
 Journal of Networking Technology Volume 1 Number 3 September 2010 107

Congruence Results of Behavioral Equivalence for A Graph
Rewriting Model of Concurrent Programs with Higher-Order
Communication

Masaki Murakami
Department of Computer Science
Graduate School of Natural Science and Technology
Okayama University 3-1-1
Tsushima-Naka, Kita-ku, Okayama
700-0082, Japan
murakami@momo.cs.okayama-u.ac.jp

AbstrAct: This paper presents congruence results of a behavioural equivalence on a graph rewriting model of concurrent
pro cesses with higher-order communication. A bipartite di rected acyclic graph represents a concurrent system that consists of
a number of processes and messages in our model. The model presented here makes it possible to repre sent local names that
their scopes are not nested. We show that strong bisimulation equivalence relation is a congru ence relation w.r.t. operations
that correspond to Ü-prefix, input prefix, new-name, replication, composition and appli cation respectively.

Keywords: Higher-order communication, Bipartite Graph, Graph rewriting model

Received: 11 May 2010, Revised 14 June 2010, Accepted 29 June 2010

© 2009 D-Line. All rights reserved

1. Introduction

LHOπ (Local Higher Order π-calculus) [12] is a formal model of concurrent systems with higher-order communi cation. It is
a subcalculus of higher order π-calculus[11] with asynchronous communication capability. The calcu lus has the expressive
power to represent many practically and/or theoretically interesting examples that include pro gram code transfer.

On the other hand, as we reported in [5, 7, 6], it is dif ficult to represent the scopes of names of communication channels us-
ing models based on process algebra. As well known, it is important to describe “which process knows whose name” for the
security of concurrent systems. In other words, it is essential to describe “which process is in the scope for each name in the
system” for modeling of dis tributed systems. In many models based on process algebra, the scope of a name is represented
using a binary operation as the ν-operation. However, this method has several prob lems. For example, the scope of a name is
a subterm of an expression if it is represented with ν-operator. So the scopes of bound names are nested (or disjoint) in any
π-calculus term. However the scopes of names are not always nested in practical systems.

Furthermore, it is impossible to represent the scope even for one name precisely with ν-operator. Consider the example,
νa(¯ba.P) | b(x).Q where x does not occur in Q. In this example, a is a local name and its scope is b̄a.P. The scope of a is
extruded by communication with prefixes ¯ba and b(x). Then the result of the action is νa(P |Q) and Q is included in the
scope of a. However, as a does not occur in Q, it is equivalent to (νaP)|Q by the rules of structural congruence. We cannot
see the fact that a is ‘leaked’ to Q from the resulting expression: (νaP)|Q. This makes diffi cult to analyze extrusions of
scopes of names by executions.

This kind of problem also happens in LHOπ. In our pre vious work we presented a model that is based on graph rewriting
instead of process algebra as a solution to the problem of representating the scopes of names for firstorder case [5].

The model that we presented is based on graph rewriting system such as [1, 2, 4, 10, 3, 13]. We represent a con current program
consists of a number of processes (and messages on the way) using a bipartite directed acyclic graph. A bipartite graph is a
graph whose nodes are decomposed into two disjoint sets: source nodes and sink nodes such that no two graph nodes within
the same set are adjacent. Every edge is directed from a source node to a sink node. The system three processes b1,b2 and b3

108 Journal of Networking Technology Volume 1 Number 3 September 2010

and two names ai(i =1, 2) shared by bi and bi+1 is represented with a graph as Figure 1. Processes and messages on the way
are represented with source nodes. We call source nodes as behaviors. In Figure 1, b1,b2 and b3 are behaviors. A behavior has
a recursive structure. Namely a behavior is a node consisting of its epidermis that denotes the first action and its content that
denotes the continuation. The operational semantics is defined as a set of rules for graph rewriting. The execution of the an
action is represented by “peeling” the epidermis of the behavior node.

