
62 Journal of Information Technology Review Volume 1 Number 2 May 2010

An Observational Approach to Practical Process Non-Conformance
Detection

Sean Thompson1, TorabTorabi2

1La Trobe University
Bundoora
Australia
sean@nostin.com
2La Trobe University
Bundoora
 Australia
T.Torabi@latrobe.edu.au

ABSTRACT: A key challenge facing process non-conformance detection is to develop approaches not only effective across
different domains and for different kinds of processes, but also to provide a practical and easy to implement solution. Since
this is a process improvement area, the commercial realities of today dictate that if a solution cannot be implemented easily,
quickly and cost-effectively then it is probably not worth implementing at all regardless of its effectiveness. The focus of this
paper is on presenting a simple and practical approach to process non-conformance detection. We propose an approach based
on specifying non-conformance rules to enhance an existing process specifi cation without modifying it. The rules specifi ed
are used to check for conformance of process enactment data. Our methodology is fl exible in its instantiation and because
it is observatory, can be implemented with minimal interference with the existing process. We evaluate this approach using
a case study.

Keywords: Non-conformance detection, Process specifi cation, Software evaluation

Received: 18 November 2009, Revised 18 January 2010, Accepted 29 January 2010

©-2009 D-Line. All rights reserved.

1. Introduction

There have been varied attempts at detecting process non-conformance presented in the literature. One of the main issues
in this area is the lack of a practical approach that can be applied easily and generically with minimal impact on the process
itself. We see a need for a solution that can be applied easily and quickly to a process irrespective of how the process has
been initially specifi ed. The solution should also be non-invasive, that is to say the process specifi cation should not need to
be changed to accommodate the methodology.

A process is a structured set of activities carried out to achieve a business goal. The activities that make up the process
may be carried out in a number of different ways, including sequentially, concurrently, simultaneously, overlapping or in
parallel [1].

Non-conformance is an instance of difference between a process specifi cation and an enactment of that process. There are
two types of non-conformance we recognize in this approach: deviations and inconsistencies. An inconsistency is a concept
relating to the state of a process or its associated activities whereas a deviation is a concept relating to non-conformant tran-
sition between process activities. Cugola et al. fi rst introduced this distinction in their paper on formalizing inconsistencies
and deviations in human-centred systems [2].

The proposed approach is concerned with the enhancement of a process specifi cation by defi ning rule-sets to complement
it. The rule-sets contain rules that specify values, constraints and conditions the process enactment data must comply with.
Non-conformance is detected by comparing enactment data with these rules.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 63

1.1 Related Work

Research in this area fi rst began to evolve in its current state following the 1999 paper by Cook and Wolf [3] on mining
process event data in order to construct a real process specifi cation from it. This reverse approach at modelling the process
from data already recorded from existing enactments spawned an experiment by Huo et al. [4] that used this method to com-
pare the discovered specifi cation to further process enactments. The major problems with this idea is fi rst the sheer amount
of data needed to discover the initial process model and second, the fact that many iterations of process enactments need to
take place before enough data can be gathered for the discovery. This inevitably means that the process may already be in a
relatively mature state before the approach can be implemented. Some types of processes are also simply not enacted often
enough to be suitable for this. Taking this into consideration, we devised our own approach to be applicable to a wide range
of processes, from the beginning and regardless of how often they are enacted in practice.

In 2000, Cîmpan, and Oquendo [5], published a fuzzy logic approach to non-conformance detection. The idea was to
model a “perfect” simulation of how a process should be enacted and set the simulated model as the expectation for fur-
ther enactments. Actual process enactments were then mapped to the expected behaviour to look for variations with the
use of fuzzy sets theory. The authors conceded that the issue with this kind of idea was that the likelihood of a perfect
process enactment was realistically close to zero, which virtually guarantees non-conformance of some kind. It also
did not seem to address the possibility that processes could be enacted in a number of different yet equally valid ways.
Nevertheless, to accommodate the shortcomings of expected perfection, the authors introduced the “tolerable” devia-
tion concept in which they defi ne certain situations in which certain deviations may be overlooked or tolerated by the
approach. This concept is one we take a similar viewpoint in our own research with the inclusion of “exception types”
regarding our own defi nition of non-conformance.

