
 Journal of Information Technology Review Volume 1 Number 2 May 2010 79

Calculation Enabled Thin-Client Architectures and Extensions

Joseph Pally1, Salih Yurttas2

1ZCubes, Inc.
10777 Westheimer, Suite # 808
Houston, TX 77042
USA
joseph@zcubes.com
2Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
USA
yurttas@cse.tamu.edu

ABSTRACT: Among the architectural organizations for server, client, or hybrid confi gurations that can be adopted for ap-
plication designs, newer cloud-based designs have been adopting a predominantly server based approach in the recent years.
Though this approach correctly assumes that the fantastic improvements in server capacity in terms of memory, processing,
and bandwidth, it also completely ignores the massive capacity and scalability of client machines in satisfying user needs.
The traditional client architectures use the binary capability of the client, which is generally not oriented towards the web.
The extensive dynamic capabilities of the browser allow for platforms of infi nite extensibility and omni-functional power to
be delivered via the net. This paper considers the adoption of intelligent immersive omni-functional technology with special
focus on calculations towards creating standards-compliant documents that can be intermingled with semantic web structures.
The paper documents experiences with such developments, and the implications in adopting such technology as a standard
aspect of web-pages.

Keywords: Omni-functionality, Websheets, Calculations, Intelligent documents, Immersive documents

Received: 11 November 2009, Revised 29 December 2009, Accepted 8 January 2010

© D-LINE. All rights reserved

1. Introduction

Though programs use intensive calculations internally, most pieces of software are unaware of calculations at the user interface
level. Integrated calculations that are embedded into the functionality, has been sorely lacking even in reporting software,
where we would expect calculations to be pervasive.

On the other hand, productivity software and other document creation software have been segmented; along with the data
formats that lack any kind of standardization. Since 1991, the rise of the internet has created the possibility of document
standardization. At the moment, web page formats (such as HTML and XML) have matured enough to provide good en-
capsulation for data, format and layout. Additionally, scripting has expanded even the primary scope of web pages from
presentation and layout to logic.

The authors document a new elegant approach called “omni-functionality” in this paper that points to a variety of possibilities,
in which new calculation based document structures can be architected. This is positioned against server-client architectures
commonly adopted on the web for calculations by most online software vendors, as well as pure client solutions provided
by the non-web-oriented vendors.

The authors will also introduce a practical and successful implementation based on the concept, as well as attempt to defi ne
what an intelligent immersive document is. The focus of this paper will be on the calculation abilities provided by such
document structures – implying that every webpage can become more computationally powerful as provided by any known
conventional spreadsheet software.

80 Journal of Information Technology Review Volume 1 Number 2 May 2010

The calculation-enabled omni-functional document surpasses all conventional spreadsheet abilities including cell referencing,
expression evaluation, multiple sheet/table cell organization, calculation engine, recursive evaluation, that is triggered upon
requirement to ANY tabular element of a generic webpage.

This has the effect of bringing in the ability to do spreadsheet referencing and equations (like =A1+B1*SUM(TABLE2!A1:B3))
in webpages, as well as calling remotely =XML(“SouthKorea.rdf”) to parse and provide further presentation of the data).
The expressions are available not just within intra-document spreadsheet-like interfaces, but also the rest of the document-
scripting (which even conventional spreadsheets have issues providing without accessing the Application object). Also, a
Websheet calculation platform seamlessly interacts with the vector graphical elements and pictures (and other content) on
the page, which brings in the ability to conduct calculation without limits. Also, fl exibility of calculating using any data
type, including pictures or arrays (not just numbers or text), indicates depth of calculation currently impossible in any com-
mercially available spreadsheet. This also differentiates from server-based on-line spreadsheet tools, which simply attempt
to move the calculation engine to the server-side from the client application, and provides no fundamental advantage to the
next generation of calculation tools.