We defined an equivalence relation of processes called “scope equivalence” based on scopes of names. We showed the con-
gruence results of a behaviour equivalence [6] and the scope equivalence [8] for first order case. We extended the model for
systems with higher-order communication[7] and showed the congruence results of scope equivakece[9] for higher-order
model. This paper presents the congruence results of behaviour equivalence for the extended model with higher-order com-
munication.

Congruence results on bisimilarity based on graph rewriting models are reported in [1, 13]. Those studies adopts graph
transformation approach for prooftechniques. In this paper, graph rewriting is introduced to extend the model for the repre-
sentation of scopes of names.

2. The Model

This section presents formal definitions of the model. The intuitive ilustration of the model is presented in [7, 9].

2.1. Programs
First, a countably-infinite set of names is presupposed as other formal models based on process algebra.

Definition 2.1 (program, behaviour) Programs and be haviours are defined recursively as follows.

(i) Let a1,...,ak are distinct names. A program is a a bi partite directed acyclic graph with source nodes b1,...,bm and sink nodes
a1,...,ak such that

Each source node • bi(1 ≤ i ≤ m) is a behaviour. Du plicated occurrences of the same behavior are possible.

Each sink node is a name • aj (1 ≤ j ≤ k). All aj’s are distinct.

Each edge is directed from a source node to a sink node. Namely, an edge is an ordered pair (• bi,aj) of a source node and
a name. For any source node bi and a name aj there is at most one edge from bi to ai.

For a program P , we denote the multiset of all source nodes of P as src(P), the set of all sink nodes as snk(P) and the set
of all edges as edge(P). Note that the empty graph: 0 such that src(0)= snk(0)= edge(0)= φ is a program.

(ii) A behavior is an application, a message or a node con sists of the epidermis and the content defined as follows. In the
following of this definition, we assume that any element of snk(P) nor x does not occur in anywhere else in the pro gram.

1. A node labeled with a tuple of a name: n (called the subject of the message) and an object: o is a message and denoted
as n〈o〉.

2. A tuple of a variable x and a program P is an abstrac tion and denoted as (x)P. An object is a name or an abstraction.

3. A node labeled with a tuple of an abstraction and an object is an application. We denote an application as A〈o〉 where A
is an abstraction and o is an object.

4. A node whose epidermis is labeled with “!” and the content is a program P is a replication, and denoted as !P.

Figure 1. Bipartite Directed Acyclic Graph

 Journal of Networking Technology Volume 1 Number 3 September 2010 109

5. An input prefix is a node (denoted as a(x).P) that the epidermis is labeled with a tuple of a name a and a variable x and
the content is a program P.

6. A Ü -prefix is a node (denoted as Ü.P) that the epidermis is labeled with a silent action Ü and the content is a program P .

Definition 2.2 (locality condition) A program P is local if for any input prefix c(x). Q and abstraction (x)Q occurring in P,
x does not occur in the epidermis of any input prefix in Q. An abstraction (x)P is local if P is local. A local object is a local
abstraction or a name.

The locality condition says that “anyone cannot use a name given from other one to receive messages”. Though this condition
affects the expressive power of the model, we do not consider that the damage to the expressive power by this restriction is
significant. Because as transfer of receiving capability is implemented with transfer of sending capability in many practical
example, we consider local programs have enough expressive power for many important/interesting examples. So in this
paper, we consider local programs only. Theoretical motivations of this restriction are discussed in [12].

Definition 2.3 (free/bound name)

1. For a behavior or an object p, the set of free names of p : fn(p) is defined as follows: fn(0)= φ, fn(a)= {a} for a name
a, fn(a〈o〉) = fn(o) S {a}, fn((x)P) = fn(P) \{x}, fn(!P)= fn(P), fn(Ü.P) = fn(P), fn(a(x).P)=(fn(P) \{x}) S {a} and
fn(o1〈o2〉) = fn(o1)
S fn(o2).

2. For a program P where src(P)= {b1,...,bm}, fn(P) =
[

∪i fn(bi) \ snk(P).

