
Tiberiu S. Chis, Peter G. Harrison

Department of Computing, Imperial College London

South Kensington Campus, London, UK

ABSTRACT

The paper introduces an incremental approach to training Hidden Markov Models (HMMs), particularly

aimed at modeling discrete-time workloads such as I/O traces. Traditional HMM training, notably using the

Baum-Welch algorithm, requires the full dataset in advance, which limits its applicability in real-time

applications. To address this, the authors develop IncHMM, a model that updates its parameters incrementally

as new data arrives, making it suitable for dynamic workloads.

Central to their method is creating two approximations of the backwards () variables in the Forward-

Backwards algorithm, which enables the model to process new observations without reprocessing the entire

dataset. The first approximation assumes convergence properties in state probabilities, while the second

employs matrix inversion techniques with fallback strategies when certain conditions are not met. Both are

tested on real-world I/O traces that have been pre-processed using the K-means clustering algorithm.

Simulation results show that the incrementally trained HMMs closely match the statistical properties (mean

and standard deviation) of the raw data, especially for read operations. Write discrepancies are noted and

attributed to lower variance or model limitations. The authors suggest future improvements, including refining

the clustering algorithm and testing it on other time series, such as hospital arrival data, to enhance versatility

and accuracy.

Keywords: Hidden Markov Models, Backwards Approximations, Real-time workload

Received: 3 November 2024, Revised 5 February 2025, Accepted 27 February 2025

Copyright: With Authors

1. Introduction

A hidden Markov model (HMM) is a bivariate Markov chain that captures details regarding the progression of

a time series. Initially introduced by Baum and Petrie in 1966 [1], HMM
s
 can accurately model workloads for

Print ISSN: 0976-3511
Online ISSN: 0976-2922

JITR 2025: 16 (3)
https://doi.org/10.6025/jitr/2025/16/3/106-112

DLINE JOURNALS

 106 dline.info/jitr

 Journal of Information Technology Review

Incremental Hidden Markov Models for Real-Time Workload
Characterization with Improved Backwards Approximations

dline.info/jitr 107

 Journal of Information Technology Review Volume 16 Number 3 August 2025

discrete time processes, making them useful as adaptable benchmarks to elucidate and forecast the intricate

behavior of these processes. When developing an HMM, three primary challenges must be tackled: First, given

the model parameters, determine the likelihood that the HMM produces a specific sequence of observations,

which is addressed using the Forward-Backward algorithm; Second, given a sequence of observations, identify

the most probable set of model parameters, achieved through statistical inference via the Baum-Welch algo-

rithm, which incorporates the Forward-Backward algorithm; Third, ascertain the sequence of hidden states that

is most likely to produce a sequence of observations, which is resolved through posterior statistical inference in

the Viterbi algorithm. In this document, we present an incremental variation of the Baum-Welch algorithm by

developing two approximations of the Forward-Backwards algorithm. This approach enables us to process in-

coming I/O trace data incrementally and update our HMM parameters “on-the-fly” as new trace data becomes

available. The HMM utilizing this incremental Baum-Welch algorithm (IncHMM) yields the necessary param-

eters to construct a discrete Markov arrival process (MAP), which we denote as our Workload Model. For our

findings, we validate two Workload Models using averages derived from the raw and IncHMM-generated traces.

Lastly, we contrast our findings with existing research in the domain, pinpointing potential enhancements for

the future.

2. Forward-Backward Algorithm

The Forward-Backward algorithm, which is used in our incremental Baum-Welch algorithm, solves the following

problem: Given the observations O = (O
1
, O

2
, . . . ,O

T
) and the model = (A, B,)1, calculate P(O|) (i.e. the

probability of the observation sequence given the model), and thus determine the likelihood of O. Based on the

solution in [5], we explain the “Forward” part of the algorithm, which is the -pass, followed by the “Backward”

part or the pass. We define the forward variable 
t
(i) as the probability of the observation sequence up to

time t and of state q
i
 at time t, given our model . In other words, 

t
(i) = P(O

1
, O

2
, . . . ,O

t
, s

t
 = q

i
|), where i = 1, 2,

. . . , N, N is the number of states, t = 1, 2, . . . , T, T is the number of observations, and s
t
is the state at time t. The

solution of 
t
(i) is inductive:

1. Initially, for i = 1, 2, . . . , N: 
1
(i) = 

i
b

i
(O

1
)

2. Then, for i = 1, 2, . . . , N and t = 2, 3, . . . , T: 
t
(i) = [N

j=1
 

t-1
(j)a

ji
]b

i
(O

t
) where 

t-1
(j)a

ji
 is the probability of the

joint event that O
1
, O

2
, . . .O

t-1
 are observed (given by 

t-1
(j)) and there is a transition from state q

j
 at time t-1 to

state q
i
 at time t (given by a

ji
), and also b

i
(O

t
) is the probability that O

t
 is observed from state q

i
.

3. It follows that: P(O| ) = N
i=1


T
(i)

where we used the fact that 
T
 (i) = P(O

1
, O

2
, . . . ,O

T
 , s

T
 = q

i
|).

