Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-4127
Online ISSN:
0976-4135


  About JMPT
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of Multimedia Processing and Technologies
 

 

Algorithms for Studying the Complexities of Isolines
Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Bettina Speckmann
Eindhoven University of Technology The Netherlands
Abstract: Isolines share link different places that share a common value. Efforts have been done to reduce the complexity of drawing lines during the measurement of geometric similarities. The isolines that have common scalar filed, the geometric similarity of the isolines and the separation is not easy. We should keep the similarities and structure intact which help to described the terrains. We have developed algorithm to address the complexity of isolines when studying the harmony. During the testing of the algorithms we found it more efficient.
Keywords: Simplification, Isolines, Harmony Algorithms for Studying the Complexities of Isolines
DOI:https://doi.org/10.6025/jmpt/2021/12/4/110-124
Full_Text   PDF 1.79 MB   Download:   169  times
References:

[1] Alt, Helmut., Behrends, Bernd., Blömer, Johannes. (1995). Approximate matching of polygonal shapes. Annals of Mathematics and Artificial Intelligence, 13 (3) 251–265.
[2] Alt, Helmut., Godau, Michael. (1995). Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5 (01n02), 75–91, 1995.
[3] Bellman, Richard., Kalaba, Robert. (1959). On adaptive control processes. IRE Transactions on Automatic Control, 4 (2) 1–9.
[4] Bose, Prosenjit., Cabello, Sergio., Cheong, Otfried., Gudmundsson, Joachim., Kreveld, Marc J. van., Speckmann, Bettina. (2006). Area-preserving approximations of polygonal paths. Journal of Discrete Algorithms, 4 (4) 554–566.
[5] Buchin, Kevin., Buchin, Maike., Meulemans, Wouter., Speckmann, Bettina. (2019). Locally correct Fréchet matchings. Computational Geometry, 76: 1–18.
[6] Buchin, Kevin., Meulemans, Wouter., Renssen, André Van., Speckmann, Bettina. (2016). Areapreserving simplification and schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2 (1) Article No. 2, 1–36.
[7] Dijk, Thomas C. van., Goethem, Arthur van., Haunert, Jan-Henrik., Meulemans, Wouter., Speckmann, Bettin. (2014). A Map schematization with circular arcs. In: Proceedings International Conference on Geographic Information Science, pages 1–17.
[8] Regina Estkowski and Joseph S. B. Mitchell. Simplifying a polygonal subdivision while keeping it simple. In: Proceedings 17th Symposium on Computational Geometry, pages 40–49.
[9] Gaffuri, Julien., Duchêne, Cécile., Ruas, Anne. (2008). Object-field relationships modelling in an agent-based generalisation model. In: Proceedigs 12th Workshop on Generalisation and Multiple Representation.
[10] Gao, Aji., Li, Jingzhong., Chen, Kai. (2020). A morphing approach for continuous generalization of linear map features. Plos one, 15 (12) e0243328.
[11] Goethem, Arthur van., Meulemans, Wouter., Reimer, Andreas., Speckmann, Bettina. (2020). Simplification with parallelism. In : Proceedings 23rd ICA Workshop on Generalisation and Multiple Representation.
[12] Goethem, Arthur van., Meulemans, Wouter., Speckmann, Bettina., Jo Wood. (2015). Exploring curved schematization of territorial outlines. IEEE Transactions on Visualization and Computer Graphics, 21 (8) 889–902.
[13] Goldman, Alan H. (1990). Aesthetic qualities and aesthetic value. The Journal of Philosophy, 87 (1) 23–37.
[14] Guibas, Leonidas J., Hershberger, John. (1989). Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences, 39 (2) 126–152.
[15] Guilbert, Eric. (2016). Feature-driven generalization of isobaths on nautical charts: A multi-agent system approach. Transactions in GIS, 20 (1) 126–143.
[16] Guilbert, Eric., Gaffuri, Julien., Jenny, Bernhard. (2014). Terrain generalisation. In Abstracting geographic information in a data rich world, LNCG, pages 227–258. Springer.
[17] Howat, Ian M., Porter, Claire., Smith, Benjamin E., Noh, Myoung-Jong., Morin, Paul. (2019). The reference elevation model of Antarctica. The Cryosphere, 13 (2) 665–674.
[18] Imhof, Eduard. (1965). Kartographische Geländedarstellung. De Gruyter. 124
[19] Kronenfeld, Barry J., Stanislawski, Lawrence V., Buttenfield, Barbara P., Brockmeyer, Tyler. (2020). Simplification of polylines by segment collapse: Minimizing areal displacement while preserving area. International Journal of Cartography, 6 (1) 22–46.
[20] Li, Zhilin., Sui, Haigang. (2000). An integrated technique for automated generalization of contour maps. The Cartographic Journal, 37 (1) 29–37.
[21] Löffler, Maarten., Meulemans, Wouter. (2017). Discretized aJ
[22] Mendel, Thomas. (2018). Area-preserving subdivision simplification with topology constraints: Exactly and in practice. In Proceedinga 20th Workshop on Algorithm Engineering and Experiments, pages 117–128.
[23] Paulo Raposo. (2013). Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation. Cartography and Geographic Information Science, 40 (5) 427–443.
[24] Andreas Reimer. (2015). Cartographic modelling for automated map generation. PhD thesis, Technische Universiteit Eindhoven.
[25] Samsonov, Timofey, E. (2020). Automated conflation of digital elevation model with reference hydrographic lines. ISPRS International Journal of Geo-Information, 9 (5).
[26] Samsonov, Timofey E., Koshel, Sergey., Walther, Dmitry., Jenny, Bernhard. (2019). Automated placement of supplementary contour lines. International Journal of Geographical Information Science, 33(10) 2072–2093.
[27] Schüle, Wilhelm., Zur Maßstabsfrage des neuen schweizerischen Kartenwerkes, mit einem Nachtrag und Anhang zur Kurvendarstellung auf topographischen Karten. In Jahresbericht der Geographischen Gesellschaft von Bern, Bd. XXVIII, pages 31–53, 1929.
[28] Skopeliti., Andriani., Tsoulos., Lysandros., Pe’eri, Shachak. (2021). Depth contours and coastline generalization for harbour and approach nautical charts. ISPRS International Journal of Geo-Information, 10 (4) 197.
[29] Tong, Xiaohua., Jin, Yanmin., Li, Lingyun., Ai, Tinghua. (2015). Area-preservation simplification of polygonal boundaries by the use of the structured total least squares method with constraints. Transactions in GIS, 19 (5) 780–799.
[30] Touya, Guillaume., Boulze, Hugo., Schleich, Anouk., Quinquenel, Hervé. (2019). Contour lines generation in karstic plateaus for topographic maps. In: Proceedings International Cartographic Conference, volume 2, pages 1–8.
[31] Tutic, Dražen., and Lapaine, Miljenko. (2009). Area preserving cartographic line generalizaton. Kartografija i geoinformacije (Cartography and Geoinformation), 8 (11) 84–100.
[32] Tutic, Dražen, Štanfel, Matjaž., Jogun, Tomislav. (2017). Automation of cartographic generalisation of contour lines. In: Proceedings 10th ICA Mountain Cartography Workshop, pages 65–77.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info