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ABSTRACT

This paper establishes that model checking for successor invariant first order logic (FO) is fixed parameter

tractable on graph classes that exclude a fixed graph H as a topological subgraph. While model checking for

plain FO is well understood on sparse graph classes, extending these tractability results to successor invariant

FO where a successor relation is added but formulas must be invariant under its choice has been challenging.

The authors extend prior results on planar and minor excluded graphs by proving tractability for the broader

class of graphs excluding a topological subgraph. The proof utilises a decomposition theorem by Grohe and

Marx, which constructs ak walk in a super graph while preserving structural sparsity, thereby enabling the

simulation of the successor relation via FO interpretation. This allows application of existing FO model

checking algorithms on bounded expansion classes. The work narrows the gap between plain and successor

invariant FO, and also shows that model checking for order invariant FO is tractable on colored posets of

bounded width. The results contribute to algorithmic meta theorems, highlighting how structural graph

properties can be leveraged in logic based algorithm design.
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1. Introduction

Model checking is one of the core algorithmic problems in finite model theory: Given a sentence  in some logic
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L and a finite structure A, decide whether . The problem can be generalised by allowing   to have free

variables, in which case we would like to find instances  for which , or count the number of such

instances. One important application of this is the case where  is a database query and A the database to be

queried. The logic L from which  is drawn then serves as an abstract model of the database query language.

Commonly studied logics L include first order logic (FO) and monadic second order logic (MSO). Even for firstorder

logic the model checking problem is PSPACE complete already when restricted to structures A with two elements.

On the other hand, for every fixed FO formula , checking whether  can be done in time polynomial in the

size of A. This discrepancy between the query complexity, i.e. the complexity depending on the size of the query

 on the one hand and the data complexity, i.e. the complexity depending on the size of the structure A, on the

other hand suggests that the complexity of model checking problems is best studied in the framework of

parameterised complexity [8, 17].

In parameterised complexity, apart from the size n of the input problem (commonly the length of an appropri-

ate binary representation of  and A) a parameter k is introduced. For model checking problems the size of the

input formula is a common choice of parameter. The role of PTIME as the class of problems commonly consid-

ered to be tractable is played by the parameterised complexity class of fixed parameter tractable (fpt) prob-

lems, i.e. problems which can be solved in time

for some computable function f and a constant c. Note that the constant c must not depend on k, and indeed the

model-checking problem for first-order logic is unlikely to be fixed-parameter tractable.

In order to obtain tractable instances of model checking problems, one can restrict the space of admissible

input structures A, e.g. by requiring the Gaifman graph of A to possess certain graph theoretic properties such

as bounded degree or planarity. A long list of results have been obtained, starting with Courcelle’s famous

result that model checking for monadic second order logic is fixed parameter tractable on structures A with

bounded tree width [4].

Results of this form are often referred to as algorithmic meta theorems because many classical problems can

be rephrased as model checking problems by formalising them as a sentence  in a suitable logic. For example,

since the existence of a Hamiltonian cycle in a graph G of bounded tree width can be expressed by a sentence

 of monadic second order logic, Courcelle’s Theorem immediately implies that hamiltonicity can be checked

in polynomial time on such graphs. Besides giving a mere proof of tractability, algorithmic meta theorems

provide a unified treatment of how structural properties can be used in algorithm design. Cf. [20] and [24] for

excellent surveys of the field of algorithmic meta theorems.

The model checking problem for first order logic is particularly well studied and has been shown to be fixed

parameter tractable on a large number of graph classes: Starting with Seese’s result [28] for graphs of bounded

degree, Frick and Grohe showed tractability on classes of graphs with bounded tree width and, more generally,

locally bounded tree width [18], which in particular includes planar graphs. This has been generalised to graph

classes with excluded minors [16] and locally excluded minors [6]. Using rather different techniques, Dvorák

et al. gave a linear fpt model checking algorithm for first order logic on graphs of bounded expansion [9]. As a

generalisation of all the graph classes mentioned so far, Grohe et al. have shown in [21] that model checking for
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first order logic is possible in near linear fpt on all nowhere dense graph classes. While the tractability of model

checking for first order logic on sparse graphs is well understood, few results are available for classes of dense

graphs. Recently, Gajarský et al.

