
126 Journal of Networking Technology  Volume 1 Number 3  September 2010

Dealing with aspect interaction: Thinking for generic based 
specification solution 

Amel Boubendir1, Allaoua Chaoui2 
1Department of Computer Science
University of Skikda
Algeria 
a_boubendir@yahoo.fr
2MISC Laboratory
Department of Computer Science
University Mentouri Constantine
Algeria
a_chaoui2001@yahoo.com

AbstrAct: Despite Aspect Oriented software development (AOSD) improve existing paradigms of development, by providing 
explicit mean to model crosscutting concern (aspect), the complexity of interactions among aspects and between aspects and 
base modules still a difficult problem that may reduce the value of aspect-oriented separation of cross-cutting concerns. The 
need of developing efficient techniques that permits us identification and analysis of interactions between aspects, rise and 
grow. In this paper we propose a technique that allows the user to analyse interaction between aspects, detect and resolve 
conflicts between them based on the search of Hamiltonians paths. The technique is based specification it use the specifica-
tion of composition of aspects to analyse aspect and produce rules of composition and it is supposed generic in fact, that 
exploits the dependencies generated by the operators such as before, after, around and replace . Also, our contribution will 
be at aspect oriented requirement engineering (AORE) since, it is desirable to early possible identify aspect and analyse 
interactions too. The technique is illustrated through examples. 

Keywords: Aspects, Crosscutting concern, Separation of concern, AORE, Aspects interactions 

Received: 8 May 2010, Revised 11 June 2010, Accepted 17 June 2010 

© 2009 D-Line. All rights reserved

1. Introduction 

Aspect Oriented Software Development (AOSD) is an emerging technology that provides explicit mean to model concern that 
tend to crosscut multiple system components [1,2]. It is a challenging field of research. On the one hand, the main problem 
have been defined and addressed, and on the other hand, these problems and theirs solutions have brought new ones [20]. From 
the modularity and adaptability point of view, the separation of aspects in the base modules reduces the dependency between 
modules and improves modularity. However, understanding the behaviour of a module and verifying its correctness requires 
a global overview and understanding of all modules and aspects that might affect the module under construction [11]. 

The complexity of interactions among aspects and between aspects and base modules may reduce the value of aspect-oriented 
separation of cross-cutting concerns. Some interactions may lead to the expected behaviour while others are source of un-
expected inconsistencies [10]. The software engineer should be equipped with techniques that provide means for systematic 
identification, separation, representation, composition of crosscutting concern (aspects) [20]. In addition, the software engi-
neer must be equipped with means, methods and techniques for dealing with aspects interactions .He has need to systematic 
detection and resolution of potential conflicts between aspects throughout the software development process, in order to 
successfully reason about aspects and successfully compose them. 

As, aspect must be early possible identified in the life cycle. As well, the detection of interactions and potential inconsisten-
cies between aspects, is desirable to be as early as possible in the life cycle,[10]. Our contribution will be at aspect Oriented 
requirement engineering (AORE). 



 Journal of Networking Technology  Volume 1 Number 3  September  2010 127

However, There seems to be a strong focus on identification of aspect in all the approach of AORE[18], a number of solutions 
have been proposed to deal with conflicting situation such as [8, 15, 10, 6]. In [8], Rachid et all. Propose a generic aspect 
oriented requirement [AORE) model based on view point and XML. In this approach the authors identify concerns and theirs 
relation ships. They identify candidate aspects and define in granular level of requirement the specification of composition of 
each candidate aspect. The conflict are detected and resolved after composed. For resolving conflicts, the authors use a contri-
bution Matrix and attribute weight to conflicting aspects. Also, in [15] Araujo et all. Present an model to handle crosscutting 
non functional concern at requirement stage. The process passes by identify functional and no functional concerns, identify 
crosscutting concerns. Then, compose crosscutting concern in UML models and detect and resolve conflicts. For dealing with 
conflicting situations, the authors also, suggest first study the contribution from one concern in relation to all others. If there 
are two or more crosscutting concerns that contribute negatively and influence the same concern, there is a conflicting case 
the authors, too suggest made a trade off with stakeholders and attribute priority then compose them accordingly. 

In[10] Mehner et all. Propose an approach for analysing interactions between crosscutting concerns and potential inconsisten-
cies at requirement models. The analysis is performed with graph transformation tool. For that, activities are used to refine use 
case and then, the activities and their composition are formalised by using theory of graph transformation system. In [6], Brito 
et all. Propose a process to compose crosscutting concern with functional requirement; the main concepts behind this process 
are those of Match point, conflicting aspects, dominant aspect and composition rule [6]. A match point is where one aspect or 
more are applied and it is used to detect conflict. To resolve conflict we need to identify dominant crosscutting concern with 
higher priority. Finally the composition rule is defined for one match point and the concerns are composed accord ally. 

In this paper we propose a technique that allows to the user analyse interaction between aspects, identify aspects interac-
tions, detect and resolve the conflicts between them based on the search of Hamiltonians paths .The technique is supposed 
generic in fact, that exploits the dependencies generated by the operators such as before, after, around and replace, and based 
specification it uses the specification of composition of aspects to analyse aspect and produces rules of composition witch 
may be used to compose or in less guide de process of composition . The remainder of this paper is organised as follows. 
In section2 we briefly present general concept of aspects oriented development and the main concepts of Aspect oriented 
requirement engineering (AORE).In section” we present a classification of aspects conflicts. In Section4,5 and 6 we present 
our contribution and explain the technique with abstract example. In section7 the algorithm of proposed technique is turn up 
on concrete example. Section 9 concludes the paper and presents some perspectives of the work. 

2. General Concepts of Aspects Oriented Development 

Separation of concerns is a concept that is at the core of software engineering. It refers to the ability to identify, encapsulate, 
and manipulate those parts of software that are relevant to a particular concern (concept, goal, purpose, etc…)[9].Traditional 
approaches to software development such as object oriented and structured methods have been created with this principle. Each 
module (class, procedure...) encapsulates certain concerns of software system [17].However, in a given problem decomposi-
tion, certain concerns may be not encapsulated within a modular unit (class, procedure...) [12]. They are called crosscutting 
concerns (Aspect) [1]. In consequence, the modularity of the system can be improved, leading to a reduced complexity and 
easier maintainability [1]. The main concepts that are introduced are: Point cut specification join point, Advice and Weaving 
[1, 2]. There are several aspect oriented approaches and languages. They differ in the way to specify Aspects, Point cuts, 
Advice and weaving [1,2,16]. Conventional aspects oriented development techniques have been fairly limited to the imple-
mentation phase. However, recent works have tried to generalise the concept of aspect and apply it to different phases of the 
life cycle of software [19] such as requirement analysis and design. 

Generally, Aspect Oriented Requirement Engineering (AORE) approaches claim that dealing with aspect is useful for soft-
ware development [12, 14]. “Identifying and managing early aspects helps to improve modularity in the requirements and 
architecture design and to detect conflicting concern early, when trades off can be resolved more economically” [3] 

At this phase, the crosscutting concerns are candidates aspects. The analysis of their interactions at this early stage constitutes 
an early understanding of their interactions. Aspect oriented requirement approaches are those that explicitly recognise the 
importance of identifying, treating, reasoning about crosscutting concern/requirement at the analysis phase [16,4]. 