Similarly, we can define the backward variable, 
t
(i) as the probability of the observation sequence from time t +

1 to the end, given state q
i
 at time t and the model . Then, 

t
(i) = P(O

t+1
,O

t+2
, . . .O

T
| s

t
 = q

i
,) and the recursive

solution is:

1. Initially, for i = 1, 2, . . . , N: 
T
 (i) = 1

1A is the state transition matrix, B is the observation matrix, and  is the initial state distribution.

dline.info/jitr 108

 Journal of Information Technology Review Volume 16 Number 3 August 2025

We can now re-estimate our model using  = (A,B, ) where A = {a
ij
}, B = {b

j
(k)} and  = {

i
}. However, this

re-estimation only works on a fixed set of observations, and a useful upgrade for the BWA would be to handle

infrequent, higher density, additional loads mainly for on-line characterization of workloads [2]. To have an

incremental HMM automatically updating its parameters as more real time workload data becomes available

would achieve this, as well as consistently analyse processes over time in a computationally efficient manner.

This new model will be a hybrid between a standard HMM and an incremental HMM which updates the current

parameters A,B, based on the new set of observations. Therefore, after the standard HMM has finished training

on its observation set, we aim to calculate the ,and  variables on the new incoming set of observations. For

example, if we have trained a HMM on T observations and wish to add new observations to update our model

incrementally, we notice that 
T+1

(i) = [N
j=1

 
T
(j)a

ji
]b

i
(O

T
). Since we possess the values of 

T
 (j), a

ji
 and b

i
(O

T
), the

new values can be computed quite easily using the forward recurrence formula. However, to find 
T+1

(i) is not so

easy as it relies on the backward formula with a onestep lookahead 
T+1

(i) = N
j=1

 
ji
 b

j
(O

T+1
)

T+2
(j) and unfortunately

we do not have 
T+2

(j). Therefore an approximation for the variables is needed, preferably a forward recurrence

formula similar to the formula. The new  and  variables (and therefore the new entries a
ij
 and b

j
(k)) can be

calculated easily once we have the complete  and sets. Building on previous work seen in Section 4.8.3 of [6],

we attempt to find several new approximations for the  values.

3.1 First Approximation
The first approximation for the  variables will assume that, at time t and for state i, we have that 

t
(i) = (t, i) is

2. Then, for i = 1, 2, . . . , N and t = 2, 3, ..., T:
t
(i) =N

j=1
 a

ij
b

j
(O

t+1
)

t+1
(j)

where we note that the observation O
t+1

 can be generated from any state q
j
.

With the and values now computed, we attempt to create an incremental version of the Baum-Welch algorithm,

which will use both of these values.

3. Incremental Baum-Welch Algorithm

Given the model = (A, B, ), the Baum-Welch algorithm (BWA) trains a HMM on a fixed set of observations O

= (O
1
, O

2
, . . . ,O

T
). By adjusting its parameters A,B, , the BWA aims to maximise P(O|). As explained in Section

2.3.2 of [6], the parameters of the BWA are updated iteratively by the following formulas:

3.

1.

2.

dline.info/jitr 109

 Journal of Information Technology Review Volume 16 Number 3 August 2025

Let us now transform our recurrence formula 
t
(i) = N

j=1
 

ji
 b

j
(O

t+1
)

t+1
(j) into matrix form, using the notation

b
j
 = bj(O

t+1
) for ease of use. Since we are using two states in our Workload Model, we set N = 2. It then follows that

(1)

then pre-multiply by (a
t
(1) a

t
(2)):

and multplying out we get

where by defintion of 
t+1

(i) it follows that

We notice that where T is the total number of observations. Quite fittingly,

the term P(O|) is already calculated for us from the -pass. Finally, assuming that t + 1 is sufficiently small and

using (1) we can deduce that 
t+1

(1) 
t+1

(2), giving us

we then factor out 
t+1

(1)

and multiply out the RHS

a decay function which tends to  as t  . Therefore, for a sufficiently large observation set and at a sufficiently

small t, we obtain the approximate result (t, i) - (t, j) 0, where i and j are different states. This then gives the

near equality (t, i) (t, j) and hence by our earlier assumption we have the important approximation:

which gives our final approximation result:

(2)

dline.info/jitr 110

 Journal of Information Technology Review Volume 16 Number 3 August 2025

Reads/bin Writes/bin

Raw Mean: 111.350 Raw Mean: 0.382

IncHMM Mean: 111.278 IncHMM Mean: 0.366

Raw Std Dev: 254.942 Raw Std Dev: 0.550

IncHMM Std Dev: 255.039 IncHMM Std Dev: 0.461

Figure 1. Statistics for raw and IncHMM traces using the first approximation

Figure 1 is divided into Reads/bin and Writes/bin to simplify analysis, where the bin is simply a one second

interval. For example, a “Raw Mean of 111.350 Reads/bin” means that the raw I/O trace produced on average

111.350 read commands per second. Similarly, we analyse the average number of writes per second as our I/O

trace contains both reads and writes. Therefore, we can see from Figure 1 that the statistics for raw reads and

IncHMM reads match extremely well, almost identical over the 10000 points. For the writes, there is a higher

difference in the standard deviations than in the means. This is possibly due to a significant drop in the number

of write procedures presented by the I/O trace, which the IncHMM did not reproduce entirely when generating

its trace.