Figure 1. Sparse classes of graphs on which model-checking for first order logic is tractable

gave an fpt algorithm for FO model checking on posets of bounded width, which we extend to order invariant FO

in Section 5.

Excluded Topological Subgraphs

A more general concept than that of a class of graphs excluding some graph H as a minor is that of graphs which

exclude H as a topological subgraph. This is the concept originally used by Kuratowski in his famous result that

a graph is planar if, and only if, it does not contain K
5
 nor K

3,3 
as a topological subgraph (cf. Section 4.4 in [7]).

Recently, Grohe and Marx have extended Robertson and Seymour’s graph structure theorem to classes of graphs

excluding a fixed graph H as a topological subgraph [22]: These graphs can be decomposed along small separators

into parts which exclude H as a minor and parts in which all but a bounded number of vertices have small

degree.

Since every topological subgraph of a graph G is also a minor of G, if a class C of graphs excludes some graph H

as a topological subgraph then it also excludes H as a minor. The converse is not true, however, since every 3-

regular graph excludes K
5
 as a topological subgraph, but for every r   there is a 3-regular graph containing

K
r
 as a minor. On the other hand, graph classes with excluded topological subgraphs have bounded expansion,

so model-checking for first order logic is tractable on these classes by Dvorák et al.’s result.

Figure 1 shows an overview of sparse graph classes on which model checking for first order logic is tractable.

Note that a class C of graphs excludes some finite graph H as a topological subgraph if, and only if, there is an

r  such that C excludes the clique K
r
 as a topological subgraph.

Successor-Invariant Logic

We investigate the question in how far tractability results for first order model checking carry over to successor

invariant first order logic, i.e. first order logic enriched by a binary successor relation, restricted to formulae

whose truth value does not depend on the specific choice of successor relation. Linear representations of an

input structure A to a model checking algorithm usually induce some linear order on the elements of V (A), and it

seems natural to make this linear order (or at least its successor relation) accessible to the query formula. This
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may, however, break the structural properties of the Gaifman graph of A needed by the model checking algorithm.

Having access, even invariantly, to a successor relation provably increases the expressive power of FO on finite

structures, as shown in [27]. However, all known classes of structures separating FO from order invariant or

successor invariant FO contain large cliques, and in fact on trees [2] and on structures of bounded tree depth

[12] even order invariant FO has the same expressive power as plain FO. On all the classes depicted in Figure 1,

this question is still open, prompting for tractability results for successor invariant or even order invariant FO on

these classes.

Previous work investigating the complexity of model checking for successor invariant first order logic to that of

plain first order logic has been carried out by [14], who showed tractibility on planar graphs, and [13], who

showed tractability on graph classes with excluded minors. Here we extend these results further by generalising

from excluded minors to excluded topological subgraphs, further narrowing the gap between what is known for

first-order logic and succesor invariant first order logic.

Note that for first order logic, the result of [21] is optimal if one restricts attention to classes of graphs which are

closed under taking subgraphs. In fact, Kreutzer has shown in [24] that under the complexity theoretic assumption

that FPT W[1], if model checking for FO on some subgraph closed class C of graphs is fixed parameter tractable,

then C is nowhere dense (see also Section 1.4 of [9]). Examples of classes of graphs on which model checking is

fpt even for monadic second order logic but which are not nowhere dense are graphs of bounded clique width

[5].

2. Preliminaries and Notation

For a natural number n we let [n] denote the interval {1, . . . , n}.

2.1 Graphs

We will be dealing with finite simple (i.e. loop-free and without multiple edges) undirected graphs, cf. [7, 29] for

an in-depth introduction. Thus a graph G = (V, E) consists of some finite set V of vertices and a set  2  of

edges. We write uv  E for {u, v}  E. For a set U  V we denote the induced subgraph on U by G[U], i.e. the

graph (U, E) with

.