These approaches improve existing requirement engineering approaches, by providing explicit representation and modularisa-
tion of concern/requirement that crosscut the requirement artefacts. The modular representation of crosscutting requirement 
improves the tractability of requirements, through all other artefacts of software life cycle [4]. Also, these approaches focus 
on the composition principle. It should be possible to compose each concern/ requirement with the rest of the concerns of the 
system under construction, to understand interactions, interrelations, tradeoffs (conflicts) among concerns [16, 4]. 



128 Journal of Networking Technology  Volume 1 Number 3  September 2010

3. Categories of Conflicts with Aspects 

Aspect and base concerns can conflict with each other or themselves. There is a need to categorize the potential inconsisten-
cies and conflicts that can occur in aspect-oriented software, in order to provide a list of issues that developers should be 
aware of, and, needs to be investigated. J.Hannemann, and all In [23] Define the following four categories of conflicts and 
inconsistencies in aspect oriented software: 

Crosscutting specifications: • Now, aspect-oriented approaches specify crosscutting in terms of join points in the base 
concerns. This can lead to two problems: accidental join points imply accidentally matching unwanted join points thus 
applying the aspect’s behaviour at the wrong places. And accidental recursion that refers to the situation when the aspect 
behaviour itself matches a join point specification description leading to recursion. 

Aspect-aspect conflicts: • When multiple aspects exist in a system, they can conflict with each other which are also called 
aspect interaction. five categories of interactions are identified :
- conditional execution where applicability of one aspect is dependent on another aspect being applied; 
- mutual exclusion when composing one aspect implies that another one must not be composed; 
- ordering required when aspects influence the same point in the base concerns; 
- dynamic context dependent ordering which differs from simple, ordering in that case depends on the context in which 

the aspects are being applied; 
- Tradeoffs and conflicts at requirements and architectural level where aspects influencing the same Elements can result 

in having to compromise particular requirements in favour of others[23]. 

Base-aspect conflicts: • Aspects can conflict not only with each other but, also with the base concerns. Lead to circular 
dependencies between aspect and base. And the need for base to communicate with the aspect [23]

Concern-concern conflicts: • conflicts can also occur between concerns. These kinds of problems arise when concerns affect 
the execution or state of other concerns. The change of functionality made by aspects can impact other modules. Inconsistent 
behaviour can occur when an aspect destroys or manipulates the state of another aspect or the base concern. [23] 

4. Overview of the Proposed Approach 

The proposed technique for dealing with crosscutting concerns interactions is proposed at analysis phase. At this phase, the 
crosscutting concerns are candidates’ aspects. The analysis of their interactions at this early stage constitutes an early under-
standing of their interactions, and the resolution of potential conflicts between them in first step leads to an aspect oriented 
development without conflicts. The proposed approach of analysing aspect is specification based approach it uses composition 
specification of candidate aspects to achieve roles attribute to analyse component. And supplies an outcome: composition 
rules, which can be used and implemented by author languages and techniques of composition to succeflly, compose aspects 
with component base. The proposed technique is generic one, since, it is not depend on the way to identify aspects or compose 
them. It exploits the dependencies generated by the operators to reason on interaction between aspects,

The composition specification of aspect specifies its composition, i.e. where and how it will be attached at join points. But, 
this specification remains limited. Each candidate aspect encapsulates information needed for its composition. It does not 
know: with witch others aspects it will be attached at the same join point. It is necessary to get further specification, complete, 
all encompassing, that organise aspects interactions affecting the same join point: 

composition rules [6] . To reach this objective, it is necessary to analyse the problem in order to 
 Satisfy the behaviour of any candidate aspects that will be attached at the join point 
 Satisfy the base behaviour (the join point behaviour), 
 detect potential interactions with aspects, and reason about interactions by resolving any detected conflict and
 Satisfy dependencies between aspects. 

• Base-aspect conflicts: Aspects can conflict not only with each other but, also with the base concerns. Lead 
to circular dependencies between aspect and base. And the need for base to communicate with the aspect 
[23]

• Concern-concern conflicts: conflicts can also occur between concerns. These kinds of problems arise 
when concerns affect the execution or state of other concerns. The change of functionality made by aspects 
can impact other modules. Inconsistent behaviour can occur when an aspect destroys or manipulates the 
state of another aspect or the base concern. [23] 

4. OVERVIEW OF THE PROPOSED APPROACH: 
The proposed technique for dealing with crosscutting concerns interactions is proposed at analysis phase. At this 
phase, the crosscutting concerns are candidates’ aspects. The analysis of their interactions at this early stage 
constitutes an early understanding of their interactions, and the resolution of potential conflicts between them in first 
step leads to an aspect oriented development without conflicts. The proposed approach of analysing aspect is 
specification based approach it uses composition specification of candidate aspects to achieve roles attribute to 
analyse component. And supplies an outcome:  composition rules, which can be used and implemented by author 
languages and techniques of composition to succeflly, compose aspects with component base. The proposed 
technique is generic one, since, it is not depend on the way to identify aspects or compose them. It exploits the 
dependencies generated by the operators to reason on interaction between aspects,  

FIGURE1: ANALYSIS COMPONENT

The composition specification of aspect specifies its composition, i.e. where and how it will be attached at join 
points. But, this specification remains limited. Each candidate aspect encapsulates information needed for its 
composition. It does not know: with witch others aspects it will be attached at the same join point. It is necessary to 
get further specification, complete, all encompassing, that organise aspects interactions affecting the same join point: 
composition rules [6] .  To reach this objective, it is necessary to analyse the problem in order to 
  Satisfy the behaviour of any candidate aspects that will be attached at the join point 
  Satisfy the base behaviour (the join point behaviour),  
 detect potential interactions with aspects, and reason about interactions by resolving any detected conflict and 
  Satisfy dependencies between aspects.  
Similarly to [5,24 ], this is the general strategy adopted by the proposed technique.   The activity diagram shown in 
figure2 give an overview of the proposed approach  

Figure2: overview of the proposed approach 

Figure 1. Analysis Component



 Journal of Networking Technology  Volume 1 Number 3  September  2010 129

Similarly to [5,24 ], this is the general strategy adopted by the proposed technique. The activity diagram shown in figure 2 
give an overview of the proposed approach 

5. Composition Specification of Aspect: The Input of Analysis Component 

As used in [5], we use a template (table1) to specify crosscutting concerns. The template encapsulates the crosscut specifica-
tion of an aspect and the behaviour attached at composition (Advice) to a join point. It describes the composition specifica-
tion for one aspect. This specification follows the general concepts adopted in AOSD. The proposed template is constructed 
based on the approach proposed in [20]. 

Aspect::( Name: …. Code:… ……. 

