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ABSTRACT

This paper establishes that model checking for successor invariant first order logic (FO) is fixed parameter
tractable on graph classes that exclude a fixed graph H as a topological subgraph. While model checking for
plain FO is well understood on sparse graph classes, extending these tractability results to successor invariant
FO where a successor relation is added but formulas must be invariant under its choice has been challenging.
The authors extend prior results on planar and minor excluded graphs by proving tractability for the broader
class of graphs excluding a topological subgraph. The proof utilises a decomposition theorem by Grohe and
Marx, which constructs ak walk in a super graph while preserving structural sparsity, thereby enabling the
simulation of the successor relation via FO interpretation. This allows application of existing FO model
checking algorithms on bounded expansion classes. The work narrows the gap between plain and successor
tnvariant FO, and also shows that model checking for order invariant FO is tractable on colored posets of
bounded width. The results contribute to algorithmic meta theorems, highlighting how structural graph
properties can be leveraged in logic based algorithm design.
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1. Introduction

Model checking is one of the core algorithmic problems in finite model theory: Given a sentence ¥ in some logic
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L and a finite structure A, decide whether A = ¢. The problem can be generalised by allowing ¢ to have free
variables, in which case we would like to find instances @ for which A = ¢[a], or count the number of such
instances. One important application of this is the case where ¥ is a database query and A the database to be
queried. The logic L from which ¢ is drawn then serves as an abstract model of the database query language.

Commonly studied logics Linclude first order logic (FO) and monadic second order logic (MSO). Even for firstorder
logic the model checking problem is PSPACE complete already when restricted to structures A with two elements.
On the other hand, for every fixed FO formula ¢, checking whether A |= ¢ can be done in time polynomial in the
size of A. This discrepancy between the query complexity, i.e. the complexity depending on the size of the query
¢ on the one hand and the data complexity, i.e. the complexity depending on the size of the structure A, on the
other hand suggests that the complexity of model checking problems is best studied in the framework of
parameterised complexity [8, 17].

In parameterised complexity, apart from the size n of the input problem (commonly the length of an appropri-
ate binary representation of ¥ and A) a parameter k is introduced. For model checking problems the size of the
input formula is a common choice of parameter. The role of PTIME as the class of problems commonly consid-
ered to be tractable is played by the parameterised complexity class of fixed parameter tractable (fpt) prob-
lems, i.e. problems which can be solved in time

f(k)-nf
for some computable function f and a constant c. Note that the constant ¢ must not depend on k, and indeed the
model-checking problem for first-order logic is unlikely to be fixed-parameter tractable.

In order to obtain tractable instances of model checking problems, one can restrict the space of admissible
input structures A, e.g. by requiring the Gaifman graph of A to possess certain graph theoretic properties such
as bounded degree or planarity. A long list of results have been obtained, starting with Courcelle’s famous
result that model checking for monadic second order logic is fixed parameter tractable on structures A with
bounded tree width [4].

Results of this form are often referred to as algorithmic meta theorems because many classical problems can
be rephrased as model checking problems by formalising them as a sentence ¢ in a suitable logic. For example,
since the existence of a Hamiltonian cycle in a graph G of bounded tree width can be expressed by a sentence
¢ of monadic second order logic, Courcelle’s Theorem immediately implies that hamiltonicity can be checked
in polynomial time on such graphs. Besides giving a mere proof of tractability, algorithmic meta theorems
provide a unified treatment of how structural properties can be used in algorithm design. Cf. [20] and [24] for
excellent surveys of the field of algorithmic meta theorems.

The model checking problem for first order logic is particularly well studied and has been shown to be fixed
parameter tractable on a large number of graph classes: Starting with Seese’s result [28] for graphs of bounded
degree, Frick and Grohe showed tractability on classes of graphs with bounded tree width and, more generally,
locally bounded tree width [18], which in particular includes planar graphs. This has been generalised to graph
classes with excluded minors [16] and locally excluded minors [6]. Using rather different techniques, Dvorak
et al. gave a linear fpt model checking algorithm for first order logic on graphs of bounded expansion [9]. As a
generalisation of all the graph classes mentioned so far, Grohe et al. have shown in [21] that model checking for
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first order logic is possible in near linear fpt on all nowhere dense graph classes. While the tractability of model
checking for first order logic on sparse graphs is well understood, few results are available for classes of dense
graphs. Recently, Gajarsky et al.

bounded local tree-width i
bounded genus bounded tree-width bounded degree

Figure 1. Sparse classes of graphs on which model-checking for first order logic is tractable

gave an fpt algorithm for FO model checking on posets of bounded width, which we extend to order invariant FO
in Section 5.