More recently, Mohammed et al. [6] presented a similar approach to our own, in which two co-existing process models are
utilized. The approach works by using a guidance driven process model to dictate how the process should be carried out,
similarly to a process specifi cation. The other model is implemented only to observe the actions of human actors involved in
the process. Comparisons are made between the two as the observations are made and recorded and “deviations” are detected
as a result of these comparisons. Rule specifi cation is also introduced in this approach but only in the form of determining
the relative severity of a detected deviation and whether or not it should be tolerated and the process should be allowed to
continue. This approach is therefore not strictly observational in its implementation.

In this approach, the authors consider the concepts of “deviation” and “inconsistency” differently to the way we consider it in
our own research and the way it has been previously presented in the literature, such as in [2]. They do not consider the tern
“non-conformance”, rather they consider a “deviation” to constitute what we would otherwise consider to be non-conformance
and that an “inconsistency” refers to abnormal process data resulting from a deviation that has occurred. Furthermore, the
authors do not consider the possibility that non-conformance (or deviations in this case) may be instigated for a good rea-
son – the actor has discovered what he or she believes to be a better way of doing things. It is important to recognize this
possibility as an opportunity for process improvement and is one of the main reasons why in our own approach a strictly
observational implementation is sought.

Finally in 2008, van der Aalst et al. [7] presented an approach in which the conformance of software services is checked in
the context of its behaviour as expected by other software services within its environment. Behavioural conformance is tested
via an implemented Petri net system from BPEL, which works by checking event data logs from the services against their
custom specifi cation. Two dimensions are defi ned in this context: fi tness being the observed behaviour conforming to the
specifi cation and appropriateness being the resulting evaluation of whether the specifi cation is an appropriate description of
how the service should behave. This transitional type approach, as in non-conformance being tested through the expectation
of related entities is in a similar vein to how we implement deviation detection pre and post conditions, which are applied to
process activities. The transition between process activities can be thought of in this respect, with pre and post conditions
being defi ned to govern how related activities should have been performed and when to constitute a legal transition into the
respective activity.

The rest of this paper is comprised of two main sections. In section 2, we present our methodology and describe how our
approach can be generically implemented with minimal intrusion into an already existing process. We detail our own
defi nition of non-conformance and how it can be detected through the comparison of a process enactment to its related
specifi cation. Section 3 presents a simple implementation in which we applied our methodology to a case study over
two distinct phases. The results are then analyzed and discussed before concluding the paper and stating our intention
for related future research.

64 Journal of Information Technology Review Volume 1 Number 2 May 2010

2. Methodology

2.1 Overview

The methodology we describe in this section aims to detect instances of non-conformance in process enactments via a
method we call processspecifi cation enhancement. This approach is intended to be observational rather than a process
support system, which have been criticized in the past for their rigidity and lack of fl exibility [11, 12]. The proposed ap-
proach is rule based and essentially complements an existing process specifi cation without requiring any modifi cations
to it, and without interfering with the way the process is enacted. We achieve this by defi ning specifi c rule-sets that
stipulate how certain parts of the process should be performed. We then check the validity of these rules by comparing
them against process enactment data.

The assumptions we make in this context are that the process enactment data is in such a form that it is possible
to use it in rule comparisons and also that the process is broken into specific activities to which we can apply the
rule-sets.

2.2 Non-conformance

Non-conformance is defined as any instance where an enacted process has not conformed to its associated speci-
fication. In the context of this approach, an instance of non-conformance is any recorded process enactment data
that fails to comply with the rules defining the constraints on how the process should or should not have been
performed.

As mentioned in the introduction, an instance of non-conformance can be one of two possible types: deviations or inconsisten-
cies. Inconsistencies we defi ne as part of a process enactment that has failed to comply with rules governing either general
process constraints as a whole or with the values relating to a specifi c process activity. A deviation we defi ne as when a
process enactment fails to comply with the rules defi ning a process activities preconditions and post-conditions, representa-
tive of the legal transition between activities. Figure 1 depicts this differentiation.

Aside from this basic defi nition of non-conformance, we extend the concept in order to organise it into an entity capable
of delivering as much useful information as possible about an instance of non-conformance once it is detected. In addition
to the raw non-conformance data, this also includes information that is extrapolated by comparing the non-conformance
instance to other previously detected instances, it’s severity in relation to the process and any decision that was made after
detection to mitigate any consequences.