To take things further, omni-functional calculation platform described here handles advanced features like vector-charting,
multi-dimensional (pivot) analysis, lower-end databasing, etc. within a simple webpage without server-contributions. By ap-
propriately manipulating the design of a webpage, Websheets approach enable any webpage (and potentially all webpages) to
become a calculation medium that exceed the power and fl exibility normally available only in expensive pieces of fat-client
calculation software currently sold in the market.

The point though is not just whether Websheets make calculation mediums better than spreadsheets, but that websheets en-
able documents that provide ALL common functionalities better (like drawing, presentation, composition) at the same time.
This is the central appeal of omni-functionality.

Several attempts at creating web-oriented computation spaces have appeared such as grid computing (Fox 2003), web-services
(Halpin 2006), etc., but they also are marked by architectural rigidity due to the infl exibility associated with the server-based
and/or fat-client/applet architectures. Hence, in this paper we focus on the client-side architectures with thin-web-browsers.
Further, this architectural approach scores over server based technologies due to the fl exibility in functionalities that are in-
herent. For example, the ability to handle varied custom data types creates the possibility of computing with images, vectors,
etc., as against just text and numbers.

2. Background

A compound document is considered to be a document primarily of text based content, which is intermixed with complex
non-text elements like video, audio, pictures, etc. The earliest known platform to implement compound documents is the
Xerox Star workstation in 1981. Software component frameworks such as OLE/COM and ActiveX (Microsoft), Java Ap-
plets, KParts (KDE), Bonobo (GNOME), and OpenDoc (Apple) use the idea of software components to provide compound
document solutions. Primarily, the activation of a specifi c component is based on the data type of that component, and is
achieved by invoking the application that specializes in performing that function. For example, activation of an embedded
Excel chart launches Microsoft Excel behind the scenes; and Microsoft Excel then provides the functionality required to
edit/modify/delete that component.

Such architectures sometimes create unstable and heavy combinations of software during runtime. Since the secondary software
that gets activated within the context of the fi rst is unaware of the process space, its contribution to functionality is limited to
the strict data sharing as per the component interface standards. For example, if Excel is activated within Word, its context is
quite restricted to the specifi c Excel embedded object and not to the rest of the Word document. Major disadvantages of isolated
activation include (a) the inability of two embedded objects to interact with each other smoothly, (b) slow initial activation of
embedded program logic, (c) general software instability and (d) limited possibility to conduct recursive embedding.

These issues are not limited to productivity software, but many other pieces of software that create documents that deal pri-
marily with drawings, movies, images, etc. This is a major issue for software users, who would prefer documents to be like
the way they think. HTML/SGML that is commonly used in web browsers do use EMBED tags to achieve similar effects as
in documents. However, this is limited to view-only interaction between the data elsewhere and the embedded objects.

A classic document – whether it be a report, a presentation, a book, a paper, a notice – require elements of any data type in any se-
quence as the user desires and requires to express his/her ideas. In most cases, users use two-dimensional documents tuned for paper-
formats (or Adobe PDF or similar) that users can print out and read – not to interact or to provide an immersive experience.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 81

Web pages have been a departure from this trend, though for the most part two dimensional static presentations (with sparse
highly customized logic) seem to be the norm. Online providers of functionality such as Google Docs have attempted to make
web into more intelligent providers of functionality. However, here too the trend is to isolate such functionality into pockets
of logic that are driven at the server. True free interactivity within a document is still missing.

Still, embedding other data-types into fi les of a certain type is still dependent on the features provided by the software. Web browser
has somehow bucked the trend in having limitations on what can be embedded conveniently, by providing a high degree of freedom
and fl exibility. However, web browsers have remained primarily browsers, and not editors – contrary to Tim Berners-Lee’s original
vision (Berners-Lee 1999). Editable web is still rare, except for wikis and blogs which are custom made for editing (Iorio 2005).