Excluded Topological Subgraphs

A more general concept than that of a class of graphs excluding some graph H as a minor is that of graphs which
exclude H as a topological subgraph. This is the concept originally used by Kuratowski in his famous result that
a graph is planar if, and only if, it does not contain K_ nor K_, as a topological subgraph (cf. Section 4.4 in [7]).
Recently, Grohe and Marx have extended Robertson and Seymour’s graph structure theorem to classes of graphs
excluding a fixed graph H as a topological subgraph [22]: These graphs can be decomposed along small separators
into parts which exclude H as a minor and parts in which all but a bounded number of vertices have small
degree.

Since every topological subgraph of a graph G is also a minor of G, if a class C of graphs excludes some graph H
as a topological subgraph then it also excludes H as a minor. The converse is not true, however, since every 3-
regular graph excludes K, as a topological subgraph, but for every r € IN there is a 3-regular graph containing
K as a minor. On the other hand, graph classes with excluded topological subgraphs have bounded expansion,
so model-checking for first order logic is tractable on these classes by Dvorak et al.’s result.

Figure 1 shows an overview of sparse graph classes on which model checking for first order logic is tractable.
Note that a class C of graphs excludes some finite graph H as a topological subgraph if, and only if, there is an
r € IN such that C excludes the clique K, as a topological subgraph.

Successor-Invariant Logic

We investigate the question in how far tractability results for first order model checking carry over to successor
invariant first order logic, i.e. first order logic enriched by a binary successor relation, restricted to formulae
whose truth value does not depend on the specific choice of successor relation. Linear representations of an
input structure A to a model checking algorithm usually induce some linear order on the elements of V (A), and it
seems natural to make this linear order (or at least its successor relation) accessible to the query formula. This
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may, however, break the structural properties of the Gaifman graph of A needed by the model checking algorithm.

Having access, even invariantly, to a successor relation provably increases the expressive power of FO on finite
structures, as shown in [27]. However, all known classes of structures separating FO from order invariant or
successor invariant FO contain large cliques, and in fact on trees [2] and on structures of bounded tree depth
[12] even order invariant FO has the same expressive power as plain FO. On all the classes depicted in Figure 1,
this question is still open, prompting for tractability results for successor invariant or even order invariant FO on
these classes.

Previous work investigating the complexity of model checking for successor invariant first order logic to that of
plain first order logic has been carried out by [14], who showed tractibility on planar graphs, and [13], who
showed tractability on graph classes with excluded minors. Here we extend these results further by generalising
from excluded minors to excluded topological subgraphs, further narrowing the gap between what is known for
first-order logic and succesor invariant first order logic.

Note that for first order logic, the result of [21] is optimal if one restricts attention to classes of graphs which are
closed under taking subgraphs. In fact, Kreutzer has shown in [24] that under the complexity theoretic assumption
that FPT #W[1], if model checking for FO on some subgraph closed class C of graphs is fixed parameter tractable,
then C is nowhere dense (see also Section 1.4 of [9]). Examples of classes of graphs on which model checking is
fpt even for monadic second order logic but which are not nowhere dense are graphs of bounded clique width

[5].

2. Preliminaries and Notation
For a natural number n we let [n] denote the interval {1, . . ., n}.

2.1 Graphs

We will be dealing with finite simple (i.e. loop-free and without multiple edges) undirected graphs, cf. [7, 29] for
an in-depth introduction. Thus a graph G = (V, E) consists of some finite set V of vertices and a set £ C (‘2/) 2 of
edges. We write uv € E for {u, v} € E. For a set U C V we denote the induced subgraph on U by G[U], i.e. the
graph (U, E') with

E":={w|u,v € U and wv € E}.

For ease of notation we occasionally blur the distinction between a set U of vertices and the subgraph induced on
this set. The union G U H of two graphs G = (V, E) and H = (U, F) is defined as the graph (U U V, E U F). For a set
U of vertices, K[U] denotes the complete graph (or clique) with vertex set U. For k € IN, we denote the k-clique
KT[K]] by K,

Awalkis asequence of vertices v, ..., v, € V,alternatively written asafunctionv: [¢(] — V,suchthatvivit1 € E
foralli=1,..., ¢ — 1. A path is a walk in which v, = v, for i = j, except possibly v, = v¢, in which case the path is
called a cycle. The vertices v,, . . ., v,_; are called inner vertices. Two paths v, ..., vwand w, ... ,w, are called
independent if neither of them contains an inner vertex of the other, i.e. if v, = w;implies ; € {1,¢} andj € {1,m}.
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For k > 1, a k-walk through a graph G = (V, E) is a surjective walk w : [¢] — V such that
1< i€ (6] | wii) = v} <k
for all v € V. A 1-walk is also called a Hamiltonian path.

