Adaptivity condition as the extended Reinforcement Learning for MANETS
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ABSTRACT: To design adaptive protocols for MANET, techniques from the field of artificial intelligence have been adopted.
It is evidnet that the efficiency feature is incremental as the bandwidth and energy are scarce resources in MANETs. Moreover,
adaptivity is crucial to achieve the routing task correctly in presence of varying network conditions in terms of mobility, links
quality and traffic load. In our study we have used the extended application of Reinforcement Learning (RL) technique to
achieve adaptive routing in MANETS.
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1. Introduction

The infrastructure-based and infrastructure-free networks are the two wireless networks which are well known as ad-hoc
Networks. In its mobile configuration, the ad-hoc network is called MANET (Mobile Ad-hoc NETwork). In MANET, nodes can
randomly join or leave the network and new links appear or disappear accordingly. Furthermore, the wireless medium is rarely
stable and can be easily congested due to the limited bandwidth. Besides, mobile nodes are battery-powered and may fail at any
time. Hence, network topology changes constantly and unpredictably which complicate the routing task.

To deal with constant changing network conditions in terms of mobility, link quality, available energy-resources and traffic load,
arouting protocol for MANETS should be adaptive. To design such adaptive protocols, techniques from the field of artificial
intelligencehave been adopted. Particularly, ACO meta-heuristic, which is a subclass of SI (swarm intelligence) algorithms, has
made the foundation of the majority and the most significant contributions to adaptive routing problem. Thanks to constant
path-probing using ants-like agents, statistical estimates of paths quality are learned and good routing decisions are reinforced.
More recently, reinforcement learning has also taken place as an appropriate framework to design adaptive routing policies
which have the ability to learn directly by interacting with their operational environment. Our focus,in this paper, is on the
modelization of adaptive routing problem in MANETS as a reinforcement learning task.

The remainder of this paper is organized as follows: design issues of routing protocols for MANETSs are outlined in section 2.
Section 3 introduces the RL-problem definition as well as many elementary RL-algorithms. Next, in section 4, we describe
different RL-models for routing problem in MANETSs already proposed in the literature.In section 5, we conclude the paper by
highlighting theemerging issues and challenges when modeling routing problem in MANETS as a RL-task.
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2. Routing Issues in MANETS

Required features of routing protocols for MANETSs can be summarized as follows:

1) Adaptivity: A routing protocol for MANETSs should be adaptive in face of frequent and unpredictable changes in network
topology mainly due to wireless links instability and to nodes mobility and failure after their batteries depletion. Moreover,
adaptivity in face of changing traffic loads is important to avoid congestion areas in the network.

2) Robustness: Control and data packets can be lost due to the poor quality of wireless connections and to the interference
between simultaneous transmissions. Robustness is a crucial feature to keep the routing protocol operating correctly even when
such losses occur.

3) Efficiency: Efficiency is important to deal with bandwidth, processing power, memory and energy limitations in MANETSs. A
Routing protocol should be efficient by optimizing its exploitation of network resources.

4) Scalability: In many deployment scenarios of MANETS, network size can grow to very large sizes. Hence, scalability should
be taken in consideration in routing protocols design.

In MANETS literature, several routing protocols that try to streak a balance between the abovementioned features have been
proposed. However, almost all conventional routing protocols for MANETSs suffer from their lack of adaptivity leading to their
performance degradation under varying network conditions.Indeed, existing routing protocols for MANETs make very simplistic
assumptions about the network characteristics such as perfect radio links and random topology[1],[2]. Furthermore, some routing
protocols functional parameters are simply prefixed thresholds although the fact of their dependency on many network condi-
tions [3],[4]-

3. Reinforcement Learning

The reinforcement learning [5] is a sub-area of machine learning concerned with learning from interaction by trials and errors
how to behave in order to achieve a goal. The RL agent interacts with its environment over a sequence of discrete time steps (see
Figure 1). In any RL problem, we distinguish four basic elements: 1) actions: are the choices made by the agent; 2) states: are the

basis for making the choices; 3) rewards: are the basis for actions’ evaluation; and 4) policy: which is a stochastic rule by which
the agent selects actions as a function of states. In the RL problem, the agent objective is to maximize the amount of reward it

receives over time.
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Figure 1.The Agent-Environment Interaction in Reinforcement Learning

slate aclion
5, iy

Important notions in RL problem formulation as a Markov Decision Process and its resolution can be summarized as follows [5]:

1) Markov property: An environment satisfies the Markov property if the state signal compactly summarizes the past without
degrading the ability to predict the future. If the Markov property holds, then the RL environment is called a Markov Decision
Process (MDP).

