Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN: 0976-898X
Online ISSN:
0976-8998


  About JNT
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
International Journal of Computational Linguistics Research (IJCL)
International Journal of Web Application (IJWA)

 

 
Journal of Networking Technology
 

Easing Network Traffic in the 5G Networks
Ivan Petrov and Toni Janevski
Telecom, Sales Excellence Unit Kej 13 Noemvri, No.6. 1000, Skopje, Macedonia., Faculty of Electrical Engineering and Information Technologies Rugjer Boshkovik bb 1000 Skopje, Macedonia
Abstract: In the 5 G networks, effective and dynamic data use is important for its utilization for which we have designed a transport protocol. In the environment where the low speed exists, the high rate can up to 400 Gbps with the help of the heavy mobile situation. This paper has introduced a powerful algorithm which can help to evade congestion issues in the back network traffic. Thus, the proposed protocol can perform better than the existing common high speed transport protocols.
Keywords: 5G Mobile Networks, Congestion Control, TCP, Throughput Easing Network Traffic in the 5G Networks
DOI:https://doi.org/10.6025/jnt/2022/13/2/29-36
Full_Text   PDF 1.01 MB   Download:   132  times
References:

[1] Duke, M., Braden, R., Eddy, W., Blanton, E. & Zimmermann, A. A road map for transmission control protocol (TCP). Internet Engineering Task Force (IETF), RFC7414 (February 2015).
[2] Janevski, T. (2014). NGN Architectures, Protocols, and Services. John Wiley & Sons: UK.
[3] Rodriguez, J. (2015). Fundamentals of 5G Mobile Networks. John Wiley & Sons: UK.
[4] Ge, X., Cheng, H., Guizani, M. & Han, T. (2014). 5G wireless backhaul networks: Challenges and research advances. IEEE Network, 28, 6–11 [DOI: 10.1109/MNET.2014.6963798].
[5] Barbarossa, S., Sardellitti, S. & Di Lorenzo, P. (2014) Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 31, 45–55 [DOI: 10.1109/MSP.2014.2334709]. [6] Kelly, T. (2003) Scalable TCP: Improving performance in highspeed wide area networks. ACM SIGCOMM Computer Communication Review, 33, 83–91 [DOI: 10.1145/956981.956989].
[7] Floyd, S. (2003). HighSpeed TCP for large congestion windows. RFC, 3649.
[8] Xu, L., Harfoush, K.. Rhee, I. (2004) Binary increase congestion control for fast, long distance networks. In: Proceedings of the IEEE Infocom, Vol. 4, pp. 2514–2524.
[9] Leith, D. (2008) H-TCP:TCP congestion control for high bandwidthdelay product paths. IETF Internet Draft. tools.ietf.org/ html/draftleith-tcp-htcp-06.
[10] Ha, S., Rhee, I. & Xu, L. (2008) CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42, 64–74 [DOI: 10.1145/1400097.1400105].
[11] Marfia, G., Palazzi, C., Pau, G., Gerla, M., Sanadidi, M. & Roccetti, M. (2005) “TCP Libra: Exploring RTT-Fairness for TCP, UCLA computer science department, tech. Rep. UCLA-CSD. TR-050037.
[12] Caini, C., Firrincieli, R. (2004) TCP Hybla: A TCP enhancement for heterogeneous networks. International Journal of Satellite Communications and Networking, 22, 547–566 [DOI: 10.1002/sat.799].
[13] Baiocchi, A., Castellani, A.P., Vacirca, F. (2007). YeAH-TCP: Yet another highspeed TCP. In: Proceedings of the PFLDnet. Intercollegiate Studies Institute: Marina del Rey (Los Angeles), CA, USA.
[14] King, R., Baraniuk, R. & Riedi, R. (2005) TCP-Africa: An adaptive and fair rapid increase rule for scalable TCP. In: Proceedings of the IEEE Infocom, Volume 3, p 1838–1848.
[15] Tan, K., Song, J., Zhang, Q. & Sridharan, M. (2005). A Compound TCP Approach for High-Speed and Long Distance Networks.
[16] Liu, S., Basar, T. & Srikant, R. (2006) TCP-Illinois: A loss and delay-based congestion control algorithm for high-speed networks. In: Proceedings of the First International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS).
[17] Wei, D.X., Jin, C., Low, S.H. & Hegde, S. (2006) FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Transactions on Networking, 14, 1246–1259 [DOI: 10.1109/TNET.2006.886335].-
[18] Sing, J. Soh, B. (2005) TCP new Vegas: Improving the performance of TCP Vegas over high latency links. In: Proceedings of the 4th IEEE International Symposium on Network Computing and Applications (IEEE NCA05), pp. 73–80.
[19] Yamada, K., Wang, R., Sanadidi, M.Y. & Gerla, M. (2004) TCP Westwood with agile probing:dealing with dynamic, large, leaky pipes. IEEE Communication Society.
[20] Kliazovich, D., Granelli, F. & Miorandi, D. (2008) Logarithmic window increase for TCP Westwood+ for improvement in high speed, long distance networks. Computer Networks, 52, 2395–2410 [DOI: 10.1016/j.comnet.2008.04.018].
[21] Shimonishi, H., Hama, T. & Murase, T. (2006) TCP-adaptive Reno for improving efficiency-friendliness tradeoffs of TCP congestion control algorithm. In: Proceedings of the 4th International Workshop on Protocols for Fast Long Distance Networks.
[22] Kaneko, K., Fujikawa, T., Su, Z. & Katto, J. (2007) TCP-Fusion: A hybrid congestion control algorithm for high-speed networks. In: Proceedings of the PFLDnet. Intercollegiate Studies Institute: Marina del Rey (Los Angeles), CA, USA.
[23] Gunduz, D., Stamatiou, K., Michelusi, N. & Zorzi, M. (2014) Designingintelligent energy harvesting communication systems. IEEE Communications Magazine, 52, 210–216 [DOI: 10.1109/MCOM.2014.6710085].


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info