Tree-Decompositions
A tree is a connected acyclic graph. A tree-decomposition of a graph G = (V, E) is a pair (T, V) consisting of a tree
T = (T, F) and a mapping V : ' — 2V, ¢t — V, such that

®* Ujer Vi =V

e for every edge uv € E thereisat € T with u,v e V, and

e for every v € Vtheset {t € T | v €V} is a subtree of T (i.e. it is connected).

The sets V, are called the bags of the tree-decomposition. Let t € T have neighbours N(t) C T'. The torso V), of V,
is the graph

Gviu |J Emnv
ueN(t) '

The graphs we will be dealing with do not in general allow tree decompositions in to bags of small size, but they

do have decompositions (T, V) for which (the torsos of) all bags V, have nice structural properties and for which
[V NV

s
is small for all s = t € T . The (maximal) adhesion of (T, V) is the maximum of IVS NV, foralls=te T.

Subgraphs, Minors, Topological Subgraphs
Let G = (V, E) and H = (W, F) be graphs. If W SV and F C E then we call H a subgraph of G and write H<G. In

other words, H can be obtained from G be removing vertices and edges.

We say that H is a minor of G, written H < G, if there are disjoint connected nonempty subgraphs (B )wew in G
such that for every edge xy € F there is an edge ab € E for some a € B_and b € B,. The sets (B,) €W are called
branch sets of the minor H. Equivalently, H < G if H can be obtained by repeatedly contracting edges in a subgraph
of G.

A graph H' is a subdivision of a graph H if it can be obtained from H be replacing edges with paths. If H' <G for
some subdivision H’ of H we say that H is a topological subgraph of G and write H <., G. In this case there is an
injective mapping  : W — V and independent paths P,(,),(») connecting ¢(u) to ¢(v) in G for uv € F. The vertices
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in the image of ¢ are called branch vertices. Obviously H <., G implies H < G, but the converse is not in
general true.

2.2 Logics

We will be dealing with finite structures over finite, relational vocabularies. Thus a vocabulary is a finite set of
relation symbols R, each with an associated arity a(R), and a o structure A consists of a finite set V (A) (the
universe) and relations R(A) A*® for all R € o . For vocabularies © € 7 and a ¢ structure A, a T-expansion B is
aT structure with V(4) = V(B) and R(B) = R(A) forallR € ¢.

The Gaifman graph of a structure A is the graph with vertex set V (A) and edge set
{xy | x and y appear together in some relation R(A)}.

When applying graph theoretic notions such as planarity to relational structures, we mean that the corresponding
Gaifman graph has the said property.

We use standard definitions for first order logic (FO), cf. [11, 10, 25]. In particular, L and T denote false and true,
respectively. Let o be a vocabulary and succ € o a new binary relation symbol. We set Tsuce := 0 U {succ} and
say that succ is interpreted by a successor relationina o__structure B if succ(B) is the graph of a cyclic permutation
on V (B). FO|[ogcc]-formula ¢ is called successor invariant if for all o structures A and all 0, expansions B, B’of
A in which succ is interpreted by a successor relation we have

BE¢ & By,

when all free variables of ¢ are interpreted identically in B and B’. In this case we say that A = ¢ if B |= ¢ for
one such expansion B (equivalently for all such expansions).

Note that another common definition of successor relation is to require succ (A) to be of the form

{(a, a), (a, ag), ..., (a,,a)}

for some enumeration V (4) :={a,, ..., a } of the elements of V (A). This differs from our definition in that we
require (a, a) € succ(A) as well, eliminating the somewhat artificial status of the first and last element. This
does not affect the expressive power of successor invariant FO, because a cyclic successor relation can be obtained
from a linear one using a simple FO interpretation and vice versa. Note that the quantifier rank of formulas is
slightly increased by this interpretation.

Order invariant first order logic is defined analogously to successor invariant FO, by allowing the use of a binary
relation < which is interpreted as a linear order and demanding the truth value of a formula to be independent
of the chosen linear order.

3. Model Checking for Successor Invariant First Order Logic

The main result of this paper is the following:
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Theorem 1. There is an algorithm A which takes as input
® A finite graph H,

® A finite o-structure A over some relational vocabulary , such that the Gaifman graph of
A does not contain H as a topological subgraph, and

® A successor invariant formula ¢ € FO[og,..] and checks whether

A
in time f(|V(H)|+ |¢|) - |[V(A)|° for some computable function f and ¢ € IN, both depending only on A.

Note that model checking for first order logic on nowhere dense classes of graphs is possible in time
f(e)) - |V(A)\1+€ for arbitrarily small € > 0 by a result of Grohe et al. [21]. Even though a representation of a
structure A in computer memory is likely to induce a linear order on the elements of V (A), making this linear
order or its successor relation accessible to the formula ¢ potentially complicates the model checking problem.
In particular, adding the cycle corresponding to this linear order (or any other cycle through the whole graph) to
A may introduce new shallow minors.