2) Markov Decision Process (MDP): Formally, a finite MDP is a tuple < S,A, T,R > where S is a finite set of environment sates, A
is a set of actions available at the agent, T:SxA — TI(S) is the state transition function giving for each state and action a
probability distribution over states, R: SxAxS— R is the reinforcement function that indicates the real-value obtained when
transiting from a state to another taking a particular action.

3) Return: The return R is function of future rewards that the agent seeks to maximize. It can be defined as a simple finite sum of

rewards when the agent-task breaks to finite-episodes. Instead, for continuing tasks, R, is formulated as the infinite sum of
discounted rewards.
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4) Partially Observable MDP (POMDP): The POMDRP is a variant of the MDP in which the state of the environment is only
partially visible to the learning agent. What are available are indirect, potentially stochastic observations of the environment
state.

5) Value-functions:Almost all reinforcement learning algorithms are based on estimating either state-value or action-value
functions. State-value function, V*(s), estimates the expected future reward to the agent when starting in state s and following the

policy p thereafter. Action-value function, Q™(s,a), estimates the expected future reward to the agent when it performs a given
action in a given state and following the policy p thereafter.

3.1Q-Learning

Q-learning [6] is a model-free Off-policy RL-method that belongs to the class of TD (Temporal Difference) methods. TD methods
combine sampling and bootstrapping, where the learning agent takes a sample of just one step, and then bootstraps information.
Let us define <s,a,r,s” > to be an experience tuple summarizing a single transition in the environment. Here, s is the agent state
before the transition, a is its choice of action, r the immediate reward it receives and s~ the resulting state. The one-step Q-learning
version of Q-learning algorithm is depicted on the Figure 2.

InitializeQ(s,a) arbitrarily
Repeat (foreachepisode)
Initializes

Repeat(repeat for each step of episode)
ChooseafromsusingpolicyderivedfromQ
Takeactiona,observer,s'
Q(s.2):=Q(s,a)+ofr +ymax Q(s'a')-Q(s,a)]
s« s
Untilsisterminal

Where: Q(s,a) : expected discounted reinforcement of taking action a in state s; o«
learning rate; v: discount factor (0 <y<1)

Figure 2. The Q-learning Algorithm

3.2 Monte Carlo Methods (MC)

MC methods [5] are model-free RL resolution methods based on averaging sample returns. To ensure that well-defined returns are
available, Monte Carlo methods are defined only for episodic tasks. That is, experience is divided into episodes, and all episodes
eventually terminate no matter what actions are selected. It is only upon the completion of an episode that action-value functions,
Q(s,a), and policies are changed. MC methods are thus incremental in an episode-by-episode sense, but not in a step-by-step
sense like Q-learning.

We distinguish two families of MC methods namely: the every-visit and the first-visit MC methods. The former estimates the
value of a state-action pair as the average of all returns that have followed visits to the state in which the action was selected,
whereas the latter averages only returns following the first time in each episode that the state was visited and the action was
selected. In addition, we can find two incarnations of MC methods, namely, on-policy and off-policy MC. The first visit on-policy
version with the e-greedy selection ruleis depicted in Figure 3. Note that, an e-greedy rule selects the best action most of the time,
and selects uniformly with a small probability, €, an action at random.

3.3 Collaborative Reinforcement Learning (CRL)

CRL [7] extends the conventional RL framework with feedback models for decentralized multi-agent systems. The feedback
models include a negative feedback and a collaborative feedback models. The former model decays an agent’s local view of its
neighborhood either by constraints in the system or by a decay model. The latter model allows agents to exchange the effective-
ness of actions they have learned with one another.

