreover, to prove that the decryption process is possible only with one specific key, simulations are done with
slightly varied keys, in the second part of it.

5.1. Correlation Coefficient
The correlation coefficient r is the measure of extent and direction of linear combination of two random variables. If two variables
are closely related, the correlation coefficient is close to the value 1. But, if the coefficient is close to 0, the two variables are not
related.

The correlation coefficient r can be calculated by the following formula:
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represent, respectively, the pixel intensity of the original image, the mean value of the original image

intensity, the pixel intensity of the encrypted image and the mean value of the encrypted image intensity.

The correlation values are calculated for both original and encrypted images with Lorenz Stenflo map and shown in the Table
below, from which, it is clearly illustrated that the obtained correlation coefficient values are very near to zero with the considered
map.

With this we can conclude that for this encryption algorithm, based on the Lorenz Stenflo map, the correlation coefficient values
are very low and near to zero. This proves that the algorithm leads to a satisfactory secured encryption process.

Figure 7 (a). Original Lena image Figure 7 (b). Decrypted Lena image
using original key β = 0.7000

Figure 7 (c). Decrypted Lena image with
slightly different key β = 0.7001

(24)
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   Image      Correlation of R         Correlation of G      Correlation of B

Lena.jpg           1.327e−005 8.7905e−006                      7.7947e−006

Table. Correlation coefficient values with Lorenz Stenflo map

5.2. Key Sensitivity
A good Encryption algorithm should be very much sensitive to the key. A slight variation in the key should result in totally
different image in the rebuilding process at the destination end.

The experiment is carried using the Lorenz Stenflo map with its actual initial condition β  = 0.7000. Figure 7 (a). and Figure 7 (b),
considered as original key, and slightly different value β  = 0. 7001 .  From the obtained results, it is clear that a slight variation,
say 0.0001, results in totally different decrypted image as shown in Figure 7 (c).

It is worth noting that in our algorithm we have used one single Lorenz Stenflo map, thus key space is less in comparison to
works where three chaos maps are used in order to achieve encryption, bringing into play a key space three times more that the
necessary key space of our proposed algorithm. Consequently, memory requirement is fewer in this proposed cryptosystem and
better for the applications like wireless communications. It is also noticeable that, in this algorithm, the initial conditions
assumed to generate the chaotic map acts as the key. Furthermore, the security is compromised even without precise knowledge
of the hyperchaotic systems parameters used.

6. Conclusion

In this paper, the synchronization is achieved for two identical coupled 4-D chaotic systems. Under some structural assump-
tions of the master system and based on aggregation techniques associated to the arrow form matrix, a state feedback-based
slave system is designed to assure that the property of synchronization is fruitfully reached.

Additionally, the Lorenz Stenflo hyperchaotic system is taken as an example to demonstrate the effectiveness of this proposed
synchronization scheme and the simulation results show that image encoding and decoding are so good and the considered
cryptosystem has high-quality of security. The obtained values clearly signify the importance of this algorithm in the applica-
tion of image encryption, especially for wireless communications.
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