Advice: ……… 

Affected 
use case 

Operat  
or 

Affected 
point  
(optional) 

Preconditi  
on  
(optional) 

Post  
condition 
(optional) 

Table1. Template to specify crosscutting concern (composition specification of aspect) 

The template is used to specify functional crosscutting concern and non-functional concern without deference. Affected use 
case specifies the base concerns. And, the following operators are adopted to identify how each aspect affects the concerns 
(operators):

Overlap/before: the candidate aspect is applied before the base concern. The behaviour described by the candidate aspect 
must be satisfied before satisfaction of the base concern behaviour [15, 20]. 

Overlap/after: the candidate aspect is applied after the base concern. The behaviour described by the candidate aspect must 
be satisfied after the satisfaction of the base concern behaviour [15,20]. 

Override: the behaviour described by the candidate aspect substitutes the behaviour defined by the concern. This operator 
represents the around qualifier in Aspectj without Proceed [15, 20, 21]. 

Wrap: the behaviour described by the concern is enveloped by the behaviour described by the candidate aspect. This operator 
represents the around qualifier in Aspectj with Proceed [15, 20],These operators are generally used in AORE. 

• Base-aspect conflicts: Aspects can conflict not only with each other but, also with the base concerns. Lead 
to circular dependencies between aspect and base. And the need for base to communicate with the aspect 
[23]

• Concern-concern conflicts: conflicts can also occur between concerns. These kinds of problems arise 
when concerns affect the execution or state of other concerns. The change of functionality made by aspects 
can impact other modules. Inconsistent behaviour can occur when an aspect destroys or manipulates the 
state of another aspect or the base concern. [23] 

4. OVERVIEW OF THE PROPOSED APPROACH: 
The proposed technique for dealing with crosscutting concerns interactions is proposed at analysis phase. At this 
phase, the crosscutting concerns are candidates’ aspects. The analysis of their interactions at this early stage 
constitutes an early understanding of their interactions, and the resolution of potential conflicts between them in first 
step leads to an aspect oriented development without conflicts. The proposed approach of analysing aspect is 
specification based approach it uses composition specification of candidate aspects to achieve roles attribute to 
analyse component. And supplies an outcome:  composition rules, which can be used and implemented by author 
languages and techniques of composition to succeflly, compose aspects with component base. The proposed 
technique is generic one, since, it is not depend on the way to identify aspects or compose them. It exploits the 
dependencies generated by the operators to reason on interaction between aspects,  

FIGURE1: ANALYSIS COMPONENT

The composition specification of aspect specifies its composition, i.e. where and how it will be attached at join 
points. But, this specification remains limited. Each candidate aspect encapsulates information needed for its 
composition. It does not know: with witch others aspects it will be attached at the same join point. It is necessary to 
get further specification, complete, all encompassing, that organise aspects interactions affecting the same join point: 
composition rules [6] .  To reach this objective, it is necessary to analyse the problem in order to 
  Satisfy the behaviour of any candidate aspects that will be attached at the join point 
  Satisfy the base behaviour (the join point behaviour),  
 detect potential interactions with aspects, and reason about interactions by resolving any detected conflict and 
  Satisfy dependencies between aspects.  
Similarly to [5,24 ], this is the general strategy adopted by the proposed technique.   The activity diagram shown in 
figure2 give an overview of the proposed approach  

Figure2: overview of the proposed approach Figure 2. Overview of the proposed approach



130 Journal of Networking Technology  Volume 1 Number 3  September 2010

These operators are generally used in AORE Approaches .in follow, the notation below is adopted: 

Overlap/before..........> before 

Overlap/after…….…>After 

Override …………..> replace 

Wrap…………….…>around 

6. Analysis Activity 

In figure3 the general algorithm for analyse interaction in one join point is shown 

The analysis activity includes the following tasks
Detecting interactions between aspects • 
Detecting dependencies • 
Detecting potentials conflicts • 
Reasoning and resolving conflicts • 
Generating composition rule • 

6.1 /-Detection of interactions with candidate aspects 
Based on the method described in [6], we use a matrix : matching point matrix, representing the relationships between the 
stakeholder’s requirements (actors) and the model elements (eq Use case) to identify matching points (abstraction of join 
point) [6], and to identify interactions between candidate aspects . The set of matching points of each candidate aspects are 
obtained used the composition specification (crosscut specification) of aspects and are filled in the MP-Matrix, where each 
cell filled with the list of candidate aspects (denoted Cai) represents a Match point (denoted Mpi) [6]. 

Concern Stakeholder Concern1 Concern2 ……..concernn 

Stakeholder1 CA1,CA2  
(MPA)  
 
CA3,CA4  
(MPd) 

CA1,CA4…………………..  
(MPb  
………………………….  
………………….….cA2  
                           (MPc) 

…

Stakeholder 

Table 2. Match Point Matrix [6] 

5. COMPOSITION SPECIFICATION OF ASPECT: THE INPUT OF ANALYSIS COMPONENT 
As used in [5], we use a template (table1) to specify crosscutting concerns. The template encapsulates the crosscut 
specification of an aspect and the behaviour attached at composition (Advice) to a join point. It describes the 
composition specification for one aspect. This specification follows the general concepts adopted in AOSD. The 
proposed template is constructed based on the approach proposed in [20].

Aspect::( Name: …. Code:… …….
Advice: ………
Affected 
use case 

Operat
or 

Affected 
point 
(optional) 

Preconditi
on 
(optional) 

Post 
condition 
(optional) 

Table1: Template to specify crosscutting concern (composition specification of aspect) 
  
The template is used to specify functional crosscutting concern and non-functional concern without deference. 
Affected use case specifies the base concerns. And, the following operators are adopted to identify how each aspect 
affects the concerns (operators):  
Overlap/before: the candidate aspect is applied before the base concern. The behaviour described by the candidate 
aspect must be satisfied before satisfaction of the base concern behaviour [15, 20]. 
Overlap/after: the candidate aspect is applied after the base concern. The behaviour described by the candidate 
aspect must be satisfied after the satisfaction of the base concern behaviour [15,20]. 
Override: the behaviour described by the candidate aspect substitutes the behaviour defined by the concern. This 
operator represents the around qualifier in Aspectj without Proceed [15, 20, 21]. 
Wrap: the behaviour described by the concern is enveloped by the behaviour described by the candidate aspect. This 
operator represents the around qualifier in Aspectj with Proceed [15, 20],These operators are generally used in AORE  
These operators are generally used in AORE Approaches .in follow, the notation below is adopted: 

Overlap/before..........> before 
Overlap/after…….…>After 
Override …………..> replace 
Wrap…………….…>around 

6. ANALYSIS ACTIVITY:  
In figure3 the general algorithm for analyse interaction in one join point   is shown 

Figure3: Algorithm of analysis interaction for one join point 

The analysis activity includes the following tasks:
• Detecting interactions between  aspects 

Figure 3. Algorithm of analysis interaction for one join point 



 Journal of Networking Technology  Volume 1 Number 3  September  2010 131

For one matching point, it must be specified one composition rule. If there is one candidate aspect affecting the matching 
point, there is no problem. The dependency aspect match point (base) represented by the type of operator must be satisfied. 
If there are many candidate aspects affecting the same match point, there are interactions among aspects and with match 
point (base module). 