These extended attributes include timestamps for when the non-conformance was detected and when it actually occurred,
an occurrence count indicating how many of these non-conformance instances have been detected, an importance rating
indicating the relative severity of the non-conformance in process and organisational terms and a history log that serves as
a record of remedial actions taken post-detection. The full non-conformance defi nition, and how it relates to the process is
illustrated in the concept map provided in fi gure 2.

Figure 1. Non-Conformance Type Differentiation

 Journal of Information Technology Review Volume 1 Number 2 May 2010 65

2.2 Rules

In order to enhance the process specifi cation, we defi ne rules that describe how parts of the process should and should not be
legally carried out. Rules are used to check whether process enactment data complies with the specifi cation and will return a
Boolean value indicating whether or not the data has passed the comparison check. To illustrate, we use an example from our
case study. Suppose there is an existing specifi cation for a process activity called “Fill in survey”, in which a user answers
some survey questions. One of the questions is “what is your current character level?”. We can “enhance” this specifi cation
by defi ning a specifi c non-conformance rule such as:

Example rule:

Character level must be of numeric value

The rule will check to see if the response data submitted by the user is numeric, and if so will return true to indicate that the
check passed. If not, then the rule has not been complied with and non-conformance is detected because the false return
will cause the rules rule-set to fail (covered in next section). The application and checking of this rule has no bearing on the
existing specifi cation for the process activity.

2.3 Rule-sets

Rule-sets are used to group related rules together to give non-conformance instances more meaning and also to make the
application of this methodology more scalable and easier to maintain. Rule-sets consist of one or more rules and return a
Boolean value in their own right. The Boolean value returned by a rule-set is indicative of the result of the validation of its
associated rules.

For each rule-set, every rule associated with it must return true for the rule-set to pass. If one or more rules inside the rule-
set return false, the rule-set itself will return false and indicate an instance of detected non-conformance. Rule-sets also
have descriptions associated with them, which tell us more about the nature of the non-conformance it is checking for as
opposed to solitary rules. We can continue from the previous example on rules to show an entire rule-set for checking the
conformance of the specifi ed character level:

Figure 2. Non-Conformance Concept Map

66 Journal of Information Technology Review Volume 1 Number 2 May 2010

Example rule-set:

Rule 1: Level must be numeric

Rule 2: Level must be greater than 0

Rule 3: Level must be less than 80

This approach considers an instance of non-conformance to have been detected when a rule-set returns false. Therefore,
rule-sets must return true in all cases in order to avoid non-conformance detection.

2.3.1 Exceptions

Exceptions are a feature of this approach inspired by the work published on “tolerated” non-conformance by Cugola et al.
[15]. Exceptions offer the capabilities of checking for non-conformance types that may not necessarily qualify as “non-
conformance” in the scope of the process but we still may want to monitor anyway. This is usually a situation that ideally
should not occur, but we expect that it might and choose to tolerate it and want to check for it anyway. Exceptions in this
approach are treated exactly the same as regular non-conformance instances, only the rule-set that is used to detect them has
the “exception” attribute fl agged to indicate that these instances are exceptions.

2.3.2 Logic Types

The “logic-type” is an attribute of the rule-set that stipulates how the rules contained within it will be validated. When the
rule-set evaluates each of its contained rules, this attribute tells the rule-set how to use the Boolean return value from the
rules to determine whether or not the rule-set itself will return true or false.

The reason this attribute was introduced to the rule-set specifi cation is to add greater fl exibility in the different ways that the
rules and the enactment data can be evaluated. This also helps the rule-sets and therefore the approach become clearer and
easier to implement.

The different methods that the rules can be validated are very similar to the way the logic employed by logic gates in digital
logic works. At present, the Logic-Type attribute of rule-sets can be set to one of the following four values:

AND•
NOT•
OR•
XOR•

The default logic type for rule-sets if it is not explicitly defined, is the “AND” logic-type. Similar to a digital logic
“AND” gate, this logic-type indicates that every rule within the rule-set must return true for the rule-set to return
true. If one or more rules return false then the rule-set returns false too, constituting a detected instance of non-
conformance. An example rule-set using the “AND” logic type that may be used to constrain a persons age within a
process is provided in table 1:

Rule Return Value

Age input is numeric True

Age input is >= 0 True

Age Input is < 120 True

Rule-Set Return Value: True

Table 1. Rule-set example with an “AND” logic-type

Alternatively, the logic-type attribute can be set to “NOT”, which means that all rules must return false in order for the rule-set
to return true; “OR”, which means that at least one rule within the rule-set must return true; or fi nally “XOR”, which means
that one and only one rule within the rule-set must return true in order for the rule-set to return true and non-conformance
not to occur.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 67

2.3.3 Remedial Actions

Once an instance of non-conformance has been detected, we provide the opportunity to record the consequential actions that
were taken (if any) and provide a user defi ned score indicating the success of this remedial action. This “score” does not at
present have any predefi ned value constraints, it is simply a mechanism for people to manually record the perceived success
level of post-detection decisions. This is catered for via the “history log” of remedial actions, which logs which remedial
actions were taken for which detected instances of non-conformance, so that in future there is an easy reference to what works
and what does not if there are repeat detections of the same non-conformance types.

The reason this provision is included is so that if and when the same or similar non-conformance instances are detected in
the future, there is a record for what was done, if anything and how successful that action was. This affords another avenue
using the approach for process improvement. At this stage in non-conformance detection research, consideration for the
decision making process after detection has not been addressed in the literature. This represents an important contribution in
non-conformance detection research. Even though post-detection decision support is in its research infancy, the introduction
of consideration for it in the storage design of non-conformance instances is an important step forward.

2.4 Applying the rule-sets

Zero or more rule-sets can be applied to different parts of the process specifi cation to detect non-conformance, meaning that
we can easily check for as much or as little non-conformance as we need to simply by the defi nition and application of more
and new rule sets. We can apply rule-sets to a process in four separate ways:

General Process•
Activity•
Activity Pre-conditions•
Activity Post-conditions•

With respect to activities, we can defi ne general consistency rule-sets for the activity as an entity and also deviation rule-sets
that apply to its pre and post conditions. Figure 3 shows the three ways we apply rule-sets to activities.

General process rule-sets may also be defi ned which relate to some of the emergent properties that can only be measured by viewing
the process as a whole. These could be rule-sets to govern things such as total activity counts, the absence of any required activities
from the process or even just a minimum and/or maximum boundary on the total time duration of the process as a whole.

2.5 Activity sequencing

Since deviations refer to the transition between process activities, we also need to address the way a process may have speci-
fi ed the sequencing of its activities. This regards the conformance of the actual transition between activities rather than a
comparison of sequencing patterns such as in [14]. Fortunately, the way this is best covered is through the application of pre
and post-conditions governing the legal begin and end conditions of each activity. We can achieve this by simply defi ning
rule-sets for each activity and assigning them as either pre or post-conditions. Instead of defi ning a situation where activity A
has some sort of tag specifying that when it has concluded, activity B should be commenced, it works much better to assign
a pre-condition to activity B stipulating that activity A should be successfully completed before activity B should begin.

Figure 3. Activity rule-sets

Pre-conditional Rules

Pre-conditional Rules

Consistency RulesActivity A

68 Journal of Information Technology Review Volume 1 Number 2 May 2010

Park et al. illustrate how pre-requisites can be applied to eLearning activities that govern when each activity can legally
begin [8]. The pre-requisite approach stipulates certain conditions that must be complied with before a certain activity can
legally commence. This tactic is employed in our own methodology with the use of pre-conditional rule-sets, being rules
that govern when the activity can commence without causing non-conformance and also post-condition rule-sets being rules
governing when the activity can legally conclude.

2.6. Formalization

As previously stated, we expect that an existing process specifi cation would be apparent in some form, and that the process
would be split into activities before we can begin applying this non-conformance methodology to the process specifi cation.
This is depicted in fi gure 4 in the grey area, which represents an existing process specifi cation. Figure 4 also depicts the
application of rule-sets to both the process as a whole entity along with its associated activities.

When a rule-set returns false, indicating that an instance of non-conformance has been detected, this is recorded accord-
ing to the “non-conformance” class related to the rule-set. The rule-set provides general information about the non-
conformance such as a description of what was looked for and found, the type and the section of the process it was found
in. The detected instances represented by the “non-conformance” class provide more detail about the actual detection
characteristics, such as a timestamp or the occurrence count of the detections from the same rule-set. The attributes as-
sociated with a detected instance of non-conformance are therefore available through the relationship between the rule-set
and the non-conformance classes.