Tim Berners-Lee’s combining of the hypertext, Graphical User Interface and TCP/IP net was a giant leap in the way docu-
ments could be structured. This has made possible documents that may compose themselves out of resources strewn all over
the Internet. Even then, conventional software have adopted document technologies like containers that hold everything,
rather than a lighter structure – with associated resources combined on the fl y as required.

The use of HTML aware client and server-side technologies have made it the most prevalent of content presentation and
layout format. The ability of accompanying Javascript (and similar scripting languages like Visual Basic) to represent logic
and dynamic action makes it far richer than most other formats, which try to store data alone in documents.

Conventional productivity applications have supported scripting techniques (such as Visual Basic for Applications that is used
to script Microsoft Offi ce Applications). These have been typically used to provide isolated and additional functionality to
the specifi c application that host the script. On the other hand technologies such as OLE Automation Server have provided
allows other applications to script an application. Techniques including CORBA (Common Object Request Broker Archi-
tecture), .NET Remoting, RPC (Remote Procedure Call), SOA (Service Oriented Architecture), ROA (Resource Oriented
Architecture)/REST (Representational State Transfer), etc., provide remote method invoking functionality to applications
that can be used to beckon services that are housed out-of-process or out-of-machine. Another interesting technique is to use
real-time messaging architectures such as TIBCO and Jabber (XMPP) to achieve interactivity among other processes that
may be inside or outside the machine.

Effectively, the amount of data interactivity (and logic interactivity) among programs that are typically used to create con-
ventional documents today (Boyer 2008) depend on a variety of inter-process communication, messaging, program specifi c
scripting, etc. This makes effective omni-functionality complex in current mono-functional application architectures (i.e.,
applications such as word processor, painting tool, etc. that focus on one or few features).

A typical user would prefer not to have to worry about data formats or specifi c programs; and instead would prefer to achieve
whatever they desire to do. With a segmented software landscape, glued together at best using complex and unstable tech-
nologies, such desires remain a pipe-dream.

3. Intelligent Documents

Most of the popular pieces of software have been organically developed over the last 20 years, by teams and companies
that have never had a reason to work together. This has been the primary cause for segmentation, though efforts like Apple
Hypercard and Microsoft Binder had attempted to solve this problem earlier with limited success. The missing ingredients
may have been a universal platform, a universal language, a universal network, a calculation and graphical framework and
a universal orchestrating or scripting language.

3.1 Characteristics of Intelligent Document
An intelligent document can be visualized as a document structure and platform that is: (a) active, (b) immersive, (c) inter-
active, (d) web-compliant, (e) seamless, (f) application-agnostic, (g) data-agnostic, (h) omni-functional, (i) shareable, (j)
viewable, (k) editable, (l) function-agnostic, (m) feature-deep, (n) calculation-aware, (o) graphic-aware, (p) standards-based
and (q) infi nitely extensible (Pally and Yurttas 2009).
The following expands the intent of the terms as used above.

1. An active document allows the user to manipulate its data.

2. An immersive document allows the user to achieve all required functions without leaving the platform.

3. An interactive document allows the user to interact with the content during the lifetime of the document, through scripting
if required.

82 Journal of Information Technology Review Volume 1 Number 2 May 2010

 4. A web-compliant document depends primarily on open web-standards or commonly available web-technologies at all
stages of its lifetime.

 5. A seamless document is a document that is not fragmented into pieces based on separate features, unless the fragmenta-
tion is for convenient deployment.

 6. An application-agnostic document does not restrict its interpretation to a certain specifi c application only.

 7. A data-agnostic document can contain any type of data that the user wants to deal with.

 8. An omni-functional document provides any type of functionality to any part of the document in any sequence whatsoever.

 9. A shareable document can be viewed and interacted among appropriate actors separated by time and/or space at the
appropriate level of content granularity.

10. A viewable document is a document that provides view-only interaction during specifi c stages of its life-time.

11. An editable document is a document that provides editing capability to a document at specifi c stages of its life-time.

12. A function-agnostic document is a document that allows any function to be applied to any part of the document in any
sequence based on the desires and needs of the user.

