
74 Journal of Information Technology Review Volume 1 Number 2 May 2010

A Solution to Improve Algorithm for Distributed Mutual Exclusion by
Restricting Message Exchange in Quorums

Ousmane Thiare
Gaston Berger University
Department of Computer Science
UFR S.A.T
Saint-Louis. Senegal
othiare@dept-info.u-cergy.fr

ABSTRACT: Resource management is one of the most important and fun damental problems in distributed systems. Typically,
to maintain the integrity of a resource, at most one process should access the resource at any time. As a result, accesses to the
same resource (that is, exe cution of critical sections) by different processes have to be serialized. This problem is referred to
as the ”mutual exclusion problem”. In this paper, we have proposed a permission based distributed mutual exclu sion algo-
rithm which is an improvement of Maekawa’s algorithm. The number of messages required by the improvised algorithm is in
the range 3M to 5M per critical section invocation where M is the number of in tersection nodes1

in the system. A reduction

in number of message by restricting the communication of any node with the intersection nodes of the quorums, without any
modification of the basic structure of the algorithm.

Keywords: Mutual exclusion algorithm, Resource management, Distributed systems

Received: 12 December 2009, Revised 12 January 2010, Accepted 20 January 2010

©−2009 D-Line. All rights reserved.

1. Introduction

Distributed Mutual Exclusion problem arises when concurrent access to pro tected resource(termed as Critical Section(CS))
by several sites is involved. In Distributed Mutual Exclusion, the requirement is to serialize the access to CS in the absence
of shared memory which further complicates the problem.

Distributed Mutual Exclusion algorithms can be classified as token-based and non-token-based as suggested by [2], or as
token-based and permission-based as suggested by [3]. In this paper, we propose a permission based Distributed Mutual
Exclusion algorithm which is an improvement of Maekawa’s algorithm [1].

Garcia-Molina and Barbara [4] first introduced the concept of coterie which could be mainly used to devise permission based
Distributed Mutual Exclusion algorithms. A coterie consists of collection of sets of sites in the system and these sets are called
quorums. In general, when a node wants to execute its CS it has to obtain permission from processes of any quorum in the coterie.
Maekawa’s algorithm [1] wast he first coterie-based algorithm where the nodes of the system are logically arranged into groups. Any
node intending to execute its CS has to obtain permission from all the nodes in its respective group and these groups were created
such that any two groups had atleast one node in common (referred to as intersection nodes) which act as arbitrators. In this paper, we
further restrict the communication of the processes which want to execute its CS to their intersection nodes and achieve Distributed
Mutual Exclusion in lesser number of messages.

Maekawa’s algorithm[1] uses cK messages to create mutual exclusion in the distributed system, where as our proposed al-
gorithm takes cM (M < K) messages per CS invocation where M, K and c are integers and 3 ≤ c ≤ 5. However, our proposed
algorithm preserves all the advantages of Maekawa’s algorithm [1] and remains similar to it. The algorithm proposed in this
paper is not fair, the synchronization delay is 2 and the algorithm is starvation free.

1The terms processes, sites and nodes will be used interchangeably throughout the paper

 Journal of Information Technology Review Volume 1 Number 2 May 2010 75

The problem of resolving conflicting access to resources also arises in repli cated databases, where the emphasis is on resolv-
ing read and write conflicts effciently. Many methods [5] [6] [7] [8] [9] have been used to address this issue.

Document Structure. The rest of the paper is organized as follows. Section 2 reviews Maekawa’s algorithm [1]. In section 3, we
present our proposed algo rithm. Section 4 present the proof and correctness. In section 5, we present the analysis of the proposed
algorithm. Finally, we conclude in section 6.

2. Maekawa’s algorithm

In this section, we present the computational model for the proposed algorithm and a review of Maekawa’s algorithm.

2.1 The Computational Model

In this paper, we assume that a distributed system which is common to Maekawa’s algorithm and to the proposed algorithm consists
of N sites (1, 2, 3··· i ··· , j ··· , N). A distributed system is asynchronous, i.e., there is no common global clock. Infor mation exchanged
between processes is done by asynchronous message passing. Each communication channel is FIFO and each message sent is
delivered within finite time, but there is no upper bound on message delivery time. We assume that the system is error-free.

