
 Journal of Information Technology Review Volume 1 Number 2 May 2010 57

An Assessment on the Easiness of Computer Languages

Kevin Xu, Jingsong Zhang, Shelby Gao
Bigravity Business Software LLC
{kevin, jingsong, shelby}@froglingo.com

ABSTRACT: Expressive power has been well-established as a dimension of measuring the quality of a computer language.
Easiness is another dimension. It is the main stream of development in programming language and database management.
In this article, we make the following assessment on the easiness of computer languages: 1) A data model is easier to use
than a programming language in the development and maintenance of those applications expressible in the data model; 2)
if one data model is more expressive than another data model, the former is easier than the latter in the development and
maintenance of those applications where a programming language is involved; and 3) A unifi cation, i.e., a system having
both a data model semantically equivalent to a class of total recursive functions and a programming language, achieves
the greatest possible ease. We materialize the assessment with the following facts: 1) A data model is semantically within a
class of total recursive functions while a programming is semantically within a class of partial recursive functions; 2) A data
model arranges the managed objects in orders including at least one dependent order; and 3) The objects represented for
both business data and business logic, in the case of a unifi cation, obey the orders enforced by the data model.

Keywords: Database management, Computer languages, Data model, Data objects

Received: 19 October 2009, Revised 24 December 2009, Accepted 30 December 2009

© D-LINE. All rights reserved

1. Introduction

Many database applications were written in programming language in 1960s and 1970s and they are currently still in opera-
tion. Database management system (DBMS) came to the fi eld of database application software after 1970s. It signifi cantly
improved the productivity in the development and maintenance of database applications. However, programming language
and DBMS must be employed together for a database application because of the limitation of DBMS.

Froglingo is a unifi ed solution for information management, an alternative to the combination of programming language,
DBMS, fi le system, and web server. It is a “database management system (DBMS)” to store and to query business data; a “fi le
system” to store and to share fi les; a “programming language” to support business logic; and a “web server” to interact with
users across networks. More than the combination of the existing technologies, it is a single language uniformly representing
both data and application logic. See more information about Froglingo in [7].

Assessing a language’s easiness is generally considered subjective. Froglingo, however, suggested how one assesses easi-
ness more objectively. The authors in [6] made a case for this view. It fi rst assumed that a data model is easier to use than
a programming language in the development and maintenance of those applications expressible in the data model. It had a
second assumption that if one data model is more expressive than another data model, the former is easier than the latter in
the development and maintenance of the applications where a programming language is involved. With the two assumptions
above, the authors concluded that the easiness reached the upper limit mathematically when a unifi cation, i.e., a system having
both a data model semantically equivalent to a class of total recursive functions and a programming language.

In this paper, we expand the discussion in the article [6] and emphasize the following facts that materialize the assumptions
and the conclusion made in the article [6]:

1. A data model is semantically within a class of total recursive functions. It guarantees that a software application in the
data model terminates unconditionally.

2. A data model has a set of ordering relations. It guarantees that set-oriented queries and update operations can be applied
to the business data managed in the data model

58 Journal of Information Technology Review Volume 1 Number 2 May 2010

3. The objects represented for both business data and business logic in a unifi cation obey the ordering relations enforced
by the data model. It allows both business data and business logic to be managed equally, and therefore consolidates the
multi-component architecture of the software applications in current technologies.

By recalling the history of the progress in the fi elds programming language and database management through Sections 2 to
5, we identify the essences of a data model and quantitatively differentiate it from a programming language. The outcome of
the analysis is the fi rst two facts listed above, which justifi es the two assumptions given in the article [6].

According to the two justifi ed assumptions, we logically have the conclusion that a unifi cation achieves the greatest possible ease.
What do we gain from the conclusion practically? Borrowing what have been demonstrated in a unifi cation – Froglingo, in Section
5 and 6, the authors identifi ed the three features that materialize the conclusion: 1) A unifi cation is a consistent tool for fi nite data
of arbitrary software applications including the applications in artifi cial intelligence; 2) A unifi cation can have a rich set of built-in
operators that stem from the ordering relations of its data model and are applicable to complex queries including mechanized reason-
ing; and 3) A unifi cation consolidates the multi-component software architecture of the applications in traditional technologies.

The authors keep the discussion in an informal manner; but substantiate the conclusions with references to other relevant
articles or with the obvious implications of computability. The aim is to assist readers to quickly grasp a large number of
concepts related to the topic of this article – easiness.