For ease of notation we occasionally blur the distinction between a set U of vertices and the subgraph induced on

this set. The union G  H of two graphs G = (V, E) and H = (U, F) is defined as the graph (U   V, E  F). For a set

U of vertices, K[U] denotes the complete graph (or clique) with vertex set U. For k , we denote the k-clique

K[[k]] by K
k
.

A walk is a sequence of vertices v
1
, . . . , V , alternatively written as a function v : , such that 

for all i = 1, . . . , . A path is a walk in which v
i
 = v

j
 for i = j, except possibly v

1
 = , in which case the path is

called a cycle. The vertices v
2
, . . . ,  are called inner vertices. Two paths v

1
, . . . , and w

1
, . . . ,w

m
 are called

independent if neither of them contains an inner vertex of the other, i.e. if v
i
 = w

j 
implies  and .
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For k  1, a k-walk through a graph G = (V, E) is a surjective walk w :  such that

for all v V . A 1-walk is also called a Hamiltonian path.

Tree-Decompositions

A tree is a connected acyclic graph. A tree-decomposition of a graph G = (V, E) is a pair (T, V) consisting of a tree

T = (T, F) and a mapping V :  such that



for every edge uv  E there is a t  T with u, v  V
t
, and

 for every v  V the set {t  T | v V
t
} is a subtree of T (i.e. it is connected).

The sets V
t
 are called the bags of the tree-decomposition. Let t  T have neighbours N(t)  T . The torso  of V

t

is the graph

.

The graphs we will be dealing with do not in general allow tree decompositions in to bags of small size, but they

do have decompositions (T, V) for which (the torsos of) all bags V
t
 have nice structural properties and for which

is small for all s = t  T . The (maximal) adhesion of (T, V) is the maximum of  for all s = t  T .

Subgraphs, Minors, Topological Subgraphs

Let G = (V, E) and H = (W, F) be graphs. If W V and F E then we call H a subgraph of G and write H G. In

other words, H can be obtained from G be removing vertices and edges.

We say that H is a minor of G, written H  G, if there are disjoint connected nonempty subgraphs (B
w
)  in G

such that for every edge xy  F there is an edge ab  E for some a  B
x
 and b  B

y
. The sets (B

w
)

w
W are called

branch sets of the minor H. Equivalently, H G if H can be obtained by repeatedly contracting edges in a subgraph

of G.

A graph  is a subdivision of a graph H if it can be obtained from H be replacing edges with paths. If G for

some subdivision  of H we say that H is a topological subgraph of G and write H  G. In this case there is an

injective mapping  and independent paths  connecting  in G for . The vertices
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in the image of are called branch vertices. Obviously  implies H  G, but the converse is not in

general true.

2.2 Logics

We will be dealing with finite structures over finite, relational vocabularies. Thus a vocabulary  is a finite set of

relation symbols R, each with an associated arity a(R), and a  structure A consists of a finite set V (A) (the

universe) and relations R(A)  Aa(R) for all R  . For vocabularies  and a  structure A, a -expansion B is

a  structure with V (A) = V (B) and R(B) = R(A) for all R .

The Gaifman graph of a structure A is the graph with vertex set V (A) and edge set

{xy | x and y appear together in some relation R(A)}.

When applying graph theoretic notions such as planarity to relational structures, we mean that the corresponding

Gaifman graph has the said property.

We use standard definitions for first order logic (FO), cf. [11, 10, 25]. In particular, and denote false and true,

respectively. Let  be a vocabulary and succ   a new binary relation symbol. We set  and

say that succ is interpreted by a successor relation in a 
succ

structure B if succ(B) is the graph of a cyclic permutation

on V (B). formula  is called successor invariant if for all  structures A and all 
succ

 expansions B, of

A in which succ is interpreted by a successor relation we have

when all free variables of  are interpreted identically in B and . In this case we say that  for

one such expansion B (equivalently for all such expansions).