The different types of messages used are REQUEST, LOCKED, INQUIRY, FAILED, RELINQUISH and RELEASE.
Timestamps(TS) at any site i (where 1 ≤ i ≤ N), TSi are ordered par (Li ,i), containing the Lamport’s logical clock [10] value
Li and the site id i.

An ordering “¡” on timestamps is defined as: TSi < TSj iff (Li <Lj) or (Li = Lj and i < j).

2.2 The algorithm

In Maekawa’s algortihm, a site does not request permission from all the sites, but only from a subset of sites. The sites of the system
is divided into groups called quorums (Si , 1 ≤ i ≤ N). The quorums are construted such as to satisfy the following conditions:

1. ∀i ∀j, Si ∩ Sj ≠ θ, i ≠ j, 1 ≤ i, j ≤ N

 2. ∀i, node i ∈ Si , 1 ≤ i ≤ N

3. ∀i, |Si |= K, 1 ≤i ≤ N

4. ∀j, nodej is within K Si ’s, 1 ≤i, j ≤ N

Condition (non null intersection property) is a necessary condition for the Si ’s so that mutual exclusion requests can be
resolved. Condition 2 reduces the number of messages to be sent and received by a node. Condition 3 means that each node
needs to send and receive the same number of messages to obtain mutual exclusion (equal work). Finally, Condition 4 signifies
that each node serves as an arbitrator for the same number of nodes. This ensures that each nodeis equally responsible for
mutual exclusion (equal responsability).

For exemple let us consider the finite projective plane of 7 elements, which consists of a subset such that every subset has
exactly 3 elements, every element is contained in exactly 3 subsets, and every two subsets intersect in exactly one element.
Processes are labelled as 1, 2, ··· , 7. The groups are:

S1 = {1, 2, 3},S2 = {2, 4, 6},S3 = {3, 5, 6}

S4 = {4, 1, 5},S5 = {5, 2, 7},S6 = {6, 1, 7}

S7 = {7, 4, 3}.

Figure 1. The finite projective plane of order 2 (Fano plane)

76 Journal of Information Technology Review Volume 1 Number 2 May 2010

Maekawa established the following relationship between N and K: N = K (K −1) +1. Hence K can be found approximated to N .

For any node i which intends to execute its CS, the algorithm works as follows:

Entry Section: Process i multicasts the REQUEST message to all the nodes in its Si including itself. The intersection nodes
can send the REQUEST messages to any one of the districts to which they belongs.When aprocess j receives the REQUEST
message, it sends LOCKED message to site i if it has not yet sent it to any other site from the time it received RELEASE
message. Or else it queues the REQUEST.

CS Execution: Process i executes its CS after receiving LOCKED message from all the nodes of its Si .

Exit Section: After executing its CS, site i sends RELEASE message to all nodes of its Si which restores node’s right to send
LOCKED message to any other pending requests in the queue.

This basic algorithm is prone to deadlock which is handled as follows: As sume that a site j has LOCKED message to some
site k and it later receives a REQUEST message from any other site i (i ≠ k). Then, nodej sends FAILED = to site i if TSk < TSi ,
otherwise it sends INQUIRY message to site k. When such a process k receives INQUIRY message, it sends RELINQUISH mes-
sage to site j if site k has received FAILED message from at least one site in Sk , and has not received new LOCKED message
from it(after receipt of FAILED message).

3. The Proposed Algorithm

Our proposed algorithm presents an improvement to the Maekawa’s distributed mutual exclusion algorithm. From Maekawa’s
algortihm [1] it is clear that the role oft he arbitratoris to resolve the conflicting requests to enter CS. Every node has the
responsability to become an arbitrator to handle the conflicting requests coming from the quorum to which it belongs. Nodes
that belong to more than one quorum (referred to as intersection nodes), act as inter quorum arbitrators, resolving conflicting
requests arising from nodes of different quorums. Because of the role played by these intra and inter quorum arbitrator,the
mutual exclusion condition is maintained throughout the entire network.

Intersection nodes can also act as intra-quorum arbitrators since they are also the members of the quorum. Here we see that,
since the intersection nodes can act as both inter-quorum and intra-quorum arbitrators, and since every quorum should have
at least one intersection node, all conflicting requests can be resolved by communicating with intersection nodes of the sys-
tem. This way we can achieve per CS in vocation with respect to Maekawa’s algorithm [1], as all the messages required to
communicate with non-intersection nodes can be eliminated.

