Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-898X
Online ISSN:
0976-8998


  About JNT
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of Networking Technology
 

Detecting Travel Nature of Individuals during Movements Using Cluster-Based Model
Ye Hong, Yanan Xin, Dominik Bucher, Martin Raubal, Henry Martin
Institute of Cartography and Geoinformation, ETH Zurich, Switzerland., Institute of Advanced Research in Artificial Intelligence (IARAI), Austria Institute of Cartography and Geoinformation, ETH Zurich, Switzerland
Abstract: While travelling from place to places movement data is recorded that gives insights and the long-term change of individual travel behaviour. In this work we advocate a clustering-based framework to identify travel behaviour patterns and detect potential change periods on the individual level. Initially we draw the significant visits that outline individual characteristic movement. Next after using the trip data, and trip duration as travel behaviour dimensions, we compute the similarities of trips and group them into clusters using hierarchical clustering. The trip clusters represent dimensions of travel behaviours, and the change of their relative proportions over time reflect the development of travel preferences. Then we employed two models to find changes in travel behaviour patterns namely the Herfindahl- Hirschman index-based method and the sliding window-based method. We have experimented the design with the data from a large-scale longitudinal GPS tracking data study in which users had access to a Mobility-as-a-Service (MaaS) offer. The methods successfully identify significant travel behaviour changes for users. We found that the proposed design for behaviour change detection provides valuable insights for travel demand management and evaluating people’s reactions to sustainable mobility options.
Keywords: Human Mobility, Travel Behaviour, Change Detection, Trip Clustering Detecting Travel Nature of Individuals during Movements Using Cluster-Based Model
DOI:https://doi.org/10.6025/jnt/2021/12/4/123-135
Full_Text   PDF 842 KB   Download:   157  times
References:

[1] Alessandretti, Laura., Aslak, Ulf., Lehmann, Sune. (2020). The scales of human mobility. Nature, 587(7834) 402–407, 2020. doi:10.1038/s41586-020-2909-1.
[2] Alessandretti, Laura., Sapiezynski, Piotr., Sekara, Vedran., Lehmann, Sune., Baronchelli, Andrea. (2018). Evidence for a conserved quantity in human mobility. Nature Human Behaviour, 2 (7) 485–491. doi:10.1038/s41562-018-0364-x.
[3] Axhausen, Kay W. (2007). Definition Of Movement and Activity For Transport Modelling. In Handbook of Transport Modelling, volume 1, pages 329–343. Elsevier. doi:10.1108/ 9780857245670-016.
[4] Bai, Jushan., Perron, Pierre. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18 (1) 1–22. doi:10.1002/jae.659.
[5] van Brakel, J.P.G. (2019). Robust peak detection algorithm (using z-scores), 2019. URL: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtimetimeseries- data.
[6] Bucher, Dominik., Martin, Henry., Hamper, Jannik., Jaleh, Atefeh., Becker, Henrik., Zhao, Pengxiang., Raubal, Martin.
(2020). Exploring Factors that Influence Individuals’ Choice Between Internal Combustion Engine Cars and Electric Vehicles. AGILE: GIScience Series, 1:1–23. doi:10.5194/agile-giss-1-2-2020.
[7] Chandola, Varun., Banerjee, Arindam., Kumar, Vipin. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):1–58. doi:10.1145/1541880.1541882.
[8] Chen, Jie., Wu, ZhongCheng., Zhang, Jun. (2019). Driver identification based on hidden feature extraction by using adaptive nonnegativity-constrained autoencoder. Applied Soft Computing, 74: 1–9. doi:10.1016/j.asoc.2018.09.030.
[9] Haas, MC De., Scheepers, CE., Harms, LWJ., Kroesen, M. (2018). Travel pattern transitions: Applying latent transition analysis within the mobility biographies framework. Transportation Research Part A: Policy and Practice, 107:140–151. doi:10.1016/j.tra.2017.11.007.
[10] Vos, Jonas De., Ettema, Dick., Witlox, Frank. (2018). Changing travel behaviour and attitudes following a residential relocation. Journal of Transport Geography, 73:131–147. doi: 10.1016/j.jtrangeo.2018.10.013.
[11] Vos, Jonas De., Witlox, Frank. (2013). Transportation policy as spatial planning tool; reducing urban sprawl by increasing travel costs and clustering infrastructure and public transportation. Journal of Transport Geography, 33:117–125. doi:10.1016/j.jtrangeo.2013.09.014.
[12] Durand, Anne., Harms, Lucas., Hoogendoorn-Lanser, Sascha., Zijlstra, Toon. (2018). Mobility-asa- Service and changes in travel preferences and travel behaviour: a literature review. KiM Netherlands Institute for Transport Policy Analysis. doi:10.13140/RG.2.2.32813. 33760.