The set of bound names of P (denoted as bn(P)) is the set of all names that occur in P but not in fn(P) (including elements
of snk(P) even if they do not occur in any element of src(P)).

The role of free names is a little bit different from that of π-calculus in our model. For example, a free name x occurs in Q
is used as a variable in (x)Q or a(x).Q.A channel name that is used for communication with the environments is an element
of snk, so it is not a free name.

Definition 2.4 (normal program) A program P is normal if for any b ∈ src(P) and for any n ∈ fn(b) ∩ snk(P), (b, n) ∈
edge(P) and any programs occur in b is also normal.

It is quite natural to assume the normality for programs. So in this paper, we consider normal programs only.

Definition 2.5 (composition) Let P and Q be programs such that src(P) ∩ src(Q) = φ and fn(P) ∩ snk(Q) = fn(Q) ∩ snk(P) = φ.
The composition P ||Q of P and Q is the program such that src(P ||Q) = src(P) S src(Q), snk(P ||Q) = snk(P) S snk(Q) and edge(P
||Q) = edge(P) S edge(Q).

Intuitively, P ||Q is the parallel composition of P and Q. Note that we do not assume snk(P) ∩ snk(Q)= φ. Obviously P ||Q = Q ||P
and ((P ||Q) ||R)=(P ||(Q ||R)) for any P, Q and R from the definition. The empty graph 0 is the unit of “ ||”. Note that src(P) S src(Q)
and edge(P) S edge(Q) denote the multiset unions while snk(P) S snk(Q) denotes the set union.

It is easy to show that for normal and local programs P and Q, P ||Q is normal and local.

Definition 2.6 (N-closure) For a normal program P and a set of names N such that N ∩ bn(P)= φ, the N-closure
νN(P) is the program such that src(νN(P)) = src(P), snk(νN(P)) = snk(P) S N and edge(νN(P)) = edge(P) S {(b,
n)|b ∈ src(P),n ∈ N}.

We sometimes denote νN1(··· (νNi(P)) ···) as νN1 ··· νNi P for a program P and sets of names N1,...Ni.

Definition 2.7 (deleting a behaviour) For a normal pro gram P and b ∈ src(P), P \ b is a program such that src(P \ b) = src(P)
\{b}, snk(P \ b) = snk(P) and edge(P \ b) = edge(P) \{(b, n)|(b, n) ∈ edge(P)}.

Note that src(P) \{b} and edge(P) \{(b, n)|(b, n) ∈ edge(P)} mean the multiset subtractions. We can show the following
propositions from the definitions.

Proposition 2.1 For normal programs P and Q and a set of names N, νN(P ||Q) = νNP ||νNQ and νNν{m|(b, m) ∈ edge(P)}
Q = ν{m|(b, m) ∈ edge(νNP)}Q and νN(P \ b) = (νNP) \ b for b ∈ src(P).

Definition 2.8 (context) Let P be a program and b ∈ src(P) where b is an input prefix, a Ü-prefix or a replication and the
content of b is 0. A simple first-order context is the graph P [] such that the content 0 of b is replaced with a hole “[]”. We
call a simple context as a Ü -context, an input context or a replication context if the hole is the content of a Ü -prefix, of an
input prefix or of a replication respectively.

110 Journal of Networking Technology Volume 1 Number 3 September 2010

Let P be a program such that b ∈ src(P) and b is an ap plication (x)0〈Q〉. A simple application context P [] is the graph obtained
by replacing the behaviour b with (x)[]〈Q〉. A simple context is a simple first-order context or a simple application context.

A context is a simple context or the graph P [Q[]] that is obtained by replacing the hole of P [] replacing with Q[] for a simple
context P [] and a context Q[] (with some renaming of the names occur in Q if necessary).

For a context P [] and a program Q, P [Q] is the program obtained by replacing the hole in P [] by Q (with some re naming
of the names occur in Q if necessary).