The interaction is not always negative relationship. It may be positive or negative one, we distinguish between conflict and 
dependency interaction: 

 Conflict: captures the situation of interference, one aspect that works correct in isolation, and does not work correctly 
any more, when, it is composed with other aspects. The aspect in conflict cannot take place after satisfying anthers aspects 
affected the same base module. it is negative interaction [11,18]. 

 Dependency: covers the situation where one aspect explicitly needs another aspect, and depend on it to be satisfied. A 
dependency is positive one [18,11]. It must be possible to reason about interactions, identify dependencies, and identify and 
resolve conflicts. 

6.2 Identification of dependencies 
To illustrate technique, lets suppose the candidates aspects A1,A2,A3,A4 A5 affected the match point (join point) P. Suppose 
that: 

Aspect A1 overlaps before the match point (A1 before P). Aspect A2 overlaps after the match point P (A2 after P).Aspect 
A3 wraps the match point with (A3 around P). Aspect A4 substitutes the match point (A4 replace P). Aspect A5 overlaps 
before the Match point (A5 before P). Aspect A6 overlaps after the match point (A6 after P). There are interactions between 
aspects A1, A2,A3,A4,A5,A6 and also with the match point P. So, for identifying dependency we exploit the dependencies 
generated by the operators. 

We propose tree consideration: 

First consideration: Based on the type of operator applied to attach the aspect to the match point, we are convinced that there 
is a dependency, between aspect and the match point. 

Operator before: the match point is never satisfied before the satisfaction of the aspects (A1, A5) and the satisfaction of P 
depends on the satisfaction of Aspects A1 and A5. So, we identify the dependencies: P→A1 and P→A5. 

Operator After: the match point must be satisfied before satisfying the aspects A2, A6, because the behaviour of aspect A2, 
A6 must be attached after P. So the satisfaction of A2 and A6 depends on the satisfaction of P and we identify the dependen-
cies A2→P and A6→P. 

the operator around: the behaviour of the aspect A3 must be satisfied in parallel with the behaviour of the join point P. 
It is considered like a case of synchronization (P synchronises with A3). The behaviour of the join point is satisfied after 
the satisfaction of the behaviour of aspect A3 (and execution of precede instruction like Aspectj). Therefore, the satisfac-
tion of P depends on the satisfaction of A3 and we identify the dependency: P → A3. This dependency is noted (P =>A3) 
(in parallel). 

the operator replace: the operator substitutes the behaviour of P by the behaviour of A4. The behaviour of P is not executed, 
but, unless reach P, the behaviour of A4 is not satisfied. So the satisfaction of A4 depends on P. We denote this dependency: 
A4---> P ( P is note executed, A4 replace P ). 

second consideration: the dependency is a transitive relationship. For aspects Ai,Aj,Ak: Ai depend on Aj and Aj depend on Ak 
implies Ai depends on AK. Let’s suppose candidate aspects Ai, Aj, Ak. Ai must be satisfied before Aj, and Aj must be satisfied 
before Ak. So it is evident that Ai must be satisfied before Ak. 

third consideration concerns: for operators around and replace, we can identify some fictive dependencies (artificial). in 
definite likelihood 

-Operator around: the behaviour of aspect A3 must be satisfied in parallel with the behaviour of the join point P, it permits us 
to deduct that exists a firm probability that the aspect A3 is dependent on all aspects of which the join point P is dependent,. 
Fictive dependencies A3 → A1, A3 → A5 are identified. We note them in red . 

-the operator replace: aspect A4 modifies the behaviour of the join point P. Therefore, it permits us to conclude, that exists 
a concrete probability that all aspects depending on the join point P become dependent on the aspect A4. The fictive depen-
dencies A6→ A4, A2→A4 are identified. 



132 Journal of Networking Technology  Volume 1 Number 3  September 2010

The fictive dependencies are not real ones. They are characterized by some degree of likelihood (weak or strong), their use 
and identification is not mandatory but they have the advantage to help and to simplify the analysis. They allow us to generate 
the possible solutions on a certain degree of probability and to focus the analysis on a reduced set of dependencies. 

Graph of dependency and transitive closure 
The graph of dependency G (X, U) represents identified dependencies. Nodes set (X) includes join point and aspects that 
will be inserted. Initially, and in first stage, the set of edges (U) includes aspects-match point dependencies (with or without 
fictive dependencies). 

The transitive closure G + (X, U) of the dependency graph permits us to represent direct and indict dependencies, while 
including the transitive dependencies that one can deduce. 

6.3 Detection of conflicts between Aspects 
Once the initial dependency graph and its transitive closure are generated, our objective is to satisfy all aspects and the join 
point according to the dependencies between the aspects and the join point. 

This may be done by a simple search of Hamiltonian paths in the transitive closure of dependency graph. We notice that, a 
Hamiltonian path is an elementary path, which passes through all nodes once o nly once. So, we can consider that the Ham-
iltonian path in the transitive closure of dependency graph is a solution, which satisfies the behaviour of join point (bases) 
and aspects (that pass through all the nodes once and only once). The identification of conflicts between aspects becomes a 
response to the trivial question: Is there a Hamiltonian path that satisfies the bases (join point) a nd all the inserted aspects? 
If there is no Hamiltonian path, then there is a conflict. At least, one aspect is in conflict. It is not satisfied (it can not reach 
the join point). Notice that the conflict in this case is an order conflict. 

In the next step, we identify which aspects are not satisfied. To this end, we generate all the longest paths in the transitive 
closure. We analyze generated paths to identify the non satisfied aspects for each path. Then, we identify the aspects that are 
satisfied in mutual exclusion. For instance, see the transitive closure shown in figure5. There are no Hamiltonian paths in the 
transitive closure, so there is at least one order conflict. In this case, the longest paths are shown in the following table. 

 second consideration: the dependency is a transitive relationship. For aspects Ai,Aj,Ak: Ai depend on Aj and Aj
depend on Ak  implies  Ai depends on AK.  Let’s suppose candidate aspects Ai, Aj, Ak. Ai must be satisfied before Aj , 
and Aj must be satisfied before Ak. So it is evident that Ai must be satisfied before Ak . 
third consideration concerns: for operators around and replace, we can identify some fictive dependencies 
(artificial). in definite likelihood  

-Operator around: the behaviour of aspect A3 must be satisfied in parallel with the behaviour of the join point P 
, it permits us to deduct that exists a firm  probability that the aspect A3 is dependent on all aspects of which the join 
point P is dependent,. Fictive dependencies A3  A1, A3  A5 are identified. We note them in red . 

-the operator replace: aspect A4 modifies the behaviour of the join point P. Therefore, it permits us to 
conclude, that exists a concrete probability that all aspects depending on the join point P become dependent on the 
aspect A4. The fictive dependencies A6 A4, A2A4 are identified. 
The fictive dependencies are not real ones. They are characterized by some degree of likelihood (weak or strong), 
their use and identification is not mandatory but they have the advantage to help and to simplify the analysis. They 
allow us to generate the possible solutions on a certain degree of probability and to focus the analysis on a reduced set 
of dependencies.  