The proof of Theorem 1 is based on the following two lemmas:

Lemma 2. For every finite graph H there are constants i ¢ IN and ¢ € IN such that for every graph G which
does not contain H as a topological subgraph there is a graph ' and a k-walk w : [¢] — V(G') through G’ such
that @' is obtained from G by only adding edges and ' does not contain K, as a topological subgraph.
Furthermore, k, ¢, ¢’ and w can be computed, given G and H, in time f(|V (H)|) - |V(G)|dfor some computable
function fand d € N.

Lemma 3. Let 0 be a finite relational vocabulary, A a finite o-structure, and w : [{] — V(A)a k-walk through
the Gaifman graph of A.

Then there is a finite relational vocabulary o, and a first order fomula wgﬁgc(x7 y), both depending only on k,
and a(o U o}) expansion A’ of A which can be computed from A and w in polynomial time, such that
® The Gaifman graphs of A’ and A are the same,

. wgﬁlc defines a successor relation on A’.

Lemma 3 is taken from [13, Lemma 4.4] and has been proved there. We will prove Lemma 2 in Section 4. The
proof of Theorem 1 then is a combination of the above lemmas:

Proof of Theorem 1. Given a o -structure A, a successor invariant o,.. formula ¢ and a graph H which is not
a topological subgraph of the Gaifman graph of A, we first compute the Gaifman graph G of A. Using the algorithm
of Lemma 2 we then compute a k-walk w : [¢(] — V(A) through a supergraph ¢’ of G which excludes some clique
K. as a topological subgraph.
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Let E be a binary relation symbol. We expand A to a (¢ U { E})-structure A’ by setting
E(A") = {(w(@),w(i+1)) | i€ [t —1]}U{(w(l),w(1))}.
Then G’ is the Gaifman graph of A’, which by Lemma 2 excludes K, as a topological subgraph.

Using Lemma 3 we compute, for a suitable 7 2 o, a 7-expansion 4” of A’ and an FO[r|-formula (pgﬁic(;m Y)
which defines a successor relation on A”. We replace all atomic subformulae succ xy in ¢ by ngﬁgc($7 Y) obtaining
an FO[r]-formula ¥ such that

A & (ASEe

where S the successor relation defined by gpéﬁic. Note @éﬁie and 7 depend only on k, which in turn only depends

on H.

Since the Gaifman graph " of A”excludes H as a topological subgraph, there is a class C of graphs of bounded
expansion such that G € C. We can therefore use Dvorak et al.’s model checking algorithm [9] for FO on C to
check whether

A" |= ¢ in time linear in |A].

4. k-walks in Graphs with Excluded Topological Subgraphs

In this section we will prove Lemma 2. Given a graph G which excludes a graph H as a topological subgraph, as
a first step towards constructing a supergraph G’ with a k walk we compute a tree decomposition of G into
graphs which exclude H as a minor and graphs of almost bounded degree:

4. k-walks in Graphs with Excluded Topological Subgraphs

Theorem 4 (Theorem 4.1 in [22]). For every k € IN there exists a constant ¢ = ¢(k) € N such that the following
holds: If H is a graph on k vertices and G a graph which does not contain H as a topological subgraph, then
there is a tree decomposition (T, V) of G of adhesion at most c such that for all t € T

eV, has at most c vertices of degree larger than c, or

oV excludes K as a minor.

Furthermore, there is an algorithm that, given graphs G of size n and H of size k computes such a decomposition

in time f(k) - n®") for some computable function f : IN — N.

For the rest of this section we assume a graph G = (V, E) together with a treede composition (7, V) satisfying the
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properties of Theorem 4 as given. We will construct k-walks through each of the bags of this decomposition, for
a suitable k depending only on H, suitably adding edges within the bags in a way that will not create large
topological subgraphs. We will then connect these k-walks to obtain a k’-walk through all of G, carefully adding

further edges where necessary.

If s,t € T are neighbours in T we will connect the k-walk through V_and the k-walk through V, by joining them
along a suitably chosen vertex v € V, NV;. Since the resulting walk may visit v a total of k + 1 times, we must be

careful not to select the same vertex v more than a bounded number of times.

We first pick an arbitrary tree node r € 7 as the root of the tree decomposition. Notions such as parent and
sibling nodes are meant with respect to this root node r. For a node ¢ € 7 we define its adhesion a: C V: as

0 ift=r
Qg =

Vs NV, if s is the parent of ¢

By adding the necessary edges within the bags we may assume that each V,is identical to its torso, in other words

we may assume that G[a] is a clique for each t € T .