2. Language

A language has its syntax and its semantics. Semantics characterizes an aspect of the quality of a language, i.e., the effect or
outcome of the programs written in language. It has been well studied and is quantitatively measurable by expressive power.

Syntax characterizes another aspect of the quality, i.e., the effort of writing the programs in a language. In this article, we
call it easiness. When two languages have the same expressive power, users may prefer to use one over another. There hasn’t
been a precise measurement on easiness. We raise the issue here because it has been a factor in the evolution of computer
languages and a few objective measurements have been identifi ed in evaluating it.

Two languages can be comparable in easiness only if they are equivalent in terms of expressive power. It is meaningless
to compare two languages in easiness if they represent two exclusive sets of semantics. However, if the semantics of one
language are a superset of the semantics of a second language, the easiness of the fi rst language can be compared with the
easiness of the second when that fi rst language is used to express the semantics of the second.

3. Programming Language

A programming language is a language with the semantics equivalent to a class of computable (or partial recursive) functions,
which determines the upper limit of what a computer can handle.

Programming languages have evolved from low-level machine/assembly languages to higher-level languages. One aspect of
programming languages that remains unchanged is their expressive power, the Turing equivalent.

What, then, has changed in the process of programming language evolution? What has changed is the easiness. Driven by
the need for programmers to be ever more productive in software development and maintenance, we have worked continu-
ously to produce easier programming languages.

We note a key difference between a programming language and a data model: A programming language can represent com-
putable functions, and therefore infi nite data, in expressions that are themselves fi nite.

The semantics of programming languages inevitably falls into a class of partial recursive functions. However, we strive hard
to design and to use programming languages so that the programs written in the programming languages can eventually fall
into a more narrow class of total recursive functions. The class of total recursive functions is all those useful in representing
software applications given the limitations of a computer.

4. Data Model

A data model is a language. As far as the existing data models and the objective of this article are concerned, we contend that
the semantics of a data model is a subset of a class of total recursive functions. A data model is the mathematical abstraction
of a database management system (DBMS) for database applications.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 59

A data model normally refers to a data structure that stores a set of data and a set of built-in operators under which that set
is closed. (By closed, we mean that an operation always terminates and returns members from the set.) To emphasize the
dominant role of data structure, we say that a data model is a data structure which arranges a set of objects in orders includ-
ing at least one dependent order. The second defi nition is intended to be equivalent to the fi rst one, while the orders attend
the built-in operators. For the precise defi nition of the concept of data model in mathematical terms, that quantitatively dif-
ferentiates a data model from a programming language, please reference [5].

When the objects in a set are arranged in orders (or called ordering relations), e.g., sequential order, tree-structured order,
partial order, and preorder, one can express set-oriented operations against the objects. This is one of the essences of a data-
base over programming language.

A dependent order says that if one object depends on another in a set, and that fi rst object is in the set, then the second must be
in the set as well. The dependent order is bi-conditional, so conversely, if the second object is not in the set, then the fi rst object
cannot be there either. (e.g., an attribute in a relational table depends on its row; a child object depends on its parent object in
hierarchy; and the birth of an infant depends on both its mother and father.) Requiring a data model to have at least one dependent
order is to refl ect the fact that a set of objects can be added or removed from a database by using a built-in operator.

The orders among the objects in a set must also be decidable. In other words, one is always able to tell, in fi nite steps, if one
object in a set is related to another object in terms of the orders. This requirement is to refl ect the other essence of a data-
base over programming language, i.e., the built-in operators in a data model always terminate. Given a dependent order, for
example, one can always tell if one object is dependent on another object or not. A dependent order disallows an object to
depend on itself (i.e., data that is organized to have a cyclical loop) in the managed sets. Such a requirement disqualifi es a
computer language as a data model. There can be a program in the language that doesn’t terminate on an input.

With the defi nition above, we say that queue in programming language is an example of data models. So are the relational
data model and the hierarchical data model with the containment relationship. The traditionally called “network data model”
that allows cyclical data and not clearly defi ning the dependencies among cyclical data is excluded from being a data model
in this paper. Obviously, both Datalog and a programming language are not data models.

Requiring a data model to have decidable orders justifi ed the assumptions used in article [6].

The defi nition here for the concept of a data model mathematically allows a data model to be an infi nite and countable, even
though this is not possible in practical terms. This allows us to show that there is a data model that can “store” the entire class
of total recursive functions. See the article [5 and 3] for more information.