13. A feature-deep document is in which the functionalities provided are of suffi cient depth that for a majority of uses, the
available functionality encompasses the needs comprehensively.

14. A calculation-aware document is a document that can achieve a vast majority (if possible all) of calculations achieved
normally through specialized applications like spreadsheets as a part of the document itself.

15. A graphics-aware document is a document that can create and manipulate vector and raster graphics of extreme complex-
ity in multiple-dimensions.

16. A standards-based document uses common web and other standards to represent information, rather than a proprietary
format that may be specifi c to a vendor.

17. An infi nitely-extensible document is a document that can take new data and functionality at anytime during its lifetime
for needs and uses that may be unexpected before or during its construction.

It would be desirable for such document structures to be equally malleable during construction, modifi cation, viewing, and
extension (i.e., while being extended to handle newer functionalities as requirements change).

3.2 Web Pages vs. Documents
Since the advent of the web, web pages and sites have been treated as isolated pages that are hyperlinked as required. Very
limited functionality above presentation was expected out of web pages from the early days. Even today, much of additional
functionality is delegated to the server, as can be seen in most online productivity tools.

Web pages and user generated documents have been seen as separate and independent ways of presenting and storing informa-
tion – one primarily for the web and the other when you want to adopt some required functionality for a non-web user (as in
intranets, emails, local networks, etc.). It is interesting to note that SGML (from which HTML and XML was later derived)
was developed to manage law-offi ce information at IBM. It needs to be recognized that HTML is equally (or even better)
suitable for the creation, modifi cation, transmission, storage and retrieval of documents for which we use older formats.

3.3 Storage Format Standards
There have been several attempts among vendors and bodies to adopt XML based standards for document storage such as OpenDoc
(from Apple), OOXML (from Microsoft) and Open Document Format (ODF) (from OASIS, Organization for the Advancement of
Structured Information Standards). However, these only defi ne storage and interoperability among software clients. Still, the desire
of the user as creator, editor and viewer of a document to interact with the information in a seamless way is still not met.

An open standard on storage may reduce the risk of specifi c vendors to dominate an application domain because they control
the format. However, that does not solve the ever present problem of myriad of function points and interfaces to manage
and achieve user intent.

That is, uniform formats does not enable seamless interfaces that does not require the user to decide a priory what interface
to start with, and run into roadblocks when the user intent changes.

 Journal of Information Technology Review Volume 1 Number 2 May 2010 83

The lack of standardization in expression of logic and calculations in the different pieces of software has been another major
issue. Spreadsheet software standards have been the most popular to express calculations. Mathematica (and other symbolic
packages), Matlab, AutoLISP, etc. have had some success in this regard like spreadsheets, though these have been applicable
only within their own specifi c applicable areas. Also, generic expression of logical structures has been evasive.

3.4 Mono-Functionality/Omni-Functionality
The most notable aspect of conventional software is the focus on one or few pieces of functionality. This is generally driven
by the way that the software was developed, as well as the marketing messages that need to be adopted to reach its market.

Microsoft Offi ce, Open Offi ce, Google Docs, etc. are examples of Mono-Functional solutions that are put together into
“integrated” solutions. The most interaction that is available among these solutions is still limited to copy/paste and object
embedding.

Omni-functionality introduces the concept of the availability of any functionality that the users require – without regard to
the sequence of creation or complexity. Whether the user wants to calculate or draw or compose, to any extent or complexity,
the authoring platform seamlessly moulds itself to suit the user’s requirements.

3.5 Infi nite Functionality
With Dynamic HTML (DHTML) and Javascript being widely adopted by most major browsers, it has become possible to
implement most of the functionalities using a browser. Overall, the ability and effi ciency of popular browsers to (a) script the
document object model as well as complex logic, (b) render media (such as images and video), (c) handle complex multi-
layered layouts, colors, fi lters and vector graphics, (d) asynchronous and synchronous communication, (e) embed or include
Flash and similar techniques, (f) insert dynamic scripts at run-time, (g) call web-services and (h) provide secure server-client
communication has created the possibility to achieve infi nite and seamless functionality.