 Graph of dependency and transitive closure: 
The graph of dependency G (X, U) represents identified dependencies. Nodes set (X) includes  join point and aspects 
that will be inserted. Initially, and in first stage, the set of edges (U) includes aspects-match point dependencies (with 
or without fictive dependencies). 
The transitive closure G+ (X, U) of the dependency graph permits us to represent direct and indict dependencies, 
while including the transitive dependencies that one can deduce. 

(A) (B) 

Figure4: Dependency Graph (A): Without fictive dependencies,(B):With fictive dependencies 

Figure5: Transitive Closure

6.3. Detection of conflicts between Aspects: 
Once the initial dependency graph and its transitive closure are generated, our objective is to satisfy all aspects and 
the join point according to the dependencies between the aspects and the join point. 
This may be done by a simple search of Hamiltonian paths in the transitive closure of dependency graph. We notice 
that, a Hamiltonian path is an elementary path, which passes through all nodes once only once. 
So, we can consider that the Hamiltonian path in the transitive closure of dependency graph is a solution, which 
satisfies the behaviour of join point (bases) and aspects (that pass through all the nodes once and only once). The 
identification of conflicts between aspects becomes a response to the trivial question: Is there a Hamiltonian path that 
satisfies the bases (join point) and all the inserted aspects?  If there is no Hamiltonian path, then there is a conflict. At 
least, one aspect is in conflict. It is not satisfied (it can not reach the join point). Notice that the conflict in this case is 
an order conflict. 

Figure 4. Dependency Graph (A): Without fictive dependencies,(B):With fictive dependencies 

 second consideration: the dependency is a transitive relationship. For aspects Ai,Aj,Ak: Ai depend on Aj and Aj
depend on Ak  implies  Ai depends on AK.  Let’s suppose candidate aspects Ai, Aj, Ak. Ai must be satisfied before Aj , 
and Aj must be satisfied before Ak. So it is evident that Ai must be satisfied before Ak . 
third consideration concerns: for operators around and replace, we can identify some fictive dependencies 
(artificial). in definite likelihood  

-Operator around: the behaviour of aspect A3 must be satisfied in parallel with the behaviour of the join point P 
, it permits us to deduct that exists a firm  probability that the aspect A3 is dependent on all aspects of which the join 
point P is dependent,. Fictive dependencies A3  A1, A3  A5 are identified. We note them in red . 

-the operator replace: aspect A4 modifies the behaviour of the join point P. Therefore, it permits us to 
conclude, that exists a concrete probability that all aspects depending on the join point P become dependent on the 
aspect A4. The fictive dependencies A6 A4, A2A4 are identified. 
The fictive dependencies are not real ones. They are characterized by some degree of likelihood (weak or strong), 
their use and identification is not mandatory but they have the advantage to help and to simplify the analysis. They 
allow us to generate the possible solutions on a certain degree of probability and to focus the analysis on a reduced set 
of dependencies.  

 Graph of dependency and transitive closure: 
The graph of dependency G (X, U) represents identified dependencies. Nodes set (X) includes  join point and aspects 
that will be inserted. Initially, and in first stage, the set of edges (U) includes aspects-match point dependencies (with 
or without fictive dependencies). 
The transitive closure G+ (X, U) of the dependency graph permits us to represent direct and indict dependencies, 
while including the transitive dependencies that one can deduce. 

(A) (B) 

Figure4: Dependency Graph (A): Without fictive dependencies,(B):With fictive dependencies 

Figure5: Transitive Closure

6.3. Detection of conflicts between Aspects: 
Once the initial dependency graph and its transitive closure are generated, our objective is to satisfy all aspects and 
the join point according to the dependencies between the aspects and the join point. 
This may be done by a simple search of Hamiltonian paths in the transitive closure of dependency graph. We notice 
that, a Hamiltonian path is an elementary path, which passes through all nodes once only once. 
So, we can consider that the Hamiltonian path in the transitive closure of dependency graph is a solution, which 
satisfies the behaviour of join point (bases) and aspects (that pass through all the nodes once and only once). The 
identification of conflicts between aspects becomes a response to the trivial question: Is there a Hamiltonian path that 
satisfies the bases (join point) and all the inserted aspects?  If there is no Hamiltonian path, then there is a conflict. At 
least, one aspect is in conflict. It is not satisfied (it can not reach the join point). Notice that the conflict in this case is 
an order conflict. 

Figure 5. Transitive Closure 



 Journal of Networking Technology  Volume 1 Number 3  September  2010 133

Longest paths Analyze of the longest paths 

CH1= A2A4PA3A5 A6,A1: are not satisfied 

CH2= A2A4PA3A1 A6,A5: are not satisfied 

CH3= A6,A4PA3A5 A2,A1: are not satisfied 

CH4= A6A4PA3A1 A2,A5: are not satisfied 

Synthesis of conflicts analysis  
(mutual exclusion) 

Conflict between (A1,A5) Conflict 
between (A6,A2) 

Table 3. The longest paths of the example shown in figure 

6.4 Conflict Resolution 
Once, the aspects in conflict are detected. We must resolve them. The solution we propose consists of adding and identifying 
a resolution dependency between aspects in order conflict (mutual exclusion). The resolution dependencies here represent 
information about the order of execution of aspects in conflict. Let’s say: 

The priority between aspects: Ai has a higher priority than Aj implies that aspect Aj depends on aspect Ai• . The satisfaction 
of Ai before the satisfaction of Aj 

An aspect Ai uses an aspect Aj, this imply that aspect Ai depends on Aj (the satisfaction of Ai depend on the satisfaction • 
of Aj) 

An aspect Ai has preconditions included in post-conditions of Aj implies that aspect Ai depends on Aj • (since the 
precondition to execute Ai depends on the execution of Aj). 

The added dependencies can be identified from the analysis of the preoccupation specifications and or making a direct trade-
off with the concerned stakeholder. For illustration, see the former example. We suppose after a discussion with the stake-
holder, we define a priority on concerns: A1 has a higher priority than A5, A6 has a higher priority than A2 . We identify the 
dependencies A5 →A1 and A2→A6. After, when conflicts are treated and resolved, the identified dependencies of resolution 
are added to the dependency graph. 

We generate the new dependency graph witch includes resolution dependency (Aspect-Aspect). Also, we generate the transi-
tive closure of dependency graph. At last, we find again Hamiltonians paths. 

Two situations may occur: there is one or several Hamiltonians paths. If there are several Hamiltonians paths, we must 
review each solution, to verify the fictive dependencies and to only keep the strong one, the weak dependencies are 
removed. Therefore, Hamiltonians paths which include weak dependencies, are not considered more like a solution, and 
will be suppressed. 