Note that another common definition of successor relation is to require succ (A) to be of the form

{(a
1
, a

2
), (a

2
, a

3
), . . . , (a

n-1
, a

n
)}

for some enumeration V (A) := {a
1
, . . . , a

n
} of the elements of V (A). This differs from our definition in that we

require (a
n
, a

1
)  succ(A) as well, eliminating the somewhat artificial status of the first and last element. This

does not affect the expressive power of successor invariant FO, because a cyclic successor relation can be obtained

from a linear one using a simple FO interpretation and vice versa. Note that the quantifier rank of formulas is

slightly increased by this interpretation.

Order invariant first order logic is defined analogously to successor invariant FO, by allowing the use of a binary

relation  which is interpreted as a linear order and demanding the truth value of a formula to be independent

of the chosen linear order.

3. Model Checking for Successor Invariant First Order Logic

The main result of this paper is the following:
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Theorem 1. There is an algorithm A which takes as input

 A finite graph H,

 A finite -structure A over some relational vocabulary , such that the Gaifman graph of

A does not contain H as a topological subgraph, and

 A successor invariant formula  FO[ ]  and checks whether

in time  for some computable function f and c , both depending only on .

Note that model checking for first order logic on nowhere dense classes of graphs is possible in time

 for arbitrarily small  by a result of Grohe et al. [21]. Even though a representation of a

structure A in computer memory is likely to induce a linear order on the elements of V (A), making this linear

order or its successor relation accessible to the formula  potentially complicates the model checking problem.

In particular, adding the cycle corresponding to this linear order (or any other cycle through the whole graph) to

A may introduce new shallow minors.

The proof of Theorem 1 is based on the following two lemmas:

Lemma 2. For every finite graph H there are constants  and  such that for every graph G which

does not contain H as a topological subgraph there is a graph  and a k-walk w : through such

that is obtained from G by only adding edges and  does not contain K
c
 as a topological subgraph.

Furthermore, k, c,  and w can be computed, given G and H, in time  for some computable

function f and .

Lemma 3. Let  be a finite relational vocabulary, A a finite -structure, and a k-walk through

the Gaifman graph of A.

Then there is a finite relational vocabulary  and a first order fomula , both depending only on k,

and a  expansion of A which can be computed from A and w in polynomial time, such that

 The Gaifman graphs of  and A are the same,

 defines a successor relation on .

Lemma 3 is taken from [13, Lemma 4.4] and has been proved there. We will prove Lemma 2 in Section 4. The

proof of Theorem 1 then is a combination of the above lemmas:

Proof of Theorem 1. Given a  -structure A, a successor invariant  formula  and a graph H which is not

a topological subgraph of the Gaifman graph of A, we first compute the Gaifman graph G of A. Using the algorithm

of Lemma 2 we then compute a k-walk  through a supergraph  of G which excludes some clique

 as a topological subgraph.
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Let E be a binary relation symbol. We expand A to a -structure  by setting

.

Then  is the Gaifman graph of , which by Lemma 2 excludes K
c
 as a topological subgraph.

Using Lemma 3 we compute, for a suitable , a -expansion  of  and an -formula 

which defines a successor relation on . We replace all atomic subformulae succ xy in  by   obtaining

an FO[ ]-formula  such that

where S the successor relation defined by . Note  and  depend only on k, which in turn only depends

on H.

Since the Gaifman graph  of excludes H as a topological subgraph, there is a class C of graphs of bounded

expansion such that . We can therefore use Dvorák et al.’s model checking algorithm [9] for FO on C to

check whether

 in time linear in |A|.

4. k-walks in Graphs with Excluded Topological Subgraphs

In this section we will prove Lemma 2. Given a graph G which excludes a graph H as a topological subgraph, as

a first step towards constructing a supergraph  with a k walk we compute a tree decomposition of G into

graphs which exclude H as a minor and graphs of almost bounded degree:

4. k-walks in Graphs with Excluded Topological Subgraphs

Theorem 4 (Theorem 4.1 in [22]). For every k  there exists a constant c =  such that the following

holds: If H is a graph on k vertices and G a graph which does not contain H as a topological subgraph, then

there is a tree decomposition (T, V) of G of adhesion at most c such that for all  t  T

  has at most c vertices of degree larger than c, or

  excludes K
c
 as a minor.