3.6 Real-World Implementation
Starting in 2006, Joseph Pally and his team at ZCubes based in Houston invented a series of techniques that enabled a thin-
browser to achieve a variety of functionality using Javascript and DHTML, with minimal amount of server contribution (Pally
2009). Over the years, the platform has achieved a plurality of functionality that includes extensive graphics and calculation
abilities. As a comparison, conventional online or offl ine spreadsheets contain about 500 calculation functions, whereas
ZCubes calculation functions exceed many thousands (CALCI Websheets).

However, the most interesting aspect of the observations is the seamlessness of the functionalities. For example, all functions
that is normally provided in spreadsheets are available to the graphical or editing aspects of the software.

The infi nite extensibility of this architecture can be noted in the fact that new script logic can be added to the platform during
runtime. This is similar to add-in concept in conventional applications, however, the additional script logic can be accessed
from anywhere in the Internet as and when needed.

Users have been using this interesting implementation to draw art classics to make models of the temperatures inside the
earth. The platform can transform from greeting card software to website creation software to video wall creator seamlessly,
without disturbing the user.

The ability to immerse the user in a platform that browses the internet as well as calculate without regard to whatever the
user wants to do is indicative of the power of the web browser platform directed appropriately.

4. Immersive Calculation Spaces

As described, providing simple web-pages the ability to support extensive calculation functions has the side effect of substantial
implications. At the moment, most calculation requirements that a page requires is provided by custom code. For example, in
a webpage that shows mortgage loan depreciation, the software programmer has to create or include the code that conducts
calculations regarding interest, amortization, etc. and then hard-wire the appropriate display controls. This obviously is non-
optimal, time-wise and operationally. Since non-standard code is strewn all over, errors and incompatibilities abound.

The answer lies in the provision of calculation functions as omni-present aspects of web-pages. Since due to security reasons,
API calls are restricted within a browser. Browser plugins are diffi cult to deploy and consume. Hence the safest delivery
mechanism seems to be based on effi cient javascript – which is a very powerful and expressive language that is universally
understood by all serious browsers.

84 Journal of Information Technology Review Volume 1 Number 2 May 2010

CALCI includes all functions conventionally available in spreadsheets and other mathematical tools. These functions can
be called and launched from spreadsheet-like interfaces, or from any part, control, or logic contained in the page itself. The
universal ability of a page to achieve standard calculations reduces the possible incompatibilities among web-pages. Few
standard functions are available in javascript, and most of those that are available in spreadsheets are not.

For example, the mathematical functions such as SUM() of recursive arrays, or a fi nancial function such as RATE(), or a date
function such as WEEKDAY() do not work in javascript. For each of such functions, further programming is required.

The solution is to provide javascript with all conventionally available spreadsheet functions, as well as additional functions.
The availability of these functions directly is useful, and ability to apply them in iterations, repetitions, and nested function
calls should not be underestimated.

For example, the availability of a FIBONNACI () series or GEOMETRIC() series would enable web-pages that may support
math related functions, while availability of COVARIANCE() may be of interest to the statistician. However, the overhead
caused by providing these as default is very limited or negligible as witnessed by the implementation of CALCI. CALCI also
introduces the concept of domain specifi c ‘add-ons’ that are activated as required by the webpage that gives domain specifi c
calculations. For example, LOANS ‘add-in’ gives the webpage highly useful set of functions that relate to the payments and
scheduling of LOANS.

The exhibited omni-functionality also enables the calculation modules to interact with graphics. For example, CALCI gen-
erates vector graphs that are interactive (as against image graphs generated by most online tools). Another side effect is the
ability to generate vector graphics objects, like a hundred circles at increasing radii, etc.