6.5. Generate composition rule 
After obtaining Hamiltonians paths and verification of fictive dependencies, we can generate the composition rule specifica-
tion easily. For more illustration see previous the example: (figure 3: initial transitive closure), figure 6: is Transitive closure 
after inserting resolution dependencies (A5→A1), (A2→A6) 

Figure 6. Transitive Closure after inserting resolution dependencies 

In the next step, we identify which aspects are not satisfied. To this end, we generate all the longest paths in the 
transitive closure. We analyze generated paths to identify the non satisfied aspects for each path. Then, we identify 
the aspects that are satisfied in mutual exclusion. For instance, see the transitive closure shown in figure5. There are 
no Hamiltonian paths in the transitive closure, so there is at least one order conflict. In this case, the longest paths are 
shown in the following table. 
  

Longest  paths  Analyze of the longest 
paths 

CH1= A2A4PA3A5 A6,A1: are not satisfied  

CH2= A2A4PA3A1 A6,A5: are not satisfied 

CH3= A6,A4PA3A5 A2,A1: are not satisfied 

CH4= A6A4PA3A1 A2,A5: are not satisfied 

Synthesis of conflicts 
analysis  

( mutual exclusion)  

Conflict between (A1,A5) 

Conflict between (A6,A2) 

Table 3: The longest paths of the example shown in figure. 

6.4. Conflict Resolution 
Once, the aspects in conflict are detected. We must resolve them. The solution we propose consists of adding and 
identifying a resolution dependency between aspects in order conflict (mutual exclusion).  The resolution 
dependencies here represent information about the order of execution of aspects in conflict. Let's say: 

• The priority between aspects: Ai has a higher priority than Aj implies that aspect Aj depends on aspect Ai. 
The satisfaction of Ai before the satisfaction of Aj 

• An aspect Ai uses an aspect Aj , this imply that aspect Ai depends on Aj (the satisfaction of Ai depend on 
the satisfaction of Aj) 

• An aspect Ai has preconditions included in post-conditions of Aj implies that aspect Ai depends on Aj 
(since the precondition to execute Ai depends on the execution of Aj). 

The added dependencies can be identified from the analysis of the preoccupation specifications and or making a 
direct trade-off with the concerned stakeholder. For illustration, see the former example. We suppose after a 
discussion with the stakeholder, we define a priority on concerns: A1 has a higher priority than A5, A6 has a higher 
priority than A2 . We identify the dependencies A5 A1 and A2A6. After, when conflicts are treated and 
resolved, the identified dependencies of resolution are added to the dependency graph. 
We generate the new dependency graph witch includes resolution dependency (Aspect-Aspect). Also, we generate 
the transitive closure of dependency graph. At last, we find again Hamiltonians paths. 
Two situations may occur: there is one or several Hamiltonians paths. If there are several Hamiltonians paths, we 
must review each solution, to verify the fictive dependencies and to only keep the strong one, the weak dependencies 
are removed. Therefore, Hamiltonians paths which include weak dependencies, are not considered more like a 
solution, and will be suppressed. 

6.5. Generate composition rule: 
After obtaining Hamiltonians paths and verification of fictive dependencies, we can generate the composition rule 
specification easily. For more illustration see previous the example: (figure 3: initial transitive closure), figure 6: is 
Transitive closure after inserting resolution dependencies (A5A1), (A2A6) 

Figure6: Transitive Closure after inserting resolution dependencies



134 Journal of Networking Technology  Volume 1 Number 3  September 2010

Hamiltonians paths founded are: Ch = A2A6A4PA3A5A1
←. 

The composition rule can be written (according to the direction of the small arrow above the path) 
A1 before P 
A5 before P 
A3 around P 
P 
A4 replace P 
A6 after P 
A2 after P 

We can be written it according to LOTOS operators described in [17] as follows: 

A1>> A5>> ((P> ]A4) ||A3)>>A6>> A2 

7. Case Study 

Our aim is to perform the technique on concrete case study and more explain the main ideas proposed in this paper . Let us 
consider the example borrowed from [13],it is a simple version of the sub way .The requirements for the subway are : to 
use the subway a client has to own a card that must have been credited with some amount of money. A card is bought and 
credited in special buying machines available in any subway station. A client uses this card in an entering machine to initiate 
her/his trip. When she/he reaches the destination, the card is used in an exit machine that debits it with an amount that debits 
it with an amount that depends on the distance travelled. If the card has not enough credits the gates will not open unless the 
client adds more money to the card. The client can ask for a refund of the amount in the card by giving it back to a baying 
machine. 

Let’s consider the simpler situation where only the actor client is handled. The corresponding use case diagram to specify 
the functional concerns is illustrated in fig7: 

In this example we identify the following crosscutting concerns: validate card (functional concern) and the no functional 
concerns: Response time, Accuracy, Multi-access, Availability, Security. 

security is composed of sub concerns: S.integrity, S.availability The integrity is composed of sub concern: S.integrity.com-
pletness. and S.integrity.accuracy 

Let’s consider just the Enter subway and validate card use cases ( match point ): 
-Response time (RT) concern wraps Entersubway use case : (RT around Entersubway) 
-Availability (S.Av) overlaps before Entersubway use case : (S.AV before Entersubway) 
-integrity (S.integrity) overlaps after the match point Entersubway: (S.integrity after Entersubway) 
-Accuracy (S.integrity.accuracy) wraps Entersubway : (S.integrity.accuracy around Entersubway) 
- Validatecard overlaps before Entersubway use case: (Validatecard before Entersubway) and accuracy (S.integrity.accuracy) 
wraps Validatecard use case: (S.integrity.accuracy before Validatecard) 

Hamiltonians paths founded are: Ch= A2A6A4PA3A5A1
 . 

The composition rule can be written (according to the direction of the small arrow above the path) 
A1 before P 
A5 before P 
A3 around P 
P 
A4 replace P 
A6 after P 
A2 after P 

We can be written it according to LOTOS operators described in [17] as follows: 
A1>> A5>> ((P> ]A4) ||A3)>>A6>> A2 

7. CAS STUDY 
Our aim is to perform the technique on concrete case study   and more explain the main ideas proposed in this paper .  
Let us consider the example borrowed from [13] ,it is a simple version of the sub way .The   requirements for the 
subway are : to use the subway a client has to own a card that must have been credited with some amount of money. 
A card is bought and credited in special buying machines available in any subway station. A client uses this card in 
an entering machine to initiate her/his trip. When she/he reaches the destination, the card is used in an exit machine 
that debits it with an amount that debits it with an amount that depends on the   distance travelled. If the card has not 
enough credits the gates will not open unless the client adds more money to the card. The client can ask for a refund 
of the amount in the card by giving it back to a baying machine. 
Let’s consider the simpler situation where only the actor client is handled. The corresponding use case diagram to 
specify the functional concerns is illustrated in fig7: 

Figure 7: the use case diagram of the subway system 

In this example we identify the following crosscutting concerns: validate card (functional concern) and the no 
functional concerns:  Response time, Accuracy,  Multi-access ,  Availability,   Security.  

security is composed of sub concerns: S.integrity , S.availability  The integrity is composed of  sub concern: 
S.integrity.completness. and S.integrity.accuracy 

Let’s consider just the Enter subway and validate card use cases ( match point ): 
- Response time (RT) concern  wraps Entersubway  use case  : (RT around  Entersubway) 
- Availability (S.Av) overlaps before Entersubway use case  : (S.AV before Entersubway) 
-integrity (S.integrity) overlaps after the match point Entersubway: (S.integrity after  Entersubway) 
- Accuracy (S.integrity.accuracy) wraps Entersubway : (S.integrity.accuracy around Entersubway) 
- Validatecard overlaps before Entersubway use case: (Validatecard before Entersubway) 
and accuracy (S.integrity.accuracy) wraps Validatecard use case: (S.integrity.accuracy before Validatecard) 

step1: Identify interaction: The interaction are identified and represented in table 5. 