[13] Hariharan, Ramaswamy., Toyama, Kentaro. (2004). Project Lachesis: Parsing and Modeling Location Histories. In Geographic Information Science, pages 106–124. Springer Berlin Heidelberg. doi:10.1007/978-3-540-30231-5_8.
[14] Heinen, Eva., Chatterjee, Kiron. (2015). The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey. Transportation Research Part A: Policy and Practice, 78:266–282. doi:10.1016/ j.tra.2015.05.015.
[15] Heinen, Eva., Ogilvie, David. (2016). Variability in baseline travel behaviour as a predictor of changes in commuting by active travel, car and public transport: a natural experimental study. Journal of transport & health, 3 (1) 77–85. doi:10.1016/ j.jth.2015.11.002.
[16] Hensher, David A., Mulley, Corinne., Ho, Chinh., Wong, Yale., Smith, Göran., and John D Nelson. (2020). Understanding Mobility as a Service (MaaS): Past, Present and Future. Elsevier, 2020. doi:10.1016/C2019-0-00508-0.
[17] Huang, Haosheng., Gartner, Georg., Krisp, Jukka M., Raubal, Martin., Weghe, Nico Van de. (2018). Location based services: ongoing evolution and research agenda. Journal of Location Based Services, 12 (2) 63–93. doi:10.1080/ 17489725.2018.1508763.
[18] Jain, Taru., Johnson, Marilyn., Rose, Geoffrey. (2020). Exploring the process of travel behaviour change and mobility trajectories associated with car share adoption. Travel Behaviour and Society, 18: 117–131. doi:10.1016/j.tbs.2019.10.006.
[19] Järv, Olle., Ahas, Rein., Witlox, Frank. (2014). Understanding monthly variability in human activity spaces: A twelvemonth study using mobile phone call detail records. Transportation Research Part C: Emerging Technologies, 38: 122– 135, doi:10.1016/j.trc.2013.11.003.
[20] Jonietz, David., Bucher, Dominik. (2018). Continuous Trajectory Pattern Mining for Mobility Behaviour Change Detection. In Progress in Location Based Services 2018, pages 211–230. Springer International Publishing, 2018. doi:10.1007/ 978-3-319-71470-7_11.
[21] Kaufman, Leonard., Rousseeuw, Peter J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis, volume 344. John Wiley & Sons, doi:10.1002/9780470316801.
[22] Kitamura, Ryuichi., Yamamoto, Toshiyuki., Fujii, Satoshi. (2003). The effectiveness of panels in detecting changes in discrete travel behavior. Transportation Research Part B: Methodological, 37 (2) 191–206, 2003. doi:10.1016/S0965-8564(01)00036-2.
[23] Li, Meng., Zou, Mingqiao., Li, Huiping. (2019). Urban Travel Behavior Study Based on Data Fusion Model. In Data- Driven Solutions to Transportation Problems, pages 111–135. Elsevier, 2019. doi:10.1016/B978-0-12-817026-7.00005- 9.
[24] Lin, Tao., Wang, Donggen., Zhou, Meng. (2018). Residential relocation and changes in travel behavior: what is the role of social context change? Transportation Research Part A: Policyand Practice, 111:360–374. doi:10.1016/j.tra.2018.03.015.
[25] Lund, Robert., Wang, Xiaolan L ., Lu, Qi Qi., Reeves, Jaxk., Gallagher, Colin., Feng, Yang. (2007). Changepoint Detection in Periodic and Autocorrelated Time Series. Journal of Climate, 20(20) 5178–5190. doi:10.1175/JCLI4291.1.
[26] Martin, Henry., Becker, Henrik., Bucher, Dominik., Jonietz, David., Raubal, Martin., Axhausen, Kay W. (2019). Begleitstudie SBB Green Class - Abschlussbericht. Working Paper No. 1439, Institute for Transport Planning and Systems, ETH Zürich, 2019. doi:10.3929/ethz-b-000353337.
[27] Mölenberg, Famke JM, Panter, Jenna., Burdorf, Alex., Lenthe, Frank J van. (2019). A systematic review of the effect of infrastructural interventions to promote cycling: strengthening causal inference from observational data. International Journal of Behavioral Nutrition and Physical Activity, 16 (1) 1–31, 2019. doi:10.1186/s12966-019-0850-1.
[28] Nobis, Claudia. (2007). Multimodality: Facets and Causes of Sustainable Mobility Behavior. Transportation Research Record, 2010 (1), 35–44, 2007. doi:10.3141/2010-05.