5. Hybrid

Programming languages defi ne functions by coding algorithms; data models defi ne functions by enumerating properties.
One might say that although a data model is preferable, a programming language is inevitable.

There are several reasons for this. First of all, a lot of business data falling into a class of total recursive functions may be
desired to be, but not expressible in a traditional data model. (By not expressible, we mean that some dependencies would
be lost even if they were placed, that is to say decomposed, into the data structure of a data model.) Hierarchical data, as a
typical example, can be folded into a table, but its containment relationships cannot be captured by the relational data model.
Another example would be the relationships among the vertices in a directed graph (e.g., is there a path from A to B), which
cannot be captured in both relational data model and hierarchical data model.

Secondly, constructing arbitrary queries on the top of a managed data set requires a programming language. Although built-in
operators (such as SQL in relational data model) can be used to construct a class of useful queries, they don’t exhaust all the
queries that are practicality required and within a class of total recursive functions. For example, a query in the relational data
model cannot simply return a single attribute or a sequence of attributes out of a relational database. There is no exception
to this. This holds true even for a data model equivalent to a class of total recursively functions.

A system having both a programming language and a data model is called a hybrid. Hybrids started with the research ef-
forts into “database programming language” in 1970s to the early 1990s. They offered programming languages on the top
of relational data models, hierarchical data models, and network structures (called network data models at that time). Some
proposals were Galileo, Functional Object Language, Machiavelli, PFL, BULK, and XML/XQUERY. The approach, the
combined relational data model and programming language, is the most popular hybrid today. Due to the lower expressive
power of the underlying data models, however, this approach didn’t start from a well-established foundation.

60 Journal of Information Technology Review Volume 1 Number 2 May 2010

In database applications, a hybrid is easier than a stand-alone programming language. A hybrid is easier because a data
model is used for a part of database application. A hybrid is easier than another hybrid if the data model of the fi rst hybrid
is semantically a superset of the data model of the second hybrid. It is not meaningful to compare the easiness of hybrids
based on relational and hierarchical data models because their semantics overlap, and are not inclusive.

6. Unifi cation

A hybrid becomes a unifi cation when its data model is semantically equivalent to a class of total recursive functions. Math-
ematically, this means that the data model could represent arbitrary software applications without a programming language,
provided that space was unlimited.

We conclude, given the understanding of easiness that we have established, that the easiest hybrid to use is a unifi cation.

Practically, the data model of a unifi cation is a consistent tool to construct as much fi nite data as an application needs without
a possibility of an exception. This is signifi cant because one no longer needs to specify user-defi ned data types (or object
classes) for applications. One uses the data model of a unifi cation for an application as if he or she used SQL for table con-
structions; or used a queue data structure for message queues. It is the fi rst demonstration of a unifi cation in the conclusion
of its greatest possible ease.

The data model of a unifi cation, such as the EP data model proved as a language semantically equivalent to a class of total
recursive functions [5 and 3], must have a rich set of ordering relations due to the inherent structure of (total) high-level
functions. The ordering relations lead to a set of built-in operators that are much more expressive than those in the relational
data model and hierarchical data model. Therefore, many queries that challenge traditional technologies can be simply ex-
pressed in the data model of a unifi cation. For example, the query: “if there is a path from A to B in a directed graph” can be
simply expressed as B (=+ A in the EP data model. The set of built-in operators with high expressive power is the second
demonstration of a unifi cation in the conclusion of its greatest possible ease. For more discussion about ordering relations
and their applications in artifi cial intelligence and mechanized reasoning, please reference [2].

The third demonstration is that a unifi cation consolidates the software architecture of applications in traditional software. The
consolidation doesn’t come out of a unifi cation itself, but an observation after comparing with the traditional technologies.
We discuss it in the next section.

7. Consolidation

Through the evolution of software technologies in the past decades, we developed a commonly accepted software architecture
with multiple components including application program, DBMS, web server, access control, and data exchange agent. With
a unifi cation, however, this architecture can be consolidated into a single component as depicted in the below diagram.

In this section, we discuss that the ordering relations of a unifi cation are applicable to the objects represented by both busi-
ness data and business logic; and identify that it is the factor enabling the consolidation. For more detailed discussed about
the consolidation, readers can reference the article [4].