Furthermore, there is an algorithm that, given graphs G of size n and H of size k computes such a decomposition

in time  for some computable function .

For the rest of this section we assume a graph G = (V, E) together with a treede composition (T, V) satisfying the
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properties of Theorem 4 as given. We will construct k-walks through each of the bags of this decomposition, for

a suitable k depending only on H, suitably adding edges within the bags in a way that will not create large

topological subgraphs. We will then connect these -walks to obtain a -walk through all of G, carefully adding

further edges where necessary.

If  T are neighbours in T we will connect the k-walk through V
s 
and the k-walk through V

t 
by joining them

along a suitably chosen vertex . Since the resulting walk may visit v a total of k + 1 times, we must be

careful not to select the same vertex v more than a bounded number of times.

We first pick an arbitrary tree node r  as the root of the tree decomposition. Notions such as parent and

sibling nodes are meant with respect to this root node r. For a node  we define its adhesion  as

By adding the necessary edges within the bags we may assume that each V
t 
is identical to its torso, in other words

we may assume that  is a clique for each t .

4.1 Computing the k-walks w
t

Let s, t  T be nodes such that s is the parent of t. It may happen that  and in fact we can not bound

for all G excluding a fixed topological subgraph and all . Since we are only allowed to visit each vertex

a bounded (for a fixed excluded topological subgraph) number of times, we first compute, for , a k-walk w
t

through a suitable supergraph of .

If  contains only c vertices of degree larger than c we choose an arbitrary enumeration  and

add edges

to G as far as they are not already present. This will increase the degree of each vertex by at most 2, so there are

still at most c vertices of degree larger than c + 2. We set

for these bags.

If, on the other hand,  exludes a clique  as a minor, we invoke the following lemma on the graph 
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Lemma 5 (Lemma 3.3 in [13]). For every natural number c there are  such that: If G = (V,E) is a

graph which does not contain a K
c
 minor, then there is a super graph  = (V, ) obtained from G by possibly

adding edges such that  does not contain a  minor and there is a k-walk w through . Moreover, and

w can be found in polynomial time for fixed c.

Since we ignore the vertices in  when computing the k-walk , it may happen that the resulting supergraph of

 does contain a  minor. However, the largest possible clique minor is still of bounded size, because 

Lemma 6. Let G = (V, E) be a graph such that , and let be the graph with vertex set 

and edge set

In other words,  is the disjoint sum of G and K
c
 plus edges between all vertices of G and all vertices of K

c
.

Then .

Proof. Otherwise let X
1
, . . . , X  be the branch sets of a K -minor in . At most c of the sets contain

vertices of the added K
c
 clique. The remaining sets form the branch sets of a K

c
 minor in G, contradicting the

assumption that .

4.2 Connecting the k-walks

We still need to connect the k-walks through the individual bags of (T, V) to obtain a single -walk through the

whole graph, for some  to be determined below. This is the most complicated part of our construction, since we

must guarantee that no vertex is visited more than k
0
 times by the resulting walk, and that no large topological

clique subgraphs are created.

In the case of graphs excluding some fixed minor, the Graph Structure Theorem guarantees the existence of a

tree-decomposition into nearly embeddable graphs such that neighbouring bags intersect only in apices and

vertices lying on some face or vortex of their near embeddings, and this was used in [13] to select vertices from the

adhesion sets of bags in a suitable way. Since the decomposition theorem for graphs excluding a topological

minor does not provide this kind of information, we need a different approach here. Instead, our method for

selecting vertices along which to connect the k-walks relies on the fact that sparse graphs are degenerate, i.e.

every subgraph of a sparse graph contains some vertex of small degree.