2.2 Operational Semantics
We define the operational semantics with a labeled tran sition system. The substitution of an object to a program, to a behaviour
or to an object is defined recursively as follows.

Definition 2.9 (substitution) Let p be a behavior, an object or a program and o be an object. For a name a, we assume that
a ∈ fn(p). The mapping [o/a] is a substitution if p[o/a] is defined as follows respectively.

For a name • c, c[o/a] = o if c = a or c[o/a] = c otherwise.
For behaviours, ((• x)P)[o/a]=(x)(P [o/a]), (o1〈o2〉)[o/a]= o1[o/a]〈o2[o/a]〉, (!P)[o/a] = !(P [o/a]), (c(x).P)[o/a]= c(x).(P
[o/a]) and (Ü.P)[o/a]= Ü.(P [o/a]).
For a program • P and a ∈ fn(P), P [o/a] = P′

where P′ is a program such that src(P′) = {b[o/a]|b ∈ src(P)}, snk(P′) =

snk(P) and edge(P′) = {(b[o/a], n)|(b, n) ∈ edge(P)}.

For the cases of abstraction and input prefix, note that we can assume x ≠ a because a ∈ fn((x)P) or a ∈ fn(c(x).P) without
losing generality. (We can rename x if necessary.)

Definition 2.10 Let p be a local program or a local object. A substitution [a/x] is acceptable for p if for any input prefix
c(y).Q occurring in p, x ≠ c.

In any execution of local programs, if a substitution is applied by one of the rules of operational semantics then it is acceptable.
Thus in the rest of this paper, we consider acceptable substitution only for a program, a context or an abstraction. Namely
we assume that [o/a] is applied only for the objects such that a does not occur as a subject of input prefix. This is the reason
why (c(x).P)[o/a] = c(x).(P[o/a]) but not (c(x).P)[o/a] = c[o/a](x).(P[o/a]) in Definition 2.9.

The following proposition is straightforward from the definitions.

Proposition 2.2 Let P and Q are normal programs and o be an object. If M is a set of names such that M ⊂ fn(o) and x ∉(bn(P)
∪ bn(Q)), then νM(P Q)[o/x] = (νMP[o/x]) (νMQ[o/x]) and (P \ b)[o/x] = P[o/ x] \ b[o/x].

Definition 2.11 (action) For a name a and an object o, an input action is a tuple a(o) and an output action is a tuple ahoi. An
action is a silent action Ü, an output action or an input action.

Definition 2.12 (labeled transition) For an action α, a→ is the least binary relation on normal programs that satisfies the fol-
lowing rules.

input : If b ∈ src(P) and b = a(x).Q, then P →a(o) (P \ b)||ν{n|(b, n) ∈ edge(P)} νMQ[o/x] for an object o and a set of names M
such that fn(o)∩snk(P) ⊂ M ⊂ fn(o) \ fn(P).

β-conversion : If b ∈ src(P) and b = (y)Q〈o〉, then P Ü→ (P \ b)||ν{n|(b, n) ∈ edge(P)}Q[o/y].

Ü -action : If b ∈ src(P) and b = Ü.Q, then P Ü→ (P \ b)||ν{n|(b, n) ∈ edge(P)}Q.

replication 1 : P a→ P′ if !Q = b ∈ src(P), and P||ν{n|(b, n) ∈ edge(P)}Q′ a→ P′, where Q′ is a program obtained from Q by
renaming all names in snk(R) to distinct fresh names that do not occur in anywhere else, for all R’s where each R is a program
that occur in Q (including Q itself).

replication 2 : P Ü→ P′ if !Q = b ∈ src(P) and P||ν{n|(b, n) ∈ edge(P)}(Q′1||Q′2)
Ü→ P′, where each Q′i (i = 1, 2) is a program

obtained from Q by renaming all names in snk(R) to distinct fresh names that do not occur in anywhere else, for all R’s where
each R is a program that occur in Q (including Q itself).

output : If b ∈ src(P), b = a〈v〉 then, P a→〈v〉 P \ b.

communication : If b1, b2 ∈ src(P), b1 = a〈o〉, b2 = a(x).Q then,
P Ü→ ((P \ b1)\ b2)||ν{n\ (b2, n) ∈ edge(P)} ν(fn(o)∩ snk(P))Q[o/x].