4.1 Computing the k-walks w,
Let s, t € T be nodes such that s is the parent of t. It may happen that as N «a; = () and in fact we can not bound

{s € T|veVs}
for all G excluding a fixed topological subgraph and all v € V(G). Since we are only allowed to visit each vertex

a bounded (for a fixed excluded topological subgraph) number of times, we first compute, for ¢ € 7, a k-walk w,

through a suitable supergraph of V; \ ay.

If ), contains only c vertices of degree larger than ¢ we choose an arbitrary enumeration v,,...,v, of V; \ a; and
add edges
U102, 0203, . . ., UVg—1V¢, Vg1

to G as far as they are not already present. This will increase the degree of each vertex by at most 2, so there are

still at most c vertices of degree larger than c + 2. We set

wy : [0 = Vg

T — v;
for these bags.

If, on the other hand, ), exludes a clique K as a minor, we invoke the following lemma on the graph V; \ a;:
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Lemma 5 (Lemma 3.3 in [13]). For every natural number c there are k,c¢ ¢ N such that: If G = (V,E) is a
graph which does not contain a K, minor, then there is a super graph G' = (V, E") obtained from G by possibly

adding edges such that G’ does not contain a K. minor and there is a k-walk w through G'. Moreover, G’ and
w can be found in polynomial time for fixed c.

Since we ignore the vertices in oz when computing the k-walk w:, it may happen that the resulting supergraph of

Y, does contain a K- minor. However, the largest possible clique minor is still of bounded size, because || < c:

Lemma 6. Let G = (V, E) be a graph such that K., < G, and let G © K. be the graph with vertex set V' =V U [c|
and edge set

E'=EU C?) U{va|veV,aeld}

In other words, G @ K, is the disjoint sum of G and K plus edges between all vertices of G and all vertices of K .
Then K., 2 G® K,.

Proof. Otherwise let X, . . ., Xc+ be the branch sets of a Ke+e'-minor in ¢ @ K. At most c of the sets contain
vertices of the added K clique. The remaining sets form the branch sets of a K, minor in G, contradicting the
assumption that . < G.

4.2 Connecting the k-walks

We still need to connect the k-walks through the individual bags of (T, V) to obtain a single £’-walk through the
whole graph, for some %’ to be determined below. This is the most complicated part of our construction, since we
must guarantee that no vertex is visited more than k_ times by the resulting walk, and that no large topological
clique subgraphs are created.

In the case of graphs excluding some fixed minor, the Graph Structure Theorem guarantees the existence of a
tree-decomposition into nearly embeddable graphs such that neighbouring bags intersect only in apices and
vertices lying on some face or vortex of their near embeddings, and this was used in [13] to select vertices from the
adhesion sets of bags in a suitable way. Since the decomposition theorem for graphs excluding a topological
minor does not provide this kind of information, we need a different approach here. Instead, our method for
selecting vertices along which to connect the k-walks relies on the fact that sparse graphs are degenerate, i.e.
every subgraph of a sparse graph contains some vertex of small degree.

In connecting the walks w¢, we will proceed down the tree T . At any point in the process we keep a set D C 7 and
a walk w such that

® D is a connected subset of T,
e the &’-walk has been constructed in (J,cp Vs,

eif sc€ Dand ¢ is a sibling of s then also s’ € D,
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e wis a k’-walk through U,cp Vi, and if s € D has a child ¢ € D, then the vertices in

Vs \ a are visited at most k + 1 times by w.
We start with D = {r} and w = w, where r is the root of T'. This is easily seen to satisfy all of the above conditions.
Now let s € D be a node whose children ¢, . .., t are notin D. We let

Ci:=ay, \ as
be the adhesion set of ¢, with all vertices of the adhesion set of s removed. If C; = () then ti can be made a sibling of
s (rather than a child), so we assume that all C,are nonempty. Since the properties of (T, V) are guaranteed for the
torsos of the bags we may assume that G[C] is a clique for each i and that w visits the vertices of |JC; at most k
+ 1 times.

It may happen that C, = C, for some i = j. To deal with this, assume that

Ci=Cy=---=0C), =C; fori > m.

For each i =1, ...,m we choose an edge u,v; € E(V,,) which is traversed by the walk w,, in the direction from u,
to v,at some point. We add edges

uivi+1 fori=1,...,m—1 and u,v,

and connect the walks w, , ... ,w, along these edges. Because wti is a walk through V;, \ o,
we have
Uz, Vg € th & 1=7

fori,j=1,...,m. To accomodate for the extra edges, we add the vertices u, and v, to V , and therefore to ¢, and C.
Since these vertices together with the added edges form an isolated cycle

ULV ULV « . . Uy U U
in V,, no new topological subgraphs are created by this. The maximal adhesion of (7, V) is still bounded by ¢ + 2.
Therefore we now assume that the cliques C, . . . ,C, are all distinct. It remains to find a function

finl =V

such that

f(i) € C; for all i, and
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|f7*(v)| < M for all v € V and some constant M depending only on H.