In connecting the walks , we will proceed down the tree T . At any point in the process we keep a set  and

a walk w such that

 D is a connected subset of T,

 the -walk has been constructed in ,

 if s  D and  is a sibling of s then also ,
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 w is a -walk through , and if  has a child , then the vertices in

 are visited at most k + 1 times by w.

We start with D = {r} and w = w
r
, where r is the root of T . This is easily seen to satisfy all of the above conditions.

Now let s  D be a node whose children t
1
, . . . , t

n
 are not in D. We let

be the adhesion set of t
i
 with all vertices of the adhesion set of s removed. If C

i
 =  then ti can be made a sibling of

s (rather than a child), so we assume that all C
i 
are nonempty. Since the properties of (T, V) are guaranteed for the

torsos of the bags we may assume that G[C
i
] is a clique for each i and that w visits the vertices of  at most k

+ 1 times.

It may happen that C
i
 = C

j
 for some i = j. To deal with this, assume that

.

For each i = 1, . . . ,m we choose an edge  which is traversed by the walk w
ti
 in the direction from u

i

to v
i 
at some point. We add edges

and connect the walks w
t1
 , . . . ,w

tm
 along these edges. Because wti is a walk through 

we have

for i, j = 1, . . . ,m. To accomodate for the extra edges, we add the vertices u
i
 and v

i
 to V

s
, and therefore to t

i
 and C

i
.

Since these vertices together with the added edges form an isolated cycle

in V
s
, no new topological subgraphs are created by this. The maximal adhesion of (T, V) is still bounded by c + 2.

Therefore we now assume that the cliques C
1
, . . . ,C

n
 are all distinct. It remains to find a function

such that

 for all i, and
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 for all  and some constant M depending only on H.

We define the function f iteratively on larger subsets of [n] as follows: Let  be the subgraph of G induced on the

union of all C
i
:

We show that   contains a vertex of degree (in ) at most d, for some constant d depending only on the

constant c from Theorem 4 (and therefore only on the excluded topological subgraph H we started with). If 

contains only c vertices of degree larger than c then this is true with d = c. If V
t
 excludes some clique K

c
 as a

minor we use

Figure 2. Connecting the individual k-walks

the fact that these graphs are d-degenerate for some d depending only on c. In fact, by Theorem 7.2.1 in [7] there

is a constant d such that if the average degree of  is at least d, then  and therefore .

In both cases there is a  which has degree at most d in . We want to bound the number of  for

which . Since every clique C
i
 has size at most c + 2, and if  then all elements of C \ {v} are neighbours

of v, there can be at most

many such C
i
, and this bound only depends on c. It is therefore safe to define

.

We remove these cliques and iterate until no cliques remain.

Once the function f has been found we connect the walk w through  with the walks w
ti
 through the bags

V
ti
 . Let  be the walk constructed so far. For each  be the vertex chosen by f,

and let  be a neighbour of v
i
. If no such neighbour exists it is safe to create one by adding an edge

between v
i
 and an arbitrary vertex of . We now extend the walk w by inserting the k-walk w

ti
 along the
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edge v
i 
u

i
 when v

i
 is first visited by w. This increases the number of times v

i
 and u

i
 are visited by one each (cf.

Figure 2).

After inserting all walks w
t1
 , . . . ,w

tn 
we set

D := D {t
1
, . . . , t

n
}

and repeat the process until D = T . Note that the resulting walk is a (k + M + 1) walk through the supergraph 

of G obtained by adding edges to G.

4.3 Topological Subgraphs in G
By now we have a supergraph of G, obtained by only adding edges, and a = walk 

through this supergraph. Further more, there is a  depending only on (the size of) H and a tree

decomposition  of  such that if  then  and for all 

  Has at most  vertices of degree larger than  or

  Excludes  as a minor.

We show that this implies : Assume for a contradiction that  and let  be

the branch vertices of a -subdivision in G. Then there is a  such that  Otherwise choose  and

 so that

Then, since the adhesion of (T, V) is at most , there is a set  of size at most  separating two branch

vertices, which is not possible in a -clique.

