
  Journal of Networking Technology Volume  2  Number 4  December  2011                         139

Teng Lv1, Weimin He2, Ping Yan3

1Teaching and Research Section of Computer
Army Officer Academy
Hefei, 230031, PR China
lt0410@163.com
2Department of Computing and New Media Technologies
UWSP, Stevens Point
WI 54481, USA
whe@uwsp.edu
3School of Science
Anhui Agricultural University
Hefei, 230036, P.R. China
yanping@ahau.edu.cn

ABSTRACT: Cohen-Grossberg neural networks which include Hopfield neural networks and Cellular neural networks as
special cases and have important applications in many fields are researched by many authors. There is few results on
synchronization control of delayed Cohen-Grossberg neural networks. In this paper, the synchronization control of delayed
Cohen- Grossberg neural networks with diffusion terms is discussed by constructing suitable Lyapunov functional and using
inequality techniques. Instead of the linear control term, we consider a class of nonlinear control term. Some sufficient
conditions are given to ensure the synchronization control of the drive-response delayed Cohen-Grossberg neural networks
with reaction- diffusion terms. A numerical example is presented to verify that the results in the paper are correct.
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1. Introduction

Cohen-Grossberg neural networks(CGNNs) were first introduced by Cohen and Grossberg in [7]. The class of networks include the
traditional neural networks such as Hopfield neural networks(HNN) and Cellular neural networks(CNN) as special cases and have
many good applications in parallel computation, as- sociative memory and optimization problems and so on. Because these applications
heavily depend on the dynamical behaviors of the neural networks and the analysis of the dynamical behaviors is the necessary step
to design of neural networks, many results on the dynamical behaviors of the networks can be found in [8]-[9].

Since Pecora and Carroll introduced chaos synchronization by proposing the drive-response concept in 1990s[1]-[2], the
synchronization of coupled chaos systems and chaos neural networks has been received considerable attention due to its
applications in creating secure communication system[3]-[6].

Recently, chaotic behaviors produced by neural networks have also been investigated. Several different approaches including
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some conventional linear control techniques and advanced nonlinear control schemes to achieve synchronization of neural
networks have been proposed[10]-[11]. However, since time delays may led to bifurcation, oscillation, divergence or instability
which may be harmful to a system, the study of neural dynamics with consideration of the delayed problem becomes extremely
important to manufacture high quality neural networks. Therefore, the models with time-varying delays and continuous distributed
delays are more appropriate to the synchronization of neural networks. Synchronization criteria for coupled delayed neural
networks with constant time delays and time-varying delays have been proposed in Refs [12]-[13] based on the Lyapunov
functional method.

Both in biological and artifcial neural networks, diffusion effect cannot be avoided when electrons are moving in asymmetric
electromagnetic field, thus we must consider that the activations vary in space as well as in time. To the best of our knowledge,
few authors have considered synchronization control of diffusion CGNN with delays. But it is important in the-ories and
applications. In this paper, we will investigate exponential synchronization of a class of reaction-diffusion CGNN with time-
varying delays.

This paper is organized as follows. In section 2, model description and main result are given. In section 3, by employing
inequality techniques and constructing suitable Lyapunov functional, some sufficient conditions are obtained to ensure the
synchronization control of a class of reaction-diffusion CGNN. Section 4 presents a numerical example to verify that the results
in this paper are true. Section 5 is the conclusions of the paper.

2. Model description and main result

Consider the following delayed reaction-diffusion Cohen-Grossberg neural networks with Neumann boundary conditions:
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Where i = 1,..., n. n is the number of neurons in the networks. Ω  is a bounded open domain in Rm with smooth boundary Ω and

mesΩ > 0 denotes the measure of Ω.        denotes the differentiation in the direction of the outward unit normal to Ω. u(x,t) =

(u1(x,t),...,un(x,t))T, ui(x,t) denotes the state of the ith neural unit at time t and in space x Ω. ai and bi represent an amplification
function and an appropriately behaved function, respectively. cij and kij are the coefficients without and with time-varying
delays, respectively. θij(t) corresponds to the transmission delays along the axon of the jth neuron form the ith neuron at time t
and satisfies

v

0 < θij(t) < τ, θij(t) < ρ < 1

where τ > 0 and ρ < 1 are given constants. gi(.) is the activation function with gi(0) = 0, (i = 1,..., n). Ii denotes input of the ith
neuron. ϕ (x,t) = (ϕ 1(x,t) ,...,ϕn(x,t))T (where ϕi(x, t) is given smooth function defined on Ω x (-τ, 0) with the following norm

.

          ||ϕ ||2 = |ϕi (x, .) |
2
τ dx

i =1

n

||u(., t)||2 = Σ

Σ
where |ϕi (x, .) |τ = sup -τ < s < 0 |ϕi (x, s) |.