Figure 4. UML representation of the methodologies application

 Journal of Information Technology Review Volume 1 Number 2 May 2010 69

3. Case Study

3.1 Overview

To test this methodology we built an online survey conducted in two phases based on the immensely popular online game
World of Warcraft. An implementation of this nature provided two important advantages. The fi rst advantage is that due to
its online environment, it facilitates easy monitoring and recording of process enactment data. While the actual recording of
enactment data is not a problem directly related to this kind of research, it is still a problem that must be addressed in order for
any non-conformance detection approach to work. This can be tricky to accomplish and the solution will almost always be
specifi c to the processes operating environment. Since this process was implemented online, the LAMP based environment
of the survey enabled us to achieve this with minimal hassle and record exactly how participants went about completing it.

Second, the relatively enormous World of Warcraft community (over 11.5 million subscribers world-wide at the time of this
experiment [16]) provides access to steady stream of willing participants through the game’s offi cial forums [10]. These
people are all available to participate since the survey process was conducted online, provided they are active World of War-
craft players. The large number of participants means that a large amount of data became available with which to properly
test the approach over two phases, strengthening the evidence that such an approach can contribute signifi cantly to process
improvement.

Survey participants were not aware that the content of their responses were not of direct interest to us as researchers, rather
the way that the survey was fi lled out, or rather how the process of fi lling in the survey was conducted. In the fi rst imple-
mentation phase, the survey was presented to participants to fi ll out and their responses and behaviour were recorded. The
results were then analysed and our non-conformance methodology applied. Using the non-conformance results only from
what our approach detected over the fi rst phase, some subtle changes were made to the survey in order to see if and how the
survey could be improved using our approach. We then presented the survey again to a new set of World of Warcraft players
to complete and again analysed the results.

3.2 Survey Basics

This experiment was conducted in two phases. First, the survey was presented toparticipants as an online survey
would normally be. This survey was filled out by 213 different people. The data was collected and analyzed with
our non-conformance methodology. Based solely on the findings from the non-conformance detections, a few
small improvements were made to the survey presentation and we recollected the data in the second phase, this
time from 197 different people. This gave us a dataset from the responses of a total of 410 different people, with
enough in both phase one and phase two to adequately analyze the effect of improvements made as a result of the
non-conformance analysis.

The survey process specifi cation was split into three distinct activities:

Answer survey questions.•
Validate the security captcha.•
Navigate to the captcha description page.•

Rule-sets were defi ned for each activity and the process as a whole and were applied to the appropriate sections as consis-
tency, pre-conditions and post-conditions as appropriate in PHP code. As each participant fi lled the survey and completed the
process, every single action the participant took was recorded and stored in the MySQL backend database. This includes all
failed attempts, timestamps etc.. When a user failed to validate the captcha and was forced to resubmit, the process retained
all entered data so that the participant did not have to recomplete the “Answer questions” activity if they failed the “Validate
captcha” activity.

A screenshot of the survey is provided in fi gure 5. A disused version of this survey is also still available at http://wowsurvey.
nostin.com for reader convenience. This screenshot is taken from the “phase two” version of the survey.

After phase one of the process was completed, the non-conformance rule-sets were run over the enactment data recorded
from all the survey participants. Based on the rule-sets in effect, the resulting non-conformance data was collated and tabu-
lated and is shown in Table 2. This represents which rule-sets were broken, where in the process they were applied and how
many violation occurrences were recorded. This was yielded from 213 different people who conducted the survey a total
286 times.

70 Journal of Information Technology Review Volume 1 Number 2 May 2010

Rule-Set Broken Process Area Type Occurrences

Account type inconsistent with character level Answer Questions Activity Consistency 1

Age Answer Questions Activity Consistency 25

Character Level Answer Questions Activity Consistency 20

Race and Class mismatch Answer Questions Activity Consistency 11

Captcha code and user code mismatch Validate Captcha Activity Post-condition 81

Captcha fail more than once Overall Process Consistency 16

Overall time duration Overall Process Consistency 49

Validate captcha activity must not be complete Navigate to “What is capt-
cha” Activity

Pre-condition 2

Questions Complete Answer Questions Activity Post-condition 5

Table 2. Phase One Non-conformance Instances

Figure 5. Screenshot of the second phase survey

 Journal of Information Technology Review Volume 1 Number 2 May 2010 71

Based only on this non-conformance data, there are a few glaring areas in the process that require addressing. Most obvious
here is that participants are having an overly diffi cult time validating the captcha code. It was failed a total of 81 times in
286 attempts survey wide. Further analysis of the non-conformance data showed that 16 participants violated this rule set
more than once, meaning that 7.4% of participants triggered non-conformance from this section of the process on more than
one occasion.