       Concern 

Stakeholder 

entersubway  validatecard 

client  Validate card, RT, 
S.AV, S.integrity.AC 
,S.integrity 

s.integrity.AC 

Table 5. Identification of interactions 

Step2: Generate initial dependency graph and transitive closure: 

Figure 7. The use case diagram of the subway system 



 Journal of Networking Technology  Volume 1 Number 3  September  2010 135

step1: Identify interaction: The interaction are identified and represented in table 5. 

Concern Stakeholder entersubway validatecard 

client Validate card, RT, s.integrity.AC S.AV, S.integrity.AC, 
S.integrity 

Table 5. Identification of interactions 

Step2: Generate initial dependency graph and transitive closure: 

Step3: Detection of conflicts: No Hamiltonians paths in the transitive closure: there is conflict. Then we find the longest 
paths in the transitive closure and analysis of each path. See table 6. 

Longest paths Analysis of longest paths 

Ch1 = S.integrité,Entersubway,s.integrit 
y.AC, RT, Vaidatecard 

S.AV : no satisfied 

Ch2 = S.integrity,entersubway,RT, 
S.integrity.AC, sSAV 

Validatecard : no satisfied 

Ch3 = Sintegrity, Entersubway,RT, 
S.integrity,AC, validatecard 

S.AV : no Satisfied 

Ch4 = S.integrity, Entersubway,RT, 
s.integrity,AC, s.AV 

Validat card : no satisfied 

synthèse d’analyse des conflits (mutuel 
exclusion) 

Conflict between 
(Validatecard, S.AV) 

Table 6. Longest paths and their analysis 

Step4: Resolution of conflicts S.AV has higher priority than validatecard, (S.AV constrain all the requirement of Entersubway 
use case): (validatecard→s.AV) dependency is identified and inserted to the dependency graph . 

Step5: Regeneration of dependency graph and transitive closure the generated dependency graph and transitive closure 
are shown in figure 9. 

(A): (B):

Figure 8: (A) Dependency graph, (B) Transitive closure of example. 

Step3: Detection of conflicts:  No Hamiltonians paths in the transitive closure:  there is conflict. Then we find the 
longest paths in the transitive closure and analysis of each path. See table 6. 

Longest   paths Analysis  of longest  
paths    

Ch1 = 
S.integrité,Entersubway,s.integrit
y.AC, RT, Vaidatecard 

S.AV  : no satisfied  

Ch2 = 
S.integrity,entersubway,RT, 
S.integrity.AC, sSAV 

Validatecard : no  
satisfied 

Ch3 =  Sintegrity, 
Entersubway,RT, S.integrity,AC, 
validatecard 

S.AV  : no Satisfied 

Ch4 =  S.integrity, 
Entersubway,RT, s.integrity,AC, 
s.AV 

Validat card : no  
satisfied 

synthèse d’analyse des  conflits  
 (mutuel exclusion) 

Conflict between  
(Validatecard, 
S.AV) 

Table6: Longest paths and their analysis

Step4: Resolution of conflicts  S.AV has higher priority   than validatecard, (S.AV constrain all the requirement of  
Entersubway  use case): (validatecards.AV) dependency is identified and inserted to the dependency graph .  

Step5:  Regeneration of dependency graph and transitive closure the generated dependency graph and transitive 
closure are shown in figure 9. 

Figure 9: The generated dependency graph and transitive closure 

The Hamiltonians paths: are:  

Ch1= S.integrité, Entersubway,S.integrity,AC, RT , Validatecard,S.AV 

Ch2= S.integrity,entersubway,RT,S.integrity.AC, Validatecard, S.AVE 

Step6: Reviewing fictive dependencies: the dependency (S.integrity AC RT )is weak dependency .So it is 
deleted, ch1 is   not a Hamiltonian path   

The solution accepted is ch2. 

Step7: Generation of the composition rule:   

Figure 9. The generated dependency graph and transitive closure 

(A): (B):

Figure 8: (A) Dependency graph, (B) Transitive closure of example. 

Step3: Detection of conflicts:  No Hamiltonians paths in the transitive closure:  there is conflict. Then we find the 
longest paths in the transitive closure and analysis of each path. See table 6. 

Longest   paths Analysis  of longest  
paths    

Ch1 = 
S.integrité,Entersubway,s.integrit
y.AC, RT, Vaidatecard 

S.AV  : no satisfied  

Ch2 = 
S.integrity,entersubway,RT, 
S.integrity.AC, sSAV 

Validatecard : no  
satisfied 

Ch3 =  Sintegrity, 
Entersubway,RT, S.integrity,AC, 
validatecard 

S.AV  : no Satisfied 

Ch4 =  S.integrity, 
Entersubway,RT, s.integrity,AC, 
s.AV 

Validat card : no  
satisfied 

synthèse d’analyse des  conflits  
 (mutuel exclusion) 

Conflict between  
(Validatecard, 
S.AV) 

Table6: Longest paths and their analysis

Step4: Resolution of conflicts  S.AV has higher priority   than validatecard, (S.AV constrain all the requirement of  
Entersubway  use case): (validatecards.AV) dependency is identified and inserted to the dependency graph .  

Step5:  Regeneration of dependency graph and transitive closure the generated dependency graph and transitive 
closure are shown in figure 9. 

Figure 9: The generated dependency graph and transitive closure 

The Hamiltonians paths: are:  

Ch1= S.integrité, Entersubway,S.integrity,AC, RT , Validatecard,S.AV 

Ch2= S.integrity,entersubway,RT,S.integrity.AC, Validatecard, S.AVE 

Step6: Reviewing fictive dependencies: the dependency (S.integrity AC RT )is weak dependency .So it is 
deleted, ch1 is   not a Hamiltonian path   

The solution accepted is ch2. 

Step7: Generation of the composition rule:   

(A) (B)

Figure 8. (A) Dependency graph, (B) Transitive closure of example 



136 Journal of Networking Technology  Volume 1 Number 3  September 2010

The Hamiltonians paths: are: 

Ch1= S.integrité, Entersubway,S.integrity,AC, RT, Validatecard,S.AV 

Ch2= S.integrity,entersubway,RT,S.integrity.AC, Validatecard, S.AVE 

Step6: Reviewing fictive dependencies: the dependency (S.integrity AC →RT )is weak dependency .So it is deleted, ch1 
is not a Hamiltonian path 

The solution accepted is ch2. 