Application
Business Logic
Access Control

Webpage generator

Web Server
HTTP Parser

APIs

Business
Data DBMS

Froglingo
DBMS

HTTP Parser

Business Data
Business Logic
Access Control

Webpage generator

Data Exchange
Agent

Froglingo System Architecture

Traditional Software Architecture

Legends:

A on-shelf tool

Application Program

Data Storage

Figure 1. Froglingo System Architecture

 Journal of Information Technology Review Volume 1 Number 2 May 2010 61

In traditional technologies, a data model cannot replace programming language due to its low expressive power; and a pro-
gramming language cannot replace a data model due to its less easiness. This determines the separation of the business data
in DBMS from the business logic in programming language, and this led to the “impedance of mismatch” concluded from
the research effort of database programming language [1].

A unifi cation, however, has the unique opportunity to eliminate the separation because its data model has a semantic space, i.e.,
a class of total recursive functions, to accommodate all the semantics a programming language expects to represent for practical
applications. Froglingo is such a unifi cation. The addition of variables, that constitutes Froglingo as a Turing equivalent lan-
guage, doesn’t add any extra semantics to the EP data model except for those partial recursive functions causing non-termination
on certain inputs. In other words, A variable in Froglingo is physically managed together with business data in the same data
structure implementing the EP data model. It syntactically allows users to express business logic along with business data. And
it semantically uses variable to stuff the (infi nite) semantic space of the EP data model by using fi nite expressions.

As a result, the ordering relations are preserved for the objects representing in business logic; and therefore the cor-
responding built-in (both query and update) operators are applicable to business logic. Readers may reference [2] for
more discussion about the unifi cation of the semantics of business data and business logic and the “fi rst-class citizens”
of business data and business logic.

Specifi cally, the consolidation implies: 1) business data and business logic are stored together under a single data structure;
2) business data and business logic can be accessed by using the same set of built-in operators; and business data and busi-
ness logic complement with each other in representing business applications and they never duplicate the representation of
business applications. Please reference [7 and 2] for more information.

Because of the consolidation of business data and business logic, the other components in traditional technologies, i.e., web
server, fi le system, data exchange agents, and data access controls, are no longer needed [4].

8. Summary

In this article, we justifi ed the rationale that a data model is preferred in software development over a programming language,
and concluded that more expressive power a data model has, the easier in development. Further, we concluded that when a
data model is semantically equivalent to a class of total recursive functions, it along with a programming language achieves
the greatest possible ease.

One may still view a linked list as the easiest if he/she only need to represent a sequential objects; and a relational DBMS as
the easiest if tables are the only concern. But to construct and to maintain an arbitrary applications including those for artifi -
cial intelligence and mechanized reasoning, and to communicate between the applications, the conclusion that a unifi cation
achieves the greatest possible ease is materialized. The materials are: 1) a unifi cation is a consistent data presentation for
arbitrary applications; 2) a unifi cation has more expressive built-in operators for queries; and 3) a unifi cation consolidates
the software architecture of traditional technologies.

Reference

[1] Ohori, A., Buneman, P., Breazu-Tannen, V (1989). Database Programming in Machiavelli – a polymorphic language
[1] with static type inference. In: ACM SIGMOD, 1989, p. 46 – 57.

[2] Xu, K. H. Zhang, J., Gao, S (2010). High-Level Functions and their Ordering Relations for Knowledge Representation
and Mechanized Reasoning. Technical Report, March. http://www.froglingo.com.

[3] Xu, K. H. Zhang, J., Gao, S, McKeown, R. R. (2010). Let a Data Model be a Class of Total Recursive Functions. To appear
in the 2010 International Conference on Theoretical and Mathematical Foundations of Computer Science (TMFCS-10).

[4] Xu, K. H., Zhang, J., Gao, S. (2010). Froglingo, When A Data Model is Semantically Equivalent to A Class of Total
Recursive Functions. Submitted to Fifth International Conference on Digital Information Management (ICDIM 2010).
http://www.froglingo.com.

[5] Xu, K. H., Zhang, J., Gao, S, McKeown, R. R. (2009). Data Model and Total Recursive Functions. Technical Report
2009-11, http://www.froglingo.com/TR200911.pdf.

[6] Xu, K. H. Zhang, J., Gao, S. (2009). Assessing Easiness with Froglingo. The Second International Conference on the
Application of Digital Information and Web Technologies, p 847 - 849.

[7] Xu, K. H., Zhang, J. A User’s Guide to Froglingo, Database Application Management System. To appear on the website:
http://www.froglingo.com.