Less obviously, the relatively high number of “Character Level” rule-set violations is alarming. It can be assumed that reg-
istered players should know very well the numeric range of possible levels (1 - 80), so 20 violations is relatively high and
cause for concern.

From this analysis of the fi rst phase, the following subtle alterations were made to the process with the intention of •
improving it:

Reduction of the number of captcha code characters from 6 to 4.•
Elimination of all lowercase characters, leaving only uppercase and numeric.•
Elimination of the O and the 0 from the list of possible code characters – they might look too similar for users to •
distinguish.

A capon the character level text fi eld of 2 characters•

Phase two was then conducted, this time with 197 participants completing the process a total of 217 times. Table 3 shows
the results.

Rule-Set Broken Process Area Type Occurrences

Race/Account mismatch Answer Questions Activity Consistency 1

Account type inconsistent with character
level

Answer Questions Activity Consistency 2

Age Answer Questions Activity Consistency 7

Character Level Answer Questions Activity Consistency 8

Race and Class mismatch Answer Questions Activity Consistency 3

Captcha code and user code mismatch Validate Captcha Activity Post-condition 22

Captcha fail more than once Overall Process Consistency 1

Overall time duration Overall Process Consistency 24

Table 3. Phase Two Non-conformance Instances

As can be seen from the second phase data, the fi gures are noticeably better where the changes were made. First, the
number of character level rule-set violations have dropped from 20 to 8. This has roughly halved the failure rate from
7% to 3.7%.

The biggest improvement was in the captcha code violation non-conformance violation rate. 22 failures out of 217 represents
a drop from a failure rate of 28.3% to 10.1%. Furthermore, there was only a single instance of a participant triggering the
captcha violation more than once, which is a drop from 7.4% in phase one to 0.5% in phase two.

These improvements in the data can be directly linked to the corrective actions made as a result of the phase one non-
conformance detections.

3.3 Evaluation

From all of the non-conformance instances detected in the fi rst phase, the most signifi cant was the captcha code failures. The
primary purpose of a captcha on a website is to differentiate between human and non-human users [9] thus automatically
removing any entries deemed to have been submitted by bots or crawlers. It seemed that people were having a lot of trouble
fi lling in the code correctly, because the non-conformance detected related to records that were otherwise indicative of a
genuine human response. By taking the corrective measures described in section 3.2 we were able to reduce the number of
captcha failure non-conformance instances from 7.4% of participants to 0.5%.

72 Journal of Information Technology Review Volume 1 Number 2 May 2010

Of course, the measures taken were in speculation at the time. The data yielded from the non-conformance detections did
not tell us to reduce the number of captcha characters or to remove the ‘O’s and ‘0’s. What it did was highlight that there
was a problem with that section of the process, and left it up to the administrator’s expertise to decide how best to rectify it.
Therein lies one of the inherent values in non-conformance detection, it highlights that there is an issue and where that issue
is so that we are aware of it and can take steps to address it.

We were pleasantly surprised to discover that a lot of the value in non-conformance detection is that it tends to point you to
look in a direction you may not have otherwise, prompting you to spot issues with the process specifi cation itself and not
necessarily from the enactments.

Another useful feature was noticed upon discovering that when a record has a high number of non-conformance instances
detected, it usually meant that a participant was deliberately messing with our survey. If we actually cared about collating
the survey question data for research purposes, this would aid greatly in weeding out the invalid responses without having
to manually iterate such a large dataset.

4. Conclusion and Future Work

The work presented in this research yielded some interesting results. We believe that the application of this meth-
odology achieves the research goal of being simple and easy to implement however this is going to be dependent on
the process in question and the accessibility of its enactment data. The effectiveness of our proposed approach is
also going to be heavily dependent upon the competence of the administrator to identify and define appropriate non-
conformance rules and rule-sets.