CRL system optimization problems are decomposed into a set of discrete optimization problems (DOPs) that are solved by
collaborating RL agents. In CRL, the set of actions that an agent can execute include DOP actions that try to solve the DOP
locally, delegation actions that delegate the solution of the DOP to a neighbor and a discovery action that allows agents to find
new neighbors. In fact, CRL is a model-based RL technique with the following update rule:

Q5.2)=R(s,8) + X, Q,(3]s,a).D,((%s.a)+ Decay(V(3))) @)
S=s.
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Initialize,foralls = S, a = A(s):Q(s,a) « arbitrary;
Returns(s,a) < emptylist;m « anarbitrarye -greedypolicy
Repeatforever
(a)Generateanepisodeusingm
(b)Foreachpairs,aappearingintheepisode:
R « returnfollowingthefirstoccurenceofs,a
appendRtoReturns(s,a)
Q(s,a) «— average(Returns(s,a))
(c) Foreachsintheepisode:
a* « argmax, Q(s,a)

e .
1l-e+ ifa=a*
Foralla = A(s), mi(s,a) e IAG)I

—— jfafa*

IAG)I

Where:A(s) is the set of available actions at state s.

Figure 3.The first visit e-greedy on-policy MC method

Where a is a delegation action, R(s,a) is the MDP termination cost; P, (s"+s,a|) is the transition model; Vj (s") is the estimated
optimal value function for the next state at agent ni and D, (s"+ [s,a | ) is the estimated connection cost to the next state.

4. Routing Problem in Mobile Ad-hoc Networks as a Reinforcement Learning Task

The application of reinforcement learning to routing problem in MANETS is relatively a young research field. Actually, only few
RL-based routing protocols for MANETSs can be found in the literature. Moreover, only a subset of them deals directly with
routing as a reinforcement learning task. In fact, works like [3] and [8]exploit the reinforcement learning framework to learn some
routing-protocol parameters rather than to fix them experimentally. In this section, we focalize on routing protocols which learn to
make routing decisions (choosing next-hop or path for routing) via reinforcement learning. We have selected works that give the
explicit formalization of the routing problem as a MDP or a POMDP.

Indeed, the first demonstration that network packet-routing can be modelized as a reinforcement learning task is the Q-routing
protocol [9] proposed for fixed networks. The authors claim, in the paper [9], that a packet-routing policy answers the question:
to which adjacent node should the current node send its packets to get as quickly as possible to its eventual destination? Hence,
the routing problem can bemodelized as a RL-task where the environment is the network, the states are the nodes and the learning
agent's possible actions are the next-hops it can take to reach the destination.

4.1 Mobility Aware Q-routing
In reference [10], straightforward adaptation of Q-routing to the context of MANETSs was proposed. Indeed, the same RL-model
of Q-routing is maintained always in the perspective of optimizing packets delivery time:

1) States: In a very intuitive way the set of states is the set of mobile nodes in the network.
2) Actions: At a node x,available actions are reachable neighbors. A node learns how to choose a next-hop to forward its traffic.

3) Reward: Local information is used to update the routing policy of a source node x. This includes the min Q-values of its
neighbors and the time the current packet spent on the queue, b at node x before being sent off at period time t as shown in
equation (2), where 0 <o <1isthe learning rate:

Q)(dy) = (1-0) Q) (dy) + o (b+min Q) d.2)) @

4. Action selection rule- a greedy policy is adopted. When a node x receives a packet for destinationd, it sends the packet to the
neighbor y with the lowest estimated delivery time Q{(d,y).

To take care of nodes mobility, two additional rules are proposed for Q -values updates of neighboring nodes: Q*(d,y) === when
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y moves out of x range; and Q*(d,y) = 0 when y moves into x range.Note that the second update rule is made optimistic to
encourage exploration of new coming neighbors.

Finally, we note that the same model described above was used in LQ-routing protocol [11]. This latter have introduced the path-
lifetime notion to deal with mobility.

4.2 SAMPLE Routing Protocol
In SAMPLE[1], the optimization goal is to maximize network throughput. The routing problem was mapped onto a MDP problem

as follows:
_ Deliver \')O 0
B
Failed unicast i | Deiegation ;,O P
orfaileddeliver e

Figure 4. Sample MDP

1) States: Each node n, has a set of states S,={B, P, D}where B indicates that a packet is in a buffer waiting to be forwarded (start
state), P indicates that a packet has been successfully unicast to a neighbor, and D indicates that a packet has been delivered at
node n, (terminal state).