Hence our proposition is: Maekawa’s distributed mutual exclusion algorithm can perform better (in terms of number of mes-
sages required) by restricting the entire algorithm related communication to be carried out with only the intersection nodes
in the quorum.

In Maekawa’s algorithm [1], all nodes in the quorum are intersection nodes (from Condition 4 for construction of quorums
which is outlined in section 2) and hence all nodes works as inter-quorum arbitrators. To ensure that number of intersection
nodes in the network is lesser than number of nodes in the quorums,

we propose to liberalize the conditions for construction of quorums in Maekawa’s algorithm [1]. The quorums in our algorithm
are constructed using the following conditions:

1. ∀i ∀j, Si ∩ Sj ≠ θ, i ≠ j, 1 ≤ i, j ≤ y where y is the number of quorums, y ≤ N.

2. Node i belongs to at least one of the quorums.

3. The number of nodes in the quorum need not to be equal.

Here, we have presented the conditions in the same way as done by Maekawa’s algorithm in the previous section so that
the reader may note the difference. Con ditions 1 and 2 are required to ensure correctness of the algorithm. In Maekawa’s
algorithm [1], it was required to have K number of nodes in all the quorums to ensure that all nodes perform an equal
amount of work for each CS invocation which is a desirable feature of a truly distributed system. The system us ing
our algorithm would be a pseudo-distributed system as the non-intersection nodes do not participate in CS invocation
of other nodes and hence condition 3 follows. The basic working of the algorithm and the required types of messages
need not to be modified. This improvisation would shift the responsability to maintain the mutual exclusion condition
to the intersection nodes.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 77

4. Proof of correctness

4.1 Mutual Exclusion

Mutual exclusionis achieved when no pair of processes is ever simultaneously in its critical section. For any pair of processes,
one must leave its CS before the other may enter.

Theorem 41 The proposed algorithm ensures the mutual exclusion property.

Proof: Byc contradiction. Let us assume that, any two nodes i and j are executing the CS simultaneously. Let Si and Sj be
the quorums of i and j respectively. Let S’i and S’j be sets of intersection nodes of Si and Sj respectively. Let k be a node that
belongs to the intersection of Si and Sj.

Consider the case when Si = Sj (i.e.i and j belong to the same quorums),then we choose k from S’i
. Since Si = Sj , we have

S’i = S’j
. Thus k belongs to S’j

, hence k belongs to both S’i and S’j. If Si ≠ Sj, since k belongs to both Si and Sj, k is an inter-
section node, k belongs to both S’i

and S’j .

Since i is executing the CS, i has captured the LOCKED message from all the node belonging to S’i including k. Since j is
also executing the CS, j also should have captured the LOCKED messages from all the nodes belonging to S’j

including k.
Thus k has been locked by 2 requests simultaneously. However, according to the algorithm only one request can lock a node
at a time. Thus maximum of only one process can execute the CS at any time.

This proof holds well when i and j belong to same quorum as well as differ ent quorums. Thus we see that the proposed
improvement does not affect the correctness of the algorithm.

4.2 Deadlock and Starvation

The system of nodes is said to be deadlocked when no process is in its CS and no requesting process can ever proceed to its
CS Starvation occurs when one process must wait indefinitely to enter its CS even though other processes are entering and
exiting their own critical sections.

Theorem 42 The proposed algorithm is deadlock and starvation free.

Proof: Since no two requests carry same timestamp (priority), total ordering is achieve among requests. If the total ordering
condition is followed strictly “circular wait” condition is not satisfied, and hence deadlock cannot occcurs [11].

If an arbitrator (here an intersection node) finds out that it has actually violated the total ordering condition by sending LOCKED
message to a request with higher priority when there is a request with lower priority waiting in the request queue, it sends
an INQUIRY message to the recipient of the LOCKED message.Then if the recipient node has already started executing the
CS, it will not reply. If the recipient node has not yet entered the CS and if it receives a FAILED message from at least one
of the intersection process, then it would send the RELINQUISH message to the arbitrator and release the lock on that node.
Then the arbitrator can get locked to the request with lesser timestamp. Here the“Nopreemption”condition is not satisfied.
Thus in any case, adeadlock situation cannot occur in the system.