 Journal of Networking Technology Volume 1 Number 3 September 2010 111

The set of names M that occur freely in o of input rule is the set of local names imported by the input action. Some name in
M may be new to P, and other may be already known to P but b is not in the scope.

We can show that for any program P, P′ and any action α such that P a→ P′, if P is local then P′ is local and if P is normal then
P′ is normal. The following propositions are straightforward from the definitions.

Proposition 2.3 For any normal programs P, P′ and Q, and any action α if P a→ P′ then P ||Q a→ P′ ||Q.

Proposition 2.4 For any program P,Q and R and any action α, if P ||Q a→ R is derived by one of input, β-conversion,
Ü -action or output immediately, then R = P′ ||Q for some P a→ P′ or R = P ||Q′ for some Q a→ Q′.

Definition 2.13 (substitution for action) For an action α and a substitution [o/x], α[o/x] is Ü if α = Ü , is a(n[o/x]) if α = a(n)
and is a[o/x]〈n〉[o/x] if α = a〈n〉.

Note that a(n)[o/x] ≠ a[o/x](n[o/x]) because we consider local programs only.

Strong bisimulation relation is defined as usual. It is easy to show ~ defined as Definition 2.14 is an equivalence relation.

Definition 2.14 (strong bisimulation equivalence) A binary relation R on normal programs is a strong bisimulation if for any
P and Q such that (P,Q) ∈ R or (Q, P) ∈ R, for any α and P′ if P a→ P′ then there exists Q′ such that Q a→ Q′ and (P′,Q′) ∈
R and for any Q a→ Q′ the similar condition holds. Strong bisimulation equivalence ~ is defined as follows: P ~ Q iff (P,Q)
∈ R for some strong bisimulation R.

3. Congruence Results

Proposition 3.1 If src(P1) = src(P2) then P1 ~ P2.

proof: (outline) We can show that {(P1, P2)|src(P1) = src(P2)}) is a strong bisimulation from the definitions.

Proposition 3.2 Let P be a normal program, α be an action, [o/x] be a substitution that is acceptable to P, (fn(o) ∪ bn(o)) ∩
bn(P) = φ and x ∈ fn(P) that does not occur elsewhere and M be a set of names such that M ⊂ fn(o). If νMP[o/x] a→ P′, then
one of the followings holds.

There exists • P” such that P a′ → P”, α′[o/x] = α′ and P”[o/x] ~ P′,
there exists • P” such that P x→〈b〉 P”, α is a silent action, o = (y)R and P′ ~ (P”[(y)R/x]||R[b/y]) or
α • is a silent action and there exists P” such that P a→〈n〉

b→〈m〉 P”, a[o/x] = b, n[o/x] = m[o/x] and P”[o/x] ~ P′.

proof: (outline) By the induction on the number of replication 1/2 rules to derive νMP[o/x] a→ P′ and Proposition 2.1, 2.2 and 3.1.

Note that a[o/x] = b because we assume b ≠ x as [o/x] is acceptable for P.

Proposition 3.3 Let P be a normal program, α be an action, o be an object such that (fn(o) ∪ bn(o)) ∩ bn(P) = φ and
M be a set of names such that M ⊂ fn(o). If P a→ P′ and x is a free name of P that does not occur in anywhere else then
P[o/x] α→[o/x]

 ~ P′[o/x] or α is an output action x〈n〉, o is an abstraction (y)R and νMP[o/x] Ü→ ~ νM(P′ [o/x]||R[n/y]).

proof: (outline) By the induction on the number of replication 1/2 rules to derive P a→ P′ and Proposition 2.1, 2.2 and 3.1.