2) Actions: The actions available at different states in the MDP are a packet delivery action, a broadcast action to discover new
neighbors, links, and routes; and for each neighboring node, a delegation action (unicast).

3) Transition model-a statistical transition model that favors stable links is considered. It acquires information about the esti-
mated number of packets required for a successful unicast as an indication of links quality. In order to build this model, a number
of different system events are sampled within a small time window into the past. The monitored events are: attempted unicast
transmissions; successful unicast transmissions; received unicast transmissions; received broadcast transmissions; and promis-
cuously received unicast transmissions.

4) Reward model:a simple static reward model was considered. The rewards are set at values -7 and 1 to model the reward when
transmission succeeds under a delegation action and fails, respectively. In effect, these values reflect connection costs in
IEEE.802.11 protocol.

5) Action selection rule: Concerning delegation actions, the decision of which next hop to take is chosen probabilistically using
the Boltzmann-action selection rule. Variation of temperature value controls the amount of exploration. Furthermore, SAMPLE
also uses a simple greedy heuristic in order to restrict exploration to useful areas of the network by only allowing a node to forward
to those neighboring nodes with a value that is less than its function value. The discovery action is also allowed with a certain
probability in order to explore new routes.

To deal with nodes mobility, authors in [1] have considered Q-values to decay. They suggest configuring the decay-rate to match
any estimated mobility model. Note that,the CRL algorithm was used to solve the RL problem of SAMPLE.

One critic that can be made about SAMPLE MDP is its static reward model. This latter limitsSAMPLE applicability to MANETS
deploying IEEE.802.11 at the MAC layer.

Indeed the same RL-model of SAMPLE was used in SNL-Q routing protocol [2]. However, the authors claim that is a POMDP
model which is not correct. We believe that authors confused the probabilistic transition model with the observations setwhich
we found in POMDPs.

4.3 RL-based Secure Routing
Finding secure routes has made the main focus of the RL-based routing protocol proposed in [4]. Learning a policy for selecting
neighbors based on their reputation values was mapped to a MDP as follows:

1) States: The state of any source node encompasses the reputation values of its neighbors.

2) Actions: The decision maker should select one among its neighbors to for routing.
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3) Reward: The destination node can be reached via several paths. Hence, a reward of +1 is assigned to every node on all
discovered paths. Otherwise no reward is assigned.

What is notable is the simplicity of the proposed model. However, authors have fixed the number of neighboring nodes to four
which is an unrealistic hypothesis. Concerning RL-algorithm, the ONMC method was adopted. The authors justify their choice by
the episodic nature of the routes discovery process which starts when a source node initiates a route discovery and terminates
when the destination node is found or when a maximum number of hops is reached.

4.4 Selfishness and Energy aware RL-based Routing Protocol
In[12], the routing problem is mapped into a partially observable MDP as follows:

1) State and observation spaces: A node state is a vector of its one-hop-neighboring nodes parameters. Those parameters can be
about congestion level, selfishness, remaining energy, etc. The overall state space is the m x (n-1) dimensional unit cube, where
n is the number of nodes in the network and m is the number of considered parameters. However, those parameters are usually
unknown to the decision-maker node. To deal with this partial observability, a source node derives estimates about the values
from past experiences with its neighboring nodes. Note that, only energy and selfishness parameters were considered in the
experiments.

2) Actions : the actions space Ais a n-1dimensional simplex spanned by the vectors IS, - where n is the number of nodes in the
network, g__ an upper bound on the number of packets a node can process during a single time step and e is the unit vector along
the j™ coordinate axis.

3) Reward: A non-linear reward function was used, defined by :
r@(t)s(t)) =Y, ft(®,- () (o3 (1) - exp(a;; (1)-C)) @)

Where: f'is the learned controller at time step t;o is a pre/gefined constant; C the energy needed to send a packet;ocij (t) the number
of packets send by node i through node j at time t and ej (t) is the current estimate of node j parameters values.

4) State transitions: To update energy and selfishness estimates, two learning rate were used: o when wining and o, when
losing. When the ratio between the number of packets forwarded by a node j and the number of packets sent to node j is greater
than the corresponding estimated value than the node is winning otherwise it is losing.