Step7: Generation of the composition rule: 

For Enersubway use case the composition rule is : 
S.AV >>validatecard>> ((intersubway || RT) || S.integrity.AC) >>S.integrity 
for Validate card use case the composition rule is: 
Validatecard || S.integrity.AC 
As validatecard use case is included in Entersubway use case, we can fusion the two composition rules to obtain: the synthesis 
composition rule for Enersubway use case: 
S.AV >> ((Validatecard >> (Entersubway || RT)) ||S.integrity.AC)>>S.integrity 

8. Conclusion 

Aspect oriented software development (AOSD) is an emerge technology, that provides explicit mean to model concern that 
tend to crosscut multiple system components. From the view of modularity, adaptability, the separation of aspects to the base 
modules reduces dependency between modules and improves modularity. However, the complexity of interactions among 
aspects and between aspect and base module may reduce the value of aspect-oriented separation of cross-cutting concerns. 

In this paper we propose a technique. That allows the user to identify interactions between aspects. Then, detects and resolves 
conflicts between these aspects. 

The proposed technique is generic one, since, it is not depend on the way to identify aspects or compose them. It exploits the 
dependencies generated by the operators to reason on interaction between aspects, it uses composition specification of candidate 
aspects to achieve roles attribute to analyse component. And supplies an outcome: composition rules, which can be used and 
implemented by author languages and techniques of composition to successfully, compose aspects with component base 

We argue it is necessary to obtain the composition rule, indeed it is a specification that satisfy the behaviour of the base (point 
of junction), and aspects, as well, satisfy dependencies identified between aspects and with the base. 

The technique exploits the dependencies generated, by the operators such as before, after, around and replace. And also, use 
the search of Hamiltonians paths in transitive closure to detect potential conflicts .We propose, identifies dependencies witch 
define an order between aspects in order conflict to solve conflicts, and imposing a certain order of execution between them 
.The Hamiltonians paths obtained define the solution to compose aspect, provided that we define the true dependencies. Also, 
if it remains several Hamiltonians paths, in this case, it is necessary to verify that composed specifications are equivalent 
in any case; otherwise, it is necessary to correct some possible mistakes in the specifications (concerns and/or crosscutting 
concerns). 

This work is a first step towards analysis interaction between aspects; we are dealing with aspect-aspect conflicts we are 
focused on dealing with ordering conflict. And there are many problems to resolve and solution to test. Our future work will 
focus on developing a support to this approach, improving it by thinking for dealing with others categories of conflicts and 
applying it in more case studies. 

References 

[1] The Aspect-oriented Software Architecture Design portal Http://trese.cs.Utwente.nl/taosad/aosd.htm 
[2] AOSD homepage, HTTP://WWW.AOSD.net 
[3] Beniassad, E., Clements, P.C., Araujo, J., Moriera, A., Rachid, A.,  Tekmerdogan,  B. (2006). Discovring early aspects,  

IEEE Software, e3(1) 61-70.



 Journal of Networking Technology  Volume 1 Number 3  September  2010 137

[4] Araujo, J., Baniassad, E.,Clements, P.,  Moriera, A., Rachid, A., Tekinerdogan, B (2005). Early aspect: the current 
landscape, Technical Report, Lancaster university February. 

[5] Boubendir, A., Chaoui, A (2010). Towards a generic technique for analysing interactions between aspects at requirement 
phase, In: Fifth International Conference on Digital Information Management, ICDIM 2010. 507-512.

[6] Brito, I., Moreira, A. (2003). Towards a composition process for aspect-oriented requirements, In:Proceeding of AOSD’03 
Workshop on Early Aspects: Aspect oriented Requirements Engineering and Architecture, March 17, Boston USA.

[7] Rachid, A. Swer, P. Moreira, A., Araujo, J. (2002). Early aspect: a model for Aspect-Oriented Requirements Engineering” 
in International conference on Requirements Enginnering (RE).2002,Essen, Germany : IEEE. 

[8] Rachid, A., Moreira, A., Araujo J. (2003). Modulaisation and composition of Aspectual Requirements. In: 2nd 
International conference on Aspect Oriented Software Development (AOSD). Bostan, USA. ACM. 

[9] Multi-Dimensional Separation of concern: an overview: http://www.reseach.ibm.com/hyperspace/MDSOC.htm 
[10] Mehner, K. Monga M Taentzer, G. (2006). Interaction Analysis in Aspect-Oriented Models, In: 14th

 

IEEE International 
Requirements Engineering Conference (RE’06) p.69-78,. 

[11] Bergmans. (2003). Towards Detection of semantic conflicts between crosscutting concerns, AAOS 2003, Darmastadt, 
Germany. 

[12] Rosenheiner, L. A method for Handling Requirements-level crosscutting concern, available from URL: http://www.
pi.informatik.uni-siegen.de/stt/26_1/01_Fachgruppenberichte/RE/08_rosenhainer.pdf. 

[13] Brito, I., Moreira, A (2004). Integrating the NFR framework in a RE Model, In: Processing of the 3rd workshop on 
Early Aspects, 3rd international Conference on Aspect-Oriented Software Development. 

[14] Kandi, H (2008). What is an aspect in Aspect oriented Requirement Engineering, In: Proceeding of AMMASAD 
2008. 

[15] Araujo, J., Moreira, A., Brito, I., Rachid, A  (2002). Aspect oriented requirements with UML, In: Workshop: Aspect-
Oriented Modelling with UML,UML 2002, Dresden, Germany. October. 

[16] Brichau, J., Hondt, T. D’ (2005). Introduction to Aspect-Oriented Software Development, AOSD-Europe, 30. 
[17] Brito, I., Moreira. A. (2003). Advenced separation of concerns for requirements engineering, VIII jornadas de ingenieria 

de Software y bases de datos (JISBD), Alicande, Spain,12-14. 
[18] Sanen, F., Truyen, E.,  Win, B.D., Joosen, W., Loughran, N., Coulson, G., Rachid, A., Nedos, A., Jackson, A., Clark, 

S. (2006).  Study on interaction issues, AOSD-Europe, 28 February. 
[19] Tekmerdogam, B., Moreira, A., Araujo, J. Pclemnts, (2004). Early Aspects : Aspect-Oriented Requirements Enginneering 

and Architecture Design: Workshop Report AOSD 2004 TR-CTIT-04-44,119PP University of twente Dep of Computer 
science. 

[20] Sousa, G., Soares, S., Borda, P., Castro, J (2004). Separation of crosscutting Concerns from Requirements to Design: 
Adapting an use case Driven Approach, In: proceedings of the 3rd Workshop on Early Aspects, 3rd International 
conference on Aspect-Oriented Software Development. 

[21] Xerox corporation, Aspect J Programming guide, available from: Http://eclipse.org/Aspectj. 
[22] Douance, R., Frader, P (2002). Detection and resolution of aspect interactions, INRIA technical report N°RR 4435. 
[23] Hannemann, J. Chitchyan, R.., Awais, R.  (2003). Analysis of Aspect-Oriented software. AAOS, Darmstadt, 

Almagne. 
[24] Boubendir, A., Chaoui, A. (2010). Toward a model for dealing with aspect interactions at Aspect requirement Engineering,  

SEDE, USA.