Proposition 3.4 Let P be a normal program, α be an output action, β be an input action, [o/x] be a substitution such that
α[o/x] = a〈n〉, β[o/x] = a(n) and (fn(o) ∪ bn(o)) ∩ bn(P) = φ and M be a set of names such that M ⊂ fn(o). If P α→ β→ P′, then
νMP[o/x] Ü→ ~ P′[o/x].

proof: (outline) By the induction on the number of replication 1/2 rules to derive P α→ β→ P′ and Proposition 2.1 ~ 2.3 and 3.1.

Proposition 3.5 For any program P and Q, if P a→〈n〉 P′ and Q a→(n) Q′ then P||Q Ü→ ~ P′ ||Q′.
proof: (outline) By the induction on the number of replication 1/2 rules to derive P a→〈n〉 P′ and Q a→(n) Q′ and Proposition 3.1.

Proposition 3.6 If b ∈ src(P) and !Q = b then, P||ν{n|(b, n) ∈ edge(P)}Q′ ~ P where Q′ is a program obtained from Q by
renaming names in bn(Q) to fresh names.

proof:(outline) We have the result by showing the union of ~ and the following relation:

{(P||ν{n|(b, n) ∈ edge(P)}Q′, P) !Q ∈ src(P), Q′ is obtained from Q by fresh renaming of bn(Q).}
is a strong bisimulation up to ~.

Now we have the congruence result w.r.t. “||”.

112 Journal of Networking Technology Volume 1 Number 3 September 2010

Proposition 3.7 For any program R, if P ~ Q then P || R ~ Q || R.

proof:(outline) We can show that {(P||R,Q||R)|P ~ Q} is a bisimulation up to ~. It is shown by induction on the number of
replication 1/2 rules to derive transitions on P||R and Proposition 2.1 ~ 2.4, 3.5 and 3.6.

The following propositions Proposition 3.8 and 3.9 say that ~ is a congruence relation w.r.t. Ü -prefix and replication re-
spectively.

Proposition 3.8 For any P and Q such that P ~ Q and for any Ü -context R[], R[P] ~ R[Q].

proof:(outline) By showing {(R[P],R[Q])|P ~ Q,R[] is a Ü -context.}∪ ~ is a strong bisimulation using Proposition 2.3 and
3.7.

Proposition 3.9 For any P and Q such that P ~ Q and for any replication context R[], R[P] ~ R[Q].

proof:(outline) From Proposition 2.3 and 3.6, we can show that:

{(R[P],R[Q])|P ~ Q,R[] is a replication context.}∪ ~ is a strong bisimulation.

Proposition 3.10 For any P and Q such that P ~ Q, an object o such that fn(o) ∩ (snk(P) ∪ snk(Q)) = φ and a set of names
M ⊂ fn(o), νMP[o/x] ~ νMQ[o/x].

proof:(outline) From Proposition 3.2 ~ 3.4, 3.7 and 2.3 , we can show that: {(νMP[o/x], νMQ[o/x])|P ~ Q, fn(o) ∩ (snk(P)
∪ snk(Q)) = φ}

is a strong bisimulation up to ~.

From this proposition, we have that ~ is a congruence relation w.r.t. input prefix and application.

Proposition 3.11 For any P and Q such that P ~ Q and for any input context R[], R[P] ~ R[Q].

proof: (outline) From Proposition 3.10, the union of ~ and {(R[P],R[Q])|P ~ Q,R[] is an input context.} is a strong
bisimulation up to ~ using Proposition 3.7.

Proposition 3.12 For any P and Q such that P ~ Q and for any simple application context R[], R[P] ~ R[Q].

proof: (outline) We can show that {(R[P],R[Q])| ~ Q} ∪ ~ is a strong bisimulation from Proposition 2.3, 3.7 and 3.10.

From Proposition 3.8, 3.9, 3.11 and 3.12, we have the following result by the induction on the definition of context.