Throughout the paper, we always assume that system (1) has a smooth solution u(t, x) with the norm

n
i =1 Ω |ui (x, t) |

2 dx, Vt (0, )-

Let v = (v1 ,..., vn)
T be the control input vector and vi stands for the external control input that will be appropriately designed

Ω



  Journal of Networking Technology Volume  2  Number 4  December  2011                         141

for an certain control objective. In this paper, instead of that the control input vector v = ( v1 ,..., vn )
T  is assumed to take as the

follows.

        ( v1 ,..., vn )
T =M (u1(x,t) - u1(x,t),..., un(x,t) - un(x,t))T

~~~

~ ~ ~ ~~

where M = (Mij)nxn  is the controller gain matrix.

We consider the nonlinear control input vector v = (v1 ,...,vn)
T which satisfies the follows.

~ ~

            (v1 ,..., vn )
T < M (|u1(x,t) - u1(x,t),..., un(x,t) - un(x,t) | )T~~

where M = (Mij)nxn is also called the controller gain matrix and will be appropriately chosen for the syn- chronization control in
both drive system and response system.

ui(x,t), (i = 1,..., n) satisfy the following response neural networks:

(2)

(3)

Where i = 1,..., n. ψ = (ψ 1 ,...,ψ n )
T , ψ i(x, s) (i = 1,..., n) are bounded smooth functions defined on  Ω x (-τ, 0) .

In this paper, we always assume that:

(H1) There exist positive constants mi and Mi such that 0 < mi  < ai(ui) < Mi , i = 1,..., n. Moreover, for any i = 1,..., n, ai(.) is

differentiable and there exists positive constant Γi > 0 such that Γi = sup          {ai(x)}> 0.

(H2) bi(.) is differentiable and there exists a positive Gi > 0 such that 0 < bi < Gi for all i = 1,..., n.

Furthermore, bi(.) is the derivative of bi(.) and αi = inf          {bi(x)} > 0.

(H3) There exist positive constants βi > 0 and Λi > 0 for any i = 1,..., n such that

∆
x R

.
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Definition 1. The drive system (1) and the response system (2) are said to be controlled syn chronously if there exist positive
constants γ > 0 and ε > 0 such that

||u(., t) − u(., t)||2  < γ ||ϕ − ψ ||2 e
- ε t, Vt > 0,-

where the constant ε is said to be the rate of synchronization control.
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The main result is the following theorem:

Theorem 1. If (H1) - (H4) hold, then the drive-response neural networks (1) and (3) are controlled synchronously.

Remark 1. Let ξij = γij = ηij=     , then (H4) can be changed into the following (H4)1:
1
2

Then we have the following corollary:

Corollary 1. If (H1)-(H3) hold, furthermore, (H4)1 holds, then the drive-response neural networks (1) and (3) are controlled
synchronously.

3. The synchronization of the drive and response neural networks

Let us define the synchronization error signal εi (x, t) = ui(x, t) - ui(x, t) , where ui(x, t)  and ui(x, t)  are the ith state variable of the
drive and response neural networks, respectively. Therefore, the dynamics error between (1) and (3) can be expressed as the
follows.

∆ ~ ~

Where i = 1,..., n and the control input vector v(x, t) = (v1(x, t), ..., vn(x, t))T which satisfies the condition (2) has been mentioned
above.

Then we have

(4)

By (H4), there exists a sufficiently small positive constant λ< mini{aimi} such that

Taking Liapunov funcional as follows:
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Calculating D+V (t) along system (4), we have

Let

by Definition 1, we know that the drive-response neural networks can be controlled synchronously. So we finish the proof of
Theorem 1.

4. Example

Consider delayed Cohen-Grossberg neural networks with reaction-diffusion terms
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The corresponding response neural networks can be expressed as follows.
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5. Conclusion

In this paper, the synchronization control of delayed Cohen-Grossberg neural networks with diffusion terms is studied. Some
sufficient conditions expressed by algebra inequalities have been given to ensure the synchronization control of Cohen-
Grossberg neural networks with diffusion terms. The methods used here can be used to deal with the exponential synchronization
of general problems. The result obtained in this paper is still true for other delayed reaction-diffusion neural networks.
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