3.2 Second  Approximation

As before, we begin with the following vectors and the 2 × 2 transformation matrix (D):

The  approximation seen in (2) produced very good results in our simulation. To achieve this simulation, we

obtained a network trace (aka raw trace) from NetApp servers made up of time stamped I/O commands (single

Common Internet File System reads and writes). We then partitioned this raw trace into one second intervals

(aka binned trace) counting the number of reads and writes present in each interval or “bin”. This binned trace

was then filtered through a K-means clustering algorithm (assigning 7 clusters, i.e. K=7) and we obtained a

discrete time series (aka observation trace) where each point is an integer between 1 and 7. This observation

trace was given as a training set of 7000 points (i.e. 7000 seconds) to a HMM. Afterwards, 3000 new

observations were added to this set, evaluating the 3000 points using our new b approximation. Thus, we

were able to create the IncHMM, which stored information on 10000 consecutive observation points. Statistics

on a raw trace of 10000 observations were compared with those of an IncHMM-generated trace(using our

model parameters A, B,  and a random distribution to generate this trace) also of size 10000. The results are

summarised below in Figure1:

where we use b
i
= b

i
(O

t+1
), for ease of notation.

We then pre-multiply by the inverse of the transformation matrix (D-1):

dline.info/jitr 111

 Journal of Information Technology Review Volume 16 Number 3 August 2025

where b
1
 0, b

2
 0 and a

11
a

22
 a

21
a

12
.

In the case that b
i
= 0 for a state i, D has a column of all zero values, which means that D-1 cannot exist, and

therefore a simple approximation for 
t+1

(i) is needed here. Considering all three cases, we present the full set of

equations in (3). Underneath this, Figure 2 summarises the results of the simulation with the approximation

from (3):

Reads/bin Writes/bin

Raw Mean: 111.350 Raw Mean: 0.382

IncHMM Mean: 110.231 IncHMM Mean: 0.357

Raw Std Dev: 254.942 Raw Std Dev: 0.550

IncHMM Std Dev: 254.155 IncHMM Std Dev: 0.463

Figure 2. Statistics for raw and IncHMM traces using the second approximation

where D-1 D = I
2
 and I

2
is the 2 × 2 identity matrix.

By using Gauss-Jordan elimination to work out D-1, the final equation is

(3)

The results obtained were satisfying, including the reads which performed very well. In comparison, the

writes slightly underperformed, possibly due to the read-dominated trace or perhaps a slight misjudgement

by our clustering algorithm.

4. Conclusion and Future Work

The approximations used in this paper have been successful after statistical comparisons between raw and

IncHMM-generated traces. Thus, we have created two Workload Models (each with their own approximation)

which characterize data traces incrementally. Analysing current work in this field, for example Stenger et al.

dline.info/jitr 112

 Journal of Information Technology Review Volume 16 Number 3 August 2025

in 2001 [4] (where all new  variables were given a value of 1), it is clear that either Workload Model provides

a better approximation. When comparing our models with the incremental HMM from [3], all three models

produced accurate results, except the latter had a backward formula that was not recursive in terms of the 
values. A general improvement to our models would be to increase the accuracy for the standard deviation of

the IncHMM writes. This may be achieved by using significantly more observations from our I/O trace to

obtain a greater variation in write entries. Perhaps adjusting the K parameter for our K-means clustering

algorithm might also improve our results. Finally, we could test the IncHMM with another discrete time data

trace, for example using a binned trace of hospital arrival times which stores the number of patients arriving

every hour. Then, by choosing the most accurate approximation of the two, we would obtain an incremental

Workload Model capable of analysing a variety of discrete time series.

References

[1] Baum, L. E., Petrie, T. (1966). Statistical inference for probabilistic functions of finite Markov chains. The

Annals of Mathematical Statistics, 37, 1554–1563.

[2] Harrison, P. G., Harrison, S. K., Patel, N. M., Zertal, S. (2012). Storage workload modelling by Hidden

Markov Models: Application to flash memory. Performance Evaluation, 69, 17–40.

[3] Florez-Larrahondo, G., Bridges, S., Hansen, E. A. (2005). Incremental estimation of discrete Hidden Markov

Models on a new backward procedure. Department of Computer Science and Engineering, Mississippi State

University, Mississippi, USA.

[4] Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J. M. (2001). Topology-free Hidden Markov

Models: Application to background modeling. In Proceedings of the International Conference on Computer

Vision (pp. 297–301).

[5] Rabiner, L. R., Juang, B. H. (1986). An introduction to Hidden Markov Models. IEEE ASSP Magazine, 3(1),

4–16.

[6] Chis, Tib. (2011). Hidden Markov Models: Applications to flash memory data and hospital arrival times

(Master’s thesis). Department of Computing, Imperial College London, London, UK.