We define the function fiteratively on larger subsets of [n] as follows: Let G be the subgraph of G induced on the
union of all C:

e

(2

&=

We show that G contains a vertex of degree (in G') at most d, for some constant d depending only on the
constant ¢ from Theorem 4 (and therefore only on the excluded topological subgraph H we started with). If V
contains only c vertices of degree larger than c then this is true with d = c. If V, excludes some clique K, as a
minor we use

Figure 2. Connecting the individual k-walks

the fact that these graphs are d-degenerate for some d depending only on c. In fact, by Theorem 7.2.1 in [7] there

is a constant d such that if the average degree of (i is at least d, then K. <o, G and therefore K. < G.

In both cases there is a v € |J; C; which has degree at most d in G:. We want to bound the number of € [r] for
which v € C;. Since every clique C, has size at most ¢ + 2, and if v € C; then all elements of C \ {v} are neighbours

of v, there can be at most
d d d
M = ..
(o) + (1) =+ ()
many such C, and this bound only depends on c. It is therefore safe to define

f(@) := v for all ¢ € [n] such that v € C;.
We remove these cliques and iterate until no cliques remain.

Once the function f has been found we connect the walk w through (J,., V; with the walks w, through the bags
V.. Letw: [¢{] - V be the walk constructed so far. For each i € [n] let v; = f(i) € C; be the vertex chosen by f,
and let u; € V;, \ ay, be a neighbour of v.. If no such neighbour exists it is safe to create one by adding an edge

between v, and an arbitrary vertex of V), \ oy, We now extend the walk w by inserting the k-walk w, along the
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edge v,u, when v, is first visited by w. This increases the number of times v, and v, are visited by one each (cf.
Figure 2).

After inserting all walks w, , . .. ,w, we set
D:=D uUft,...,t}

and repeat the process until D = T'. Note that the resulting walk is a (k + M + 1) walk through the supergraph G’
of G obtained by adding edges to G.

4.3 Topological Subgraphs in G’

By now we have a supergraph G’ of G, obtained by only adding edges, and a k'= (k4 M +1)- walk w : [(] — V(G")
through this supergraph. Further more, there is a ¢’ = ¢/(H) depending only on (the size of) H and a tree
decomposition (7, V) of G’ such that if s,z € T then [V, NV;| < ¢ and forall ¢ € T

e ), Has at most ¢’ vertices of degree larger than ¢’ or

¢ ), Excludes K as a minor.

We show that this implies K. 5 <;,, G': Assume for a contradiction that K. 2 <¢op G, and let vy,...,v42 be
the branch vertices of a K, o-subdivision in G. Then there is a K5 such that ¢ € 7 Otherwise choose 7 < j and
t = ¢’ so that

v; € Vy \Vt/ and v; € Vi \Vt

Then, since the adhesion of (T, V) is at most ¢, there is a set § C V/ of size at most ¢ separating two branch
vertices, which is not possible in a (¢ 4- 2)-clique.

Now let ¢ € T'be a tree node for which V, contains all branch vertices. For i < j, let P,; be the path in G connecting
v, and v; . If all vertices on this path are in V, we are done. Otherwise we may shorten this path to get a path F};
connecting v,and v, in the torso of V. Thus

Kc’+2 jtop Vt'

But none of the bags V, can contain K. 2 as a topological subgraph: Since K./ 12 =top Vi implies K. 2 < V; which
in turn implies K., < ), none of the bags excluding K- as a minor can contain K., as a topological subgraph.
But if K/ 2 =<¢op V; then there must be at least ¢/ 1 2 vertices of degree at least ¢/ + 1, namely the branch vertices
of the image of a subdivision of K. .. We conclude that K. o <o, G-

5. Dense Graphs

While model checking for first order logic has been studied rather thoroughly for sparse graph classes, few
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results are known for dense graphs:

® On classes of graphs with bounded clique width (or, equivalently, bounded rank width; cf. [26]), model checking
even for monadic second order logic has been shown to be fpt by Courcelle et al. [5].

® More recently, model checking on coloured posets of bounded width has been shown to be in fpt for existential
FO by Bova et al. [3] and for all of FO by Gajarsky et al. [19].