5) Action selection rule: When a source node needs to make decision it calculates the value of the controller for all nodes in the
set of one hop neighboring toward a destination d, given the current nodes parameters estimates. Then, it selects the greedy
action i.e. the node that is most likely to forward the packets with probability 1-¢  and a randomly selected node, different from the

greedy choice, with probability € where ¢ =1/t.

In this work, a stochastic gradient descent based algorithm that allows nodes to learn a near optimal controller was exploited. This
controller estimates the forwarding probability of neighboring nodes. Roughly speaking, the idea behind policy search by
gradient is to start with some policy, evaluate it and make an adjustment in the direction of the empirically estimated gradient of
the aggregate reward, in order to obtain a local optimum policy [13].

4.5 RL-based Energy-Efficient Routing
The RL -based routing protocol presented in [14] has two contrasting optimization objectives, namely: maximizing network
lifetime and minimizing energy consumption in MANETS. The routing problem was mapped into a MDP as follows:

1) States: the state space of a source node is given by S={s|s= [P| @M, B| (D]1.1<i<gnl<j<m}where P| (i)and B| (j) denotes
the quantized energy and battery network levels, respectlvely

2) Actions: the decision maker should choose a path. The action space includes three actions, namely: minimum-energy routing
path "a(1)",the max-min routing path "a(2)" and the minimum cost routing path"a(3)". Hence A={a |a = [a(1),a(2),a(3)], a(j)= {0,1}%
a( j) =1} whereselecting a path is indicated by attributing 1 to the corresponding component.

3. Cost structure! : Once the source node selects an action at a given state, the following cost incurs: ¢ (s,a) = (P, > (B, )*2

!Since the optimization goals are minimization problems, we talk about cost rather than reward.
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(Binit e, where:B, . isthe initial level of battery assumed to be constant for all nodes; x1,x2,x3 are weight factors empirically fixed
to 1, B,and P, are respectively, the battery bottleneck and the energy consumption along the path I.

MDP| POMD Model Model TD MC Stochastic
Based Free algorithm | algorithm| Gradient descent
MQ-routing[10] v v v
LQ-routing[11] \ \ \
SAMPLE[1] N \ N
SNL-Qrouting[2] | N N
RL-based Secure
routing[4] ! v v
Selfishness and
based energy aware N N N
RL routing[12]
RL based
Energy-efficient N N \
routing[14]

Tablel. Comparisonof RL-based routing protocols described in Section 4

The authors have applied the ONMC method. They justify this choice by the episodic nature of messages-exchange that starts
when sending a message and terminates when it reaches its destination.Note that, the e-greedyactions-selection rule was applied.

5. Conclusions

In this paper, we have selected some representative works from the literature of RL-based routing protocols for MANETSs. We
have described various MDP/POMDP models that formalize the routing problem with different optimization goals including
quality of service (delay and/or throughput), security and energy constrained routing. We can summarize thefundamental issues
that arise when dealing with routing problem as a RL task in MANETSs as follows:

1) Model-free Vs Model-based: All described works in the previous section are model-free apart from protocols [10] and [12] which
are model-based. The authors have indicated, in [12], that model-based RL is more appropriate in environments where acquiring
real-word experiences is expensive. However, model-based methods are characterized by slower execution times. This is, in fact,
problematic in the case of real-time applications with strict response-time constraints. Besides, cost of constant probing incurred
by model-free RL methods in terms of routing overhead may degrade the routing protocol efficiency. Therefore, a deep analysis
of the convergence time and efficiency compromise is needed.

2) MDP vs POMDP: In fact, uncertainty is more pronounced in MANETS due to their very dynamic nature. However, all works
already presented in the previous section, apart from [12], neglect this fact and consider the environment state as completely
observable. We believe that an accurate model that really reflect MANETSs features should deal explicitly with partial observability.

3) Exploitation versus exploration: The tradeoff between exploration and exploitation is well known as a challenging issue in any
reinforcement learning algorithm. However, we believe that in presence of mobility the network can be considered somewhat auto-
explorative. We think that the relationship between mobility, exploitation and exploration must be investigated.

4) RL algorithms: Except, the policy search by gradient applied in [12],RL algorithms used to solve the RL problems described in
the previous section are either TD or MC methods. However, we do not know which approach is more efficient for MANETs and
under which circumstances. We believe that comparative studies in this sense will be of significant interest.
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