Since there has been no research conducted so far on supporting remedial decision-making after non-conformance has been
detected, this appears to be a promising avenue in which to conduct further research. The concept is introduced briefl y in
this paper, but there is no robust methodology on offer to help process administrators make informed decisions once non-
conformance has been detected based on what would be best for process improvement and how signifi cant the detected
non-conformance instance was in relation to both the process and the organisation.

In this vein, we believe there is still an opportunity to further develop this approach through the forming of more generic rules
which could be developed ready for implementation without the need of the process administrator to identify and specify them.
This is not to remove the fl exibility of having administrators defi ne their own rules, but with experience the more common
rules and rule-sets could be more easily identifi ed and “templates” of sorts could be developed for their easy integration.
These could be pre-defi ned rule-sets to govern things like a generic implementation of activity time duration boundary values
or even domain specifi c rule-sets that could be relevant to a particular process types environment or domain.

The consistent nature of resource usage in processes also lends itself well to this idea, and our existing research on resource
based non-conformance detection [13] is a good candidate for exploring this in our future research.

References

[1] Rezgui, Y., Marir, F., Cooper, J., Yip, G., Brandon, P,. (1997) A Case-Based Approach to Construction Process Activity
Specifi cation, International Conference on Intelligent Information Systems (IIS), 8-10 Dec, p. 293 – 297.

[2] Cugola, G., Di Nitto, E., Fuggetta, A., Ghezzi, C. (1996). A framework for formalizing inconsistencies and deviations
in human-centered systems, ACM Transactions on Software Engineering and Methodology (TOSEM), 5 (3) ACM
Press, July.

[3] Cook, J.E., Wolf, A.L.(1998). Discovering models of software processes from event-based data, ACM Transactions
on Software Engineering and Methodology (TOSEM), Volume 7 Issue 3, ACM Press, July.

[4] Huo, M., Zhang, H., Jeffery, R. (2006). An Exploratory Study of Process Enactment as Input to Software Process
Improvement, In: International Conference on Software Engineering, Shanghai, China.

[5] Cîmpan, S., Oquendo, F.(2000). Dealing with software process deviations using fuzzy logic based monitoring, ACM
SIGAPP Applied Computing Review, 8 (2) ACM Press, December.

[6] Kabbaj, M., Lbath, R., Coulette Bernard, B. (2007). A Deviation-tolerant Approach to Software Process Evolution,
In: Ninth international workshop on Principles of software evolution (IWPSE’07), Dubrovnik, Croatia, September
2007.

[7] van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E (2008). Conformance checking of service
behavior, Transactions on Internet Technology (TOIT), 8 (3) ACM.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 73

[8] Park, N., Kim, H., Kim, K., Park, H., Chun, J., Hwang, Y. An eLearning Activity Control Model for SCORM’s
Sequencing Prerequisites, In: Fourth International Conference on Semantics, Knowledge and Grid, IEEE, 3-5 Dec.
p. 322 – 329.

[9] Offi cial CAPTCHA site, http://www.captcha.net.
[10] World of Warcraft offi cial game forums, http://forums.worldofwarcraft.com/index.html
[11] Ramage, M. (1994). Engineering a smooth fl ow? The links between workfl ow and business process reengineering,

MSc thesis, University of Sussex, England.
[12] Aversano, L., Canfora, G. (2002). Introducing eservices in business process models, In: Proceedings of the 14th

International Conference on Software engineering and knowledge engineering SEKE ‘02, ACM Press, July.
[13] Thompson, S., Torabi, T. (2008). Towards Formalizing Resource Based Non-Conformance in Business Processes, In:

19th Australian Software Engineering Conference ASWEC, Perth, Australia, March.
[14] Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G. (2005). Detection and explanation of anomalous

activities: representing activities as bags of event n-grams, In: Conference on Computer Vision and Pattern Recognition,
IEEE, 1, 20-25 June, p. 1031 – 1038.

[15] Cugola, G., Di Nitto, E., Ghezzi, C., Mantione, M (1995). How to deal with deviations during process model enactment,
In: Proceedings of the 17th international conference on Software engineering, ACM Press, April.

[16] Blizzard Entertainment Press Release (2008). WORLD OF WARCRAFT® SUBSCRIBER BASE REACHES 11.5
MILLION WORLDWIDE, http://www.blizzard.com/us/press/081121.html 23 December 2008.