Now let t T be a tree node for which V
t
  contains all branch vertices. For , let  be the path in G connecting

v
i
 and v

j
 . If all vertices on this path are in V

t
 we are done. Otherwise we may shorten this path to get a path 

connecting v
i 
and v

j
 in the torso of V

t
. Thus

.

But none of the bags V
t
 can contain K  as a topological subgraph: Since  implies which

in turn implies  none of the bags excluding  as a minor can contain  as a topological subgraph.

But if  then there must be at least  vertices of degree at least , namely the branch vertices

of the image of a subdivision of . We conclude that .

5. Dense Graphs

While model checking for first order logic has been studied rather thoroughly for sparse graph classes, few
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results are known for dense graphs:

 On classes of graphs with bounded clique width (or, equivalently, bounded rank width; cf. [26]), model checking

even for monadic second order logic has been shown to be fpt by Courcelle et al. [5].

 More recently, model checking on coloured posets of bounded width has been shown to be in fpt for existential

FO by Bova et al. [3] and for all of FO by Gajarský et al. [19].

Both of these results extend to order invariant FO, and therefore also to successorinvariant FO. For bounded

clique width, this has already been shown by Engelmann et al. in [14, Thm. 4.2]. For posets of bounded width we

give a proof here. We first review the necessary definitions:

Definition 7. A partially ordered set (poset)  is a set P with a reflexive, transitive and antisymmetric

binary relation . A chain  is a totally ordered subset, i.e. for all  one of and 

holds. An antichain is a set  such that if  for  A then x = y. The width of  is the

maximal size |A| of an antichain . A coloured poset is a poset  together with a function  

mapping P to some set  of colours. By  we denote the length of a suitable encoding of .

We will need Dilworth’s Theorem, which relates the width of a poset to the minimum number of chains needed

to cover the poset:

Theorem 8 (Dilworth’s Theorem). Let  be a poset. Then the width of  is equal to the minimum

number k of disjoint chains  needed to cover P, i.e. such that .

A proof can be found in [7, Sec. 2.5]. Moreover, by a result of Felsner et al. [15], both the width w and a set of

chains C
1
, . . . ,C

w
 covering P can be computed from  in time .

With this, we are ready to prove the following:

Theorem 9. There is an algorithm which, on input a coloured poset  with colouring  and

an order invariant first order formula  checks whether  in time  where w is the width

of .

Proof. Using the algorithm of [15], we compute a chain cover . To obtain a linear order on

P, we just need to arrange the chains in a suitable order, which can be done by colouring the vertices with colours

Then
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defines a linear order on  with colouring . After substituting  for  in  we may apply Gajarský et

al.’s algorithm [19] to check whether .

6. Conclusion and Further Research

We have shown that model checking for successor invariant first order logic is fixed parameter tractable on

classes of graphs excluding some fixed graph H as a topological subgraph. This extends previous results showing

tractibility on planar graphs [14] and graphs with excluded minors [13]. For dense graphs, we showed how the

recent model checking algorithm by Gajarský et al. [19] can be adapted to order invariant FO.

This prompts for further generalisation in two ways: First, can we close the gap between plain first order logic

and its successor invariant counterpart? Next steps could be graph classes with bounded expansion or with

locally excluded minors. However, no structure theorem comparable to those of Robertson and Seymour and of

Grohe and Marx are known for these graph classes.

Another interesting open question is whether model checking for order-invariant first order logic is tractable on

any of the classes depicted in Figure 1. Since the Gaifman graph of a linearly ordered structure is a clique, there

is no hope of finding a “good” linear order which can be added to the input structure without destroying the

desirable properties of its Gaifman graph. As shown in [23], order invariant first order logic has a Gaifman style

locality property (see also [1]). It is, however, not at all clear how this could be turned in to an efficient model

checking algorithm. In particular, no variant of Gaifman normal form is known for this logic
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