Since no modification has been done to the way the timestamp of a node is used or updated, even the improvised algorithm
is starvation free,similar to the original Maekawa’s algorithm [1].

5. Performance analysis

Let M be the number of intersection nodes in the quorum. In the best case where there is no relinquishment happening, we
have M REQUEST messages being sent by the requesting node for every CS invocation. The node receives M LOCKED
messages. After executing its CS, node sends M RELEASE mes sages. Thus 3M number of messages is required. In the worst
case, where every LOCKED message is relinquished, we have additional K number of INQUIRY and RELINQUISH messages
each. Thus 5M(3M +2M) number of messages is required. Hence the number of messages required for every CS execution
after modification is cM, where 3 ≤ c ≤ 5.

The value of M depends on the way the nodes have been distributed into various quorums. When M = 1, then the system is
similar to a centralized system. When M = N for all the nodes, then the algorithms performs similar to that of Ricart-Agrawala’s
algorithm [12]. When M = N , the algorithm performs similar to original Maekawa’s algorithm. Also, it can be noted that in
any case, the number of intersection processes in aquorum is lesser than or equal to the number of messages required by the

78 Journal of Information Technology Review Volume 1 Number 2 May 2010

original algorithm. The system can be designed is such a way that M< N for all the quorums of the system, in which case
the improvised algorithm would require lesser number of messages than the original Maekawa’s algorithm.

6. Conclusion

In this paper, we have proposed a permission based distributed mutual exclu sion algorithm which is an improvement of
Maekawa’s algorithm. The proposed algorithm is a modification of Maekawa’s ditributed mutual exclusion algorithm and
significant reduction in the number of messages is being achieved by re stricting the communication of any node which
wants to execute CS with the intersection nodes of the quorums. The proposed algorithm does not introduce any additional
overheads over the existing Maekawa’s algorithm which requires 3K to 5K number of messages per CS invocation, where
K is the number of nodes in the quorum (M < K).

References

[1] Maekawa, M (1985). A n algorithm for mutual exclusion in decentralized systems, A CM Transactions on Computer
Systems, 3 (2) 145-159.

[2] Singhal, M. (1993). A taxonomy of distributed mutual exclusion, Journal and Parallel and Distributed Computing,
18, 145-159

[3] Raynal., M. (1991). A simple taxonomy for distributed mutual exclusion algorithms, ACM Operating Systems Review,
23 (2) 47-51

[4] Garcia-Molina, H., Barbara, D. (1985). How to assign votes in a distributed system, Journal for the Association for
Computing Machinery, 32 (4) 841-860

[5] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G. (2000) Understanding Replication in Databases and
Distributed Systems, ICDCS 2000 Proceedings, p. 464-474

[6] Ananthanarayana, V.S., Vidyasankar., K. (2006). Dynamic Primary Copy with Piggy-Backing Mechanism for Replicated
UDDI Registry, ICDIT 2006, Lectures Notes in Computer Science, 4317, Springer, p. 389-402

[7] Bharath Kumar, A.R., Pradhan, B.U., Ananthanarayana, V.S (2008). An Effcient Lazy Dynamic Primary Copy Algorithm
for Replicated UDD Registry, ICIP-2008, p. 564-571

[8] Pradhan, B.U., Bharath Kumar, A.R., Ananthanarayana, V.S. (2008). An Effcient eager Dynamic Primary Copy Algorithm
for Replicated UDD registry, Proceedings of ICCNS-2008, p. 161-166

[9] Pradhan, B.U.. Bharath Kumar, A.R. Ananthanarayana, V.S A Tree-based Dynamic Primary Copy Algorithm for
Distributed Databases, ICDCN 2009 Lectures Notes in Computer Science, in press

[10] Lamport, L. Time, Clocks and the ordering of Events in a Distributed System, Communications of the ACM, 1978,
p. 558-565

[11] Cuffman, E.G., Elphick, J.M., Shoshani (1971). A System Deadlocks, ACM Computing Surveys, 66-78
[12] Ricart, G. Agrawala, A.K (1981). Anoptimal algorithm for mutual exclusion in computer networks, Communications

of the ACM, 24 (1) 9-17