[29] Oostendorp, Rebekka., Gebhardt, Laura. (2018). Combining means of transport as a users’ strategy to optimize traveling in an urban context: empirical results on intermodal travel behavior from a survey in Berlin. Journal of Transport Geography,
71:72–83, 2018. doi:10.1016/j. jtrangeo.2018.07.006.
[30] Prillwitz, Jan., Harms, Sylvia., Lanzendorf, Martin. (2007). Interactions between Residential Relocations, Life Course Events, and Daily Commute Distances. Transportation Research Record, 2021 (1), 64–69, 2007. doi:10.3141/2021-08.
[31] Reck, Daniel J., Hensher, David A., Ho, Chinh Q. (2020). MaaS bundle design. Transportation Research Part A: Policy and Practice, 141:485–501, 2020. doi:10.1016/j.tra.2020.09.021.
[32] Rousseeuw, Peter J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20: 53–65, 1987. doi: 10.1016/0377-0427(87)90125-7.
[33] Schönfelder, Stefan., Axhausen, Kay W. (2010). Urban Rhythms and Travel Behaviour: Spatial and Temporal Phenomena of Daily Travel. Ashgate Publishing, Ltd., doi:10.4324/ 9781315548715.
[34] Sopjani, Liridona., Stier, Jenny Janhager., Hesselgren, Mia., Ritzén, Sofia. (2020). Shared mobility services versus private car: Implications of changes in everyday life. Journal of Cleaner Production, 259:120845, 2020. doi:10.1016/ j.jclepro.2020.120845.
[35] Sturludottir, Erla., Gunnlaugsdottir, Helga., Nielsen, Olafur K., Stefansson, Gunnar. (2017). Detection of a changepoint, a mean-shift accompanied with a trend change, in short time-series with autocorrelation. Communications in Statistics - Simulation and Computation, 46 (7) 5808–5818. doi:10.1080/03610918.2014.1002849.
[36] Sun, Bo., Yu, Fei., Wu, Kui., Leung, (2004). Mobility-based anomaly detection in cellular mobile networks. In: Proceedings of the 3rd ACM workshop on Wireless security, pages 61–69. doi:10.1145/1023646.1023658.
[37] Sun, Lijun., Chen, Xinyu., He, Zhaocheng., Miranda-Moreno, Luis F. (2021). Routine Pattern Discovery and Anomaly Detection in Individual Travel Behavior. Networks and Spatial Economics. doi:10.1007/s11067-021-09542-9.
[38] Susilo, Yusak O., Axhausen, Kay W. (2014). Repetitions in individual daily activity–travel–locationpatterns: a study using the Herfindahl–Hirschman Index. Transportation, 41 (5) 995–1011. doi:10.1007/s11116-014-9519-4.
[39] Ton, Danique., Zomer, Lara-Britt., Schneider, Florian., Hoogendoorn-Lanser, Sascha., Duives, Dorine., Cats, Oded., Hoogendoorn, Serge. (2020). Latent classes of daily mobility patterns: the relationship with attitudes towards modes. Transportation, 47 (4) 1843–1866. doi: 10.1007/s11116-019-09975-9.
[40] Tsai, Chieh-Yuan., Shieh, Yu-Chen. (2009). A change detection method for sequential patterns. Decision Support Systems, 46 (2) 501–511, 2009. doi:10.1016/j.dss.2008.09.003.
[41] Wang, Yulong., Qin, Kun., Chen, Yixiang., Zhao, Pengxiang. (2018). Detecting Anomalous Trajectories and Behavior Patterns Using Hierarchical Clustering from Taxi GPS Data. ISPRS International Journal of Geo-Information, 7 (1) 25, 2018. doi:10.3390/ijgi7010025.
[42] Weiser, Paul., Scheider, Simon., Bucher, Dominik., Kiefer, Peter., Raubal, Martin. (2016). Towards sustainable mobility behavior: research challenges for location-aware information and communication technology. GeoInformatica, 20 (2) 213– 239, 2016. doi:10.1007/s10707-015-0242-x.
[43] Yao, Yao., Hong, Ye., Wu, Daiqiang., Zhang, Yatao., Guan,Qingfeng. (2018). Estimating the effects of “community opening” policy on alleviating traffic congestion in large Chinese cities by integrating ant colony optimization and complex network analyses. Computers, Environment and Urban Systems, 70:163–174. doi:10.1016/j.compenvurbsys.2018.03.005.
[44] Zhao, Zhan., Koutsopoulos, Haris N., Zhao, Jinhua. (2018). Detecting pattern changes in individual travel behavior: A Bayesian approach. Transportation Research Part B: Methodological, 112: 73–88, doi:10.1016/j.trb.2018.03.017.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info