Both of these results extend to order invariant FO, and therefore also to successorinvariant FO. For bounded
clique width, this has already been shown by Engelmann et al. in [14, Thm. 4.2]. For posets of bounded width we

give a proof here. We first review the necessary definitions:

Definition 7. A partially ordered set (poset) (P,<") is a set P with a reflexive, transitive and antisymmetric
binary relation (P, <?). A chain C' C P is a totally ordered subset, i.e. for all #,4 € C' one of 2 < yand y <” 2
holds. An antichain is a set A C P such that if z <” y for z,y € A then x = y. The width of (P,<”) is the
maximal size |A| of an antichain A C F. A coloured poset is a poset (P, <') together with a function X\: P — A

mapping P to some set A of colours. By ||P|| we denote the length of a suitable encoding of (P, <P).

We will need Dilworth’s Theorem, which relates the width of a poset to the minimum number of chains needed

to cover the poset:

Theorem 8 (Dilworth’s Theorem). Let (P, <?) be a poset. Then the width of (P, <) is equal to the minimum
number k of disjoint chains ¢;,... () C P needed to cover P, i.e. such that | J,C; = P.

A proof can be found in [7, Sec. 2.5]. Moreover, by a result of Felsner et al. [15], both the width w and a set of

chains C, . .. ,C covering P can be computed from (P, <p) in time O(w - || P|)).
With this, we are ready to prove the following;:

Theorem 9. There is an algorithm which, on input a coloured poset (p, <) with colouring \ : P — A and
an order invariant first order formula ¢ checks whether P |= ¢ in time f(w,|¢|) - ||P||* where w is the width
Of (Pa SP)'

Proof. Using the algorithm of [15], we compute a chain cover C1,...,C,, of (P,<). To obtain a linear order on

P, we just need to arrange the chains in a suitable order, which can be done by colouring the vertices with colours

N (v) = (A(v),j) for v € C;

dline.info/jmpt 151



Journal of Multimedia Processing and Technologies Volume 16 Number 3 September 2025

o<(z,y) = ( V (V@) = (i) AN () = <Ay,j>)v

Ao AgEA,
i<j

< V' XN@) = Qi) AN(Y) = (i) Az < y>
Ao Ag €A,
i€w]
defines a linear order on (P, <p) with colouring ). After substituting ¥< for < in ¢ we may apply Gajarsky et
al.’s algorithm [19] to check whether P = .

6. Conclusion and Further Research

We have shown that model checking for successor invariant first order logic is fixed parameter tractable on
classes of graphs excluding some fixed graph H as a topological subgraph. This extends previous results showing
tractibility on planar graphs [14] and graphs with excluded minors [13]. For dense graphs, we showed how the
recent model checking algorithm by Gajarsky et al. [19] can be adapted to order invariant FO.

This prompts for further generalisation in two ways: First, can we close the gap between plain first order logic
and its successor invariant counterpart? Next steps could be graph classes with bounded expansion or with
locally excluded minors. However, no structure theorem comparable to those of Robertson and Seymour and of
Grohe and Marx are known for these graph classes.

Another interesting open question is whether model checking for order-invariant first order logic is tractable on
any of the classes depicted in Figure 1. Since the Gaifman graph of a linearly ordered structure is a clique, there
is no hope of finding a “good” linear order which can be added to the input structure without destroying the
desirable properties of its Gaifman graph. As shown in [23], order invariant first order logic has a Gaifman style
locality property (see also [1]). It is, however, not at all clear how this could be turned in to an efficient model
checking algorithm. In particular, no variant of Gaifman normal form is known for this logic

References

[1] Anderson, Matthew., Melkebeek, van Dieter., Schweikardt, Nicole., Segoufin, Luc. (2012). ocality from
circuit lower bounds. SIAM Journal on Computing, 41(6), 1481—1523.

[2] Benedikt, Michael., Segoufin, Luc .(2009). Towards a characterization of order-invariant queries over tame
graphs. J. Symb. Log., 74(1), 168—-186.

[3] Bova, Simone., Ganian, Robert., Szeider, Stefan. (2015). Model checking existential logic on partially ordered
sets. ACM Transactions on Computational Logic (TOCL), 17(2), Article/ 10.

[4] Courcelle, Bruno. (1990). Graph rewriting: An algebraic and logic approach. In: J. van Leeuwen, editor,
Handbook of Theoretical Computer Science,(Vol./ 2, pp./ 194—242). Elsevier.

[5] Courcelle, Bruno., Makowsky, Johann., Rotics, Udi. (2000). Linear time solvable optimization problems

152 dline.info/jmpt



Journal of Multimedia Processing and Technologies Volume 16 Number 3 September 2025

on graphs of bounded clique-width. Theory of Computing Systems, 33(2), 125—150.

[6] Dawar, A., Grohe, M., Kreutzer, S. (2007). Locally excluding a minor. In Proceedings of the IEEE Sympo-
stum on Logic in Computer Science (LICS) (pp./ 270-279).