6. Testing the Concept

In several examinations and testing sessions by faculty and students at universities and schools around the world, as well as
enterprises of small and large sizes, the practicality and seamlessness of the Omni-Functionality concept that is exhibited by
ZCubes, with special focus on CALCI Websheets, has been proven. In specifi c testing conducted by Salih Yurttas at Texas
A&M University, the calculation capability of the omni-functional platform was considered, by intermingling with other
functionalities, namely vector graphics. The sequential capability of the omni-functional platform was considered. The fol-
lowing contains arbitrary, natural and random sequences of functionalities demanded of the software upon testing (these are
not prefi xed set of tasks) to test the omni-functionality concept. Such sequences, though simple, require specialized websites
or fl ash programs to conduct, and would entail quite a bit of programming. However, with the seamless omni-functional
capabilities of ZCubes, this series of actions could be conducted without breaks or programming. The example had the fol-
lowing steps: (a) Draw a circle; (b) Calculate and generate circles of diameters that increase as in FIBONNACI series (pixels)
at every step; (c) Locate the circles at points offset by random pixels each; (d) Logically connect to the circles, fi nd their total
areas; (e) Report the array of areas of the circles; (f) Report the total of the array of the areas of circles. By combining the
graphical and calculation abilities of the platform, the sequences of actions were achieved.

Figure 1 shows the fl exibility with which CALCI Websheets handle complex data types (other than simple text and num-
bers). The fi rst column shows the input number, the second shows the FIBONNACI series that contain the input number
of elements in the series. Note the fact that the elements in the second column are arrays, and not numbers. However, the
third column is able to add the numbers in the arrays in the second column together. Here the calculations are done on the
client-side, and not on server-side.

Figure 1. Array and Series in CALCI

 Journal of Information Technology Review Volume 1 Number 2 May 2010 85

Figure 2 shows the referencing of an image contained within a vector circle of radius 139. The circle object is instantiated
in the CALCI element, which is then used to calculate the area of the circle using B2.AREA() which gives 60698.71166. It
is to be noted that the AREA function is part of the CIRCLE object, which is part of the geometry add-in. This hence also
refl ects the infi nite extensibility of the calculation-ability. Add-ins to the CALCI platform are additional javascript modules
that are dynamically loaded to the client, and all objects or modules is created on the client side (unless demanded by the
object). With the new logic enabled by the incoming add-in, the calculations can then access properties or methods of the
object or elements thus instantiated. This is demonstrated by the spreadsheet cell B2.AREA(), that uses the Circle object to
determine the area.

Figure 3 above shows the fl exibility of CALCI elements, in that the cells contain images. Cell A2 contains the equation
A1+B1, which adds the images from cells A1 and B1. In Cell B2, the equation DUPLICATE(B1, 6, 2) duplicates the image
in cell B1, 6 times in rows of 2. Clearly, these ar e not operations allowed or possible in conventional spreadsheets.

The notable aspect of Websheets is the availability of all spreadsheet functions in every web page, that can be used by the
creator (or consumer) of the document to extend the logic (or try out different sequences of logic). Having the series of func-
tionalities like the simple SUM() and COUNT() or the complex PEARSON() or NORMDIST() for every webpage to draw
from itself opens up lots of opportunities and freedom on the Internet platform.

In the tests, the LOAN add-in logic was added to the omni-functional websheet. A loan was defi ned as =LOAN(100000,
4%, 12) , to represent a loan of $100,000 as the principal, 4% interest rate, and 12 payments (Figure 4). The interesting thing
to note in this test case is the availability of the LOAN as an object for the further method calls to extract and present more

Figure 2. Circle Object and Methods

Figure 3. Picture Elements and Operations

86 Journal of Information Technology Review Volume 1 Number 2 May 2010

information. Also the second cell A2 contains =TABULATE(A1.PAYMENTS()) which specify that the results from the
A1.PAYMENTS() which returns an array, which is then tabulated.

