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AbstrAct: Data reduction techniques are proposed extensively in literature with different perspectives and understanding.  
One potential area of application for data reduction techniques  is on Parkinson’s disease detection. In the current work, we 
have used the combination of  Principles component analysis (PCA) and Artificial Neural Networks (ANN) to distinguish 
healthy and PD using speech signals data set. We have found that the classification rates obtained was high and significant.  
The final stage, results are categorized in to two divisions, viz., ‘healthy’ and ‘diseased’. Testing results were compatible with 
the expected results that are derived from the physician’s direct diagnosis. The experimental results obtained reveal that the 
proposed method is capable of developing newer intelligent assistance diagnosis systems.
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1. Introduction 

Parkinson’s disease (PD) is a degenerative illness of the brain that usually destroys the motor skills, speech, and other func-
tions. The substantia nigra area of brain degenerates this condition. PD is called motor system defectiveness’s, which are the 
result of the loss of dopamine-producing brain cells. Trembling in hands, arms, legs, jaw, and face; rigidness of the limbs and 
trunk; slowness of movement are the primary symptoms of PD and impaired balance and coordination. As these symptoms 
become more significant, patients may be unable to walking, talking, or completing other simple daily activities. PD occurs 
about 1.5 times more common in men than in women [1].

Physical observations and questioning of the patients are usually basis diagnosis of PD. Though sometimes scanning methods 
are used.

Positron emission tomography (PET) and single photon emission tomography (SPECT) have been used to monitorize changing 
in dopaminergic function in PD and these methods show decreasing of dopamine neurons in the striatum of brain. Parkinson’s 
Disease measurement tool were using the Unified Parkinson Disease Rating Scale (UPDRS) to assist the diagnose [2.- 4]. The 
PD can be difficult to early diagnose exactly. PD symptoms increase gradually in time. There numbers of studying about PD 
using computational methods. Recent studies in literature involve image processing methods and classification using UPDRS. 
Acton,Paul D. and coworkers studied “Artificial neural network classifier for the diagnosis of PD using image processing 
methods”. Stephen L. Smith and coworkers studied “an immune network inspired evolutionary algorithm for the diagnosis 
of PD”. C. Okan Sakar and coworkers studied “telediagnosis of PD using measurements of dysphonia”. Athanasios Tsanas 
and coworkers studied “accurate telemonitoring of PD progression by non-invasive speech tests”. Marius Ene studied “neural 
network-based approach to discriminate healthy people from those with PD” using voice data set [5-8].

To the best of the authors knowledge no research has been published on an integrated and simultaneous application of PCA-
ANN architecture for voice data set to classify PD.

Currently, automated detection of disease techniques based on Artificial Intelligence are needed to increase the diagnosis 
accuracy of illness and to help clinician make accurate decisions.

In this study, we have facilitated Artificial Neural Network (ANN) that will not only simplify the diagnosis but also enable 
the physician to make a quicker judgment about the existence of PD in confidence.
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Our primary research motivation was to advance the research of diagnosing PD from voice measurements. We have employed 
the some features of medical data set from voice recordings, then Principles component analysis (PCA) for the aim of data 
reduction and Artificial Neural Networks (ANN) in order to distinguish between PD and healthy subjects [9].

2. Methods

2.1. Patients Data Set
The data set were obtained, from Max Little of the University of Oxford, in collaboration with the National Centre for Voice 
and Speech, Denver, Colorado. The original paper “Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s 
Disease” named has been published in IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, named with [10].

In this study, the data consist of 195 continuously vowel phonations from 31 male and female subjects, of which 23 were 
patient with PD. Diagnosing time is between 0 to 28 years, and the ages of the subjects is between from 46 to 85 years (mean 
65.8, standard deviation 9.8).

The feature information of this data set consists of the following technical details:

 1.  Average vocal fundamental frequency
 2. Maximum vocal fundamental frequency
 3. Minimum vocal fundamental frequency
 4. Voice Jitter as a percentage
 5. Voice Absolute jitter in microcesonds
 6. Relative Amplitude Perturbation,
 7. Five Point Period Perturbation Quotient
 8. Average absolute difference of differences between cycles divided by the average period.
 9. Local shimmer
10. Local shimmer in decibels
11. Three point amplitude perturbation Quotient
12. Five point amplitude perturbation Quotient
13. 11. point amplitude perturbation Quotient
14. Average absolute difference between consecutive differences between the amplitudes of consecutive periods
15. Noise to harmonics ratio
16. Harmonics to noise ratio
17. Recurrence period density entropy
18. Detrended fluctuation analysis
19. Spread1
20. Correlation dimension
21. Spread2
22. Pitch period entrphy

2.2. Feature Selection-Principal Component Analysis
The PCA method was used to make an ANN system more efficient For this aim, before classifying with ANN, PCA method 
was used for data reduction of feature vector. It describes the data set in the sense of its variance. Each principal component 
identifies a percentage of the total variance of a data set and elaborates loadings or weights that each variate contributes to 
this variance.One of the main advantage of PCA technique is founding patterns in the data, and data has been compressed 
by reducing the number of dimensions, without much loss of information [11,12]. 

In this paper, the use of PCA for the characterization and feature selection of medical data set. Principal components calculate 
using eigenvectors and eigenvalues of covariance matrixes or correlation matrix.
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computed by the solution of described as; 
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After PCA of data vector, each feature vector was 
represented a vector consists of 10 samples as seen 
figure1 for three healthy and PD subjects. This feature 
selected vector applied to ANN to classify PD and 
healthy subjects.  
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Fig. 1. Examples of feature data set for ANN  
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3. Results and Discussion

In this study the problem of improving the classification accuracy is attacked from two different ways. 1) designing an ap-
propriate feature space using PCA and 2) designing a classifier that can accurately classify PD using ANN. We studied the 
feature set (195 voice feature) randomly selected as the test and the train groups by the ANN and the four layered MLP 
structure have been built to simplify the diagnosis and enable the physician to make a judgment about the existence of PD.

Study performance was determined with comparison of correct classification rate, testing mean square error, specificity and 
sensitivity for each ANN input data sets.

In our study the ANN structure, for 10 fold cross validation the testing mean square error of 0.0317 was observed for our 
optimized MLP feed forward network with a training mean square error of 2.6668*10-7. The final stage, results are catego-
rized as healthy and diseased. There has been one false classification in the positive group, while 23 subjects were correctly 
recognized as PD. In the healthy group, any subject was misclassified and 8 subjects were accurately classified as healthy. 
It is seen in Figure 2 the desired network example output was given pattern characterized as diseased except one which has 
the value as healthy.

Overall results 96.87% correct classification was achieved, whereas 1 false classifications have been observed for the group 
of 32 people in total. With these results, this network has about 100% sensitivity and specificity is calculated to be 88.88% 
(Table 1).

Statistical parameters Values (%)

Specificity                                                   88.88

Sensitivity                                                   100

Correct Classification                                  96.87

Table 1. Performance results

ANN method has a generally robust structure, is tolerant of faults and noise, able to generalize well and capable of solving 
nonlinear problems.

The result of this study leads to the conclusion that all two key components of the PCA-ANN methodology are important 
for improving the accuracy of PD classification.
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