[7] Diestel, R. (2012). Graph Theory (4th ed.; Graduate Texts in Mathematics No./ 173). Springer.

[8] Downey, R., Fellows, M. R. (1998). Parameterized Complexity. Springer.

[9] Dvorak, Z., Kral, D., Thomas, R. (2013). Testing first order properties for subclasses of sparse graphs.
Journal of the ACM (JACM), 60(5), Article/ 36.

[10] Ebbinghaus, H. D., Flum, J. (1999). Finite Model Theory (2nd ed.; Perspectives in Mathematical Logic).
Springer.

[11] Ebbinghaus, H. D., Flum, J., Thomas, W. (1994). Mathematical Logic (2nd ed.). Springer.

[12] Eickmeyer, K., Elberfeld, M., Harwath, F. (2014). Expressivity and succinctness of order invariant logics
on depth bounded structures. In Mathematical Foundations of Computer Science (MFCS 2014) (Vol./ Part/ I,
pp./ 256—266). MFCS.

[13] Eickmeyer, Kord., Kawarabayashi, Ichi Ken, Kreutzer, Stephan. (2013). Model checking for successor-
invariant first order logic on minor closed graph classes. In: Proceedings of the 2013 28" Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’13, (pp./ 134—142). IEEE Computer Society.

[14] Engelmann, V., Kreutzer, S., Siebertz, S. (2012). First order and monadic second order model checking on
ordered structures. In Proceedings of the Symposium on Logic in Computer Science (LICS) (pp./ 275—284).

[15] Felsner, S., Raghavan, V., Spinrad, J. (2003). Recognition algorithms for orders of small width and graphs
of small Dilworth number. Order, 20(4), 351-364.

[16] Flum, Jorg., Grohe, Martin. (2001). Fixed parameter tractability, definability, and modelchecking. SIAM
J. Comput. 31(1), 113—145..

[17] Flum, Jorg., Grohe, Martin. (2006). Parameterized Complexity Theory. Springer. ISBN 3-54-029952-1.

[18] Frick, Markus., Grohe, Martin. (2001). Deciding first-order properties of locally treedecomposable
structures. Journal of the ACM, 48, 1148—1206.

[19] Gajarsky, Jakub., Hlineny, Petr., Lokshtanov, Daniel., Obdrzalek, Jan., Ordyniak, Sebastian., Ramanujan,
MS., Saurabh, Saket. (2015). Fo model checking on posets of bounded width. In: Foundations of Computer
Science (FOCS), 2015 IEEE 56" Annual Symposium on, P. 963—974. IEEE,

dline.info/jmpt 153



Journal of Multimedia Processing and Technologies Volume 16 Number 3 September 2025

[20] Grohe, Martin., graphs, Logic algorithms., Gradel, E., Wilke, T., Flum, J., editors, Logic (2007). In: Automata
History and Perspectives. Amsterdam University Press.

[21] Grohe, Martin., Kreutzer, Stephan., Siebertz, Sebastian. (2014). Deciding first-order properties of nowhere
dense graphs. In: Proceedings of the 46" Annual ACM Symposium on Theory of Computing, STOC V. 14, (pp./
89—98). ACM.

[22] Grohe, M., Marx, D. (2015). Structure theorem and isomorphism test for graphs with excluded topological
subgraphs. SIAM Journal on Computing, 44(1), 114—159.

[23] Grohe, M., Schwentick, T. (2000). Locality of order invariant first order formulas. ACM Transactions on
Computational Logic, 1(1), 112—130.

[24] Kreutzer, Stephan. (2011). Algorithmic meta-theorems. In: Javier Esparza, Christian Michaux, and Charles
Steinhorn, editors, Finite and Algorithmic Model Theory, London Mathematical Society Lecture Note Series,
chapter 5, P. 177—270. Cambridge University Press,.a preliminary version is available at Electronic Colloquium
on Computational Complexity (ECCC), TR09-147, http://www.eccc.uni-trier.de/report/2009/147.

[25] Libkin, Leonid. (2004). Elements of Finite Model Theory. Texts in Theoretical Computer Science. Spinger-
Verlag.

[26] Oum, Sang-Il., Seymour, Paul D. (2006). Approximating clique width and branch width. Journal of
Combinatorial Theory, Series B, 96, 514—528.

[27] Rossman, Benjamin. (2007). Successor invariant first order logic on finite structures. J. Symb. Log., V.
72(2), 601-618.

[28] Seese, Detlef. (1996). Linear time computable problems and first order descriptions. Mathematical
Structures in Computer Science, 96, 514—528.

[29] Tutte, T William. (2001). Graph Theory, volume 21 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press.

154 dline.info/jmpt