Note that cell A1 contains LOAN as an object that is instantiated within the omni-functional document space. The table is
then rendered within the second cell. Here the cell contains a table –– something other than a text or a number.

In this case, =A1.PAYMENTS() gives the interest payment of 306.061143 from the array. This shows that the results of the
complex object can further be manipulated.

The availability of full-fledged computation in a free-space which is data-agnostic, function-agnostic, scriptable
and graphics-aware indicates the intelligence and immersivity of documents possible with such omni-functional
platforms.

7. Summary

The ability for web-based document concept that achieves omni-functionality with immersive calculation abilities is signifi -
cant. The usefulness of universal availability of standard spreadsheet like function calls in web-pages (along with additional
appropriate interfaces), which would allow for the creation of interactive intelligent documents that can have accurate and
easy expression of logic and processing, is enormous. By keeping the interface functions similar to standard spreadsheet
language, we open up the possibility of standard ways of requesting and providing functionality. At the moment, every cus-
tom implementation rebuilds each required function, which creates an increasing lack of standardization and increasingly
complex systems. Apart from the provision of functions, the spreadsheet like functionality that parts of the entire document
transforms to, creates a totally different level of interactivity and computation. The ability of intelligent immersive omni-
functional documents to calculate can have enormous implications to reporting, analysis, forms, etc. The most prevalent
platform of today – the Internet Browser – may eventually be considered as a virtual paper or medium, of immense power,
fl exibility and expressivity.

Figure 4. First cell shows the Loan with its properties. The second cell B1 shows the tabulated payments of this loan,
interest, principal, and balance on the time-series

 Journal of Information Technology Review Volume 1 Number 2 May 2010 87

References

Fox, G (2003). Grid Computing Environments, [1] Computing in Science and Engineering, v.5 n.2, p.68-72, March
2003.
Halpin, H (2006) One Document to Bind Them: Combining XML, Web Services, and The Semantic Web, [2] Proceedings
of the 15th International Conference on World Wide Web, Edinburgh, Scotland, May 23-26, 2006.
Berners-Lee, T (1999). [3] Weaving the Web, Harper, San Francisco.
Iorio, D. A. Vitali, F (2005). From the Writable Web to Global Editability, [4] Proceedings of the 16th ACM conference on
Hypertext and Hypermedia, Salzburg, Austria, September 06-09, 2005.
Boyer, J. M., et al., (2008). An Offi ce Document Mashup for Document-Centric Business Processes, [5] Proceeding of the
8th ACM Symposium on Document Engg., Sao Paulo, Brazil, September 16-19, 2008.
Pally J. Yurttas, S (2009). Intelligent Immersive Omni-Functional Documents, [6] Proc. 1st International Conference on
Networked Digital Technologies (NDT 2009), Ostrava, The Czech Republic, July 29 - 31, 2009.
Pally, J (2009). [7] The Thinking Things, Silkrays, Houston, TX.

Authors Biographies

Joseph Pally is the CEO of ZCubes, Inc., a high-technology company based in Houston, and leads
several software companies. He is a graduate of the Indian Institute of Technology, Madras, India, as
well as Texas A&M University, College Station, Texas, USA. He is a well-known software scientist,
and has been credited with the invention of ZCubes and many other advanced software technologies.
He is also the author of two popular books – “Fail Fast, Move Faster,” a book on a winner’s attitude and
“The Thinking Things,” a history of computing spanning several millennia in short story format.

Salih Yurttas Doctor Salih Yurttas holds a PhD in Computer Science from Ege University, Turkey.
He has been on the faculty of Texas A&M University, Department of Computer Science 1982-1991 as
Visiting Assistant Professor and 1991 to present day as Senior Lecturer. He taught undergraduate and
graduate courses at Texas A&M, Turkey, and People’s Republic of China. His main interest is Program-
ming Languages Design and Implementation for Large-Scale software development. He has developed
reusable, modular language collections in Ada, C++, Java, and several imperative languages.