Theorem 3.1 For any P and Q such that P ~ Q and for any context R[], R[P] ~ R[Q].

We considered the context consists of composition, prefix, replication and application for congruence results. In asynchro-
nous π-calculus, the congruence results w.r.t. name restriction “P ~ Q implies νxP ~ νxQ” is also reported. We can show the
corresponding result with the similar argument as the first order case [6].

Proposition 3.13 For any P and Q such that P ~ Q and for any set of names M such that M ∩ (bn(P) ∪ bn(Q)) = φ, νM(P)
~ νM(Q).

4. Conclusions and discussions

This paper presented congruence results of strong bisimulation equivalence w.r.t. composition, Ü -context, input context,
replication context and application context for the graph rewriting model of concurrent systems.

We did not mention the cases that a hole occurs in the object part of a message or an application because strong bisimula-
tion equivalence is not congruent for these cases. For example, for a context R1[] that has just one behaviour node which is
a message node with a hole m〈[]〉, it is obvious that R1[P] /~ R2[Q] for P and Q such that P ~ Q but P ≠ Q because R1[P] m→〈P〉
but R2[Q] m/→〈P〉 . For the case of application, consider the context R2[] that has just one behaviour (x)(m〈x〉)〈[]〉. Then R2[P]
/~ R2[Q] again for P and Q such that P ~ Q but P ≠ Q because R2[P] Ü→ R1[P] but R2[Q] Ü→ R1[Q] is the unique transition for
R2[Q]. We should adopt other equivalence relation e.g. barbed bisimilarity[11] etc. for the results on such cases.

References

[1] Ehrig, Hartmut., König, Barbara (2006). Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting
with Borrowed Contexts, Mathematical Structures in Computer Science, 16 (6) 1133-1163.

 Journal of Networking Technology Volume 1 Number 3 September 2010 113

[2] Gadducci, F. (2003). Term Graph rewriting for the π-calculus, Proc. of APLAS ’03 (Programming Languages and
Systems), LNCS 2895, p. 37-54.

[3] König, B. (2000). A Graph Rewriting Semantics for the Polyadic π- Calculus, Proc. of GT-VMT ’00 (Workshop on
Graph Transformation and Visual Modeling Techniques), p. 451-458.

[4] Milner, R. (2009). The Space and Mortion of Communicating Systems, Cambridge University Press.
[5] Murakami, M. (2006). A Formal Model of Concurrent Systems Based on Bipartite Directed Acyclic Graph, Science of

Computer Programming, Elsevier, 61 p. 38-47.
[6] Murakami, M. (2010). Congruence Results of Behavioral Equivalence for A Graph Rewriting Model of Concurrent

Programs, World Review of Science, Technology and Sustainable Development, 7 (1/2) 169 – 180.
[7] Murakami, M.(2008). A Graph Rewriting Model of Concurrent Programs with Higher-Order Communication, In: Proc.

of TMFCS. p.80-87.
[8] Murakami, M., Congruence Results of Scope Equivalence for a Graph Rewriting Model of Concurrent Programs, Proc.

of ICTAC2008, LNCS 5160, pp. 243-257 (2008)
[9] Murakami, M.(2009). On Congruence Property of Scope Equivalence for Concurrent Programs with Higher-Order

Communication, In: Proc of CPA2009, IOS Press, p. 49-66.
[10] Odersky, M.(2000). Functional Nets, European Symposium on Programming 2000, In: Lecture Notes in Computer

Science 1782, Springer Verlag.
[11] Sangiorgi, D., Walker, D (2001). The π-calculus, A Theory of Mobile Processes, Cambridge University Press.
[12] Sangiorgi, D.(2001). Asynchronous Process Calculi: The Firstand Higher-order Paradigms, Theoretical Computer

Science, 253, p. 311-350.
[13] Sassone, V., Soboci´nski, P (2005). Reactive systems over cospans, In: Proc. of LICS ’05 IEEE, p. 311-320.

