
Journal of Networking Technology Volume 4 Number 3 September 2013 109

A Density-based Algorithm for Computing Community Structure in Directed Social
Networks

Yasmine Chaabani1, Lotfi Ben Romdhane2

1MARS Research Group
Faculty of Sciences
University of Monastir
Tunisia
2MARS Research Group
ISIT’COM, University of Sousse
Tunisia
chaabanijasmin@gmail.com, lotfi.ben.romdhane@usherbrooke.ca

ABSTRACT: Community detection plays a key role in such important fields as biology, sociology and computer science. For
example, detecting the communities in proteinprotein interactions networks helps in understanding their functionalities.
Most existing approaches were devoted to community mining in undirected social networks (either weighted or not). In fact,
despite their ubiquity, few proposals were interested in community detection in oriented social networks. For example, in a
friendship network, the influence between individuals could be asymmetric; in a networked environment, the flow of information
could be unidirectional. In this paper, we propose an algorithm, called ACODIG, for community detection in oriented social
networks. ACODIG uses an objective function based on measures of density and purity and incorporates the information
about edge orientations in the social graph. ACODIG uses ant colony for its optimization. Simulation results on real-world
as well as power law artificial benchmark networks reveal a good robustness of ACODIG and an efficiency in computing the
real structure of the network.

Keywords: Ant Colony Optimization, Community Detection, Social Networks, NP-Complete

Received: 10 May 2013, Revised 2 July 2013, Accepted 7 July 2013

© 2013 DLINE. All rights reserved

1. Introduction

Many complex systems, including physical, biological and social systems as well as many man-made technical systems can be
modeled by networks [2]. Networks can be represented by a graph G = (V, E), where V is the set of vertices (or nodes) and E is
the set of edges (or links) representing system units and relations between these units, respectively. When the edges have a
direction, the network is called directed and; otherwise, it is called undirected.

Many networked systems are found to divide naturally into modules or communities; i.e., groups of vertices with relatively
dense connections within groups but sparser connections between them. Detecting such communities could have a wide range

 110 Journal of Networking Technology Volume 4 Number 3 September 2013

of potential applications in real-world as detecting genes with the same functionality in a biological network, detecting the
actors of influence in a political network, etc. From a theoretical perspective, community detection in a social network can be
modeled as graph partitioning problem which is known to be NP-complete [10]. To overcome this inherit difficulty, researchers
proposed several methods to obtain the best partitioning of the given network [10], [17], [21], [22]. At this stage, it is important
to notice that most existing methods can only be applied to undirected networks. However, many complex networks in the real-
world are directed. Among these networks, let us mention PPI (Protein-Protein Interaction) networks in biology; the World Wide
Web; citation networks in the research community; telecommunication/phone call networks; and email networks to highlight
just a few. In this kind of networks, the direction of a link contains important information such as asymmetric influence or
information flow. A link between a pair of nodes may represent fundamentally different dynamics when its direction is reversed.
Therefore, any kind of approach that disregards the direction of links may fail to understand the dynamics and the function of
these directed networks. Also, any kind of community detection approach may fail to detect the communities correctly if the
direction of the link is not considered properly. In this regard, several recent proposals [5], [15], [16], [17] have tried to resolve
this problem. A common background between all of these methods is that each of them outlines its own definition of a
community in a directed network. Actually, no definition is universally accepted. Hereafter, we will outline the most known
methods for community detection in oriented social graphs. For a substantial review of the existing approaches as well as their
basics, we refer the interested reader to the specialized literature– see for example [10].

Random Walks is a widely used technique for community detection in directed (as well as undirected graphs). The basic idea is
to use a random walker from one vertex to another; and edges (resp. nodes) “central” to a community will form a trap in a random
walk journey. Darong Lai [16] uses PageRank random walk induced network embedding to transform a directed network into an
undirected one, where the information on edge directions is effectively incorporated into the edge weights. The purpose of
network embedding is to represent each vertex of a network as a low dimensional vector that preserves these similarities
between the vertex pairs, usually measured by the edge weights. Starting from this new undirected weighted network, previously
developed methods for undirected social graphs can be used without any modification. In [15], Kim et al propose a similar model
but based on the importance of links rather than nodes. In fact, the authors proposed a new generalization of modularity based
on LinkRank, which is a quantity that indicates the importance of links in a directed social graph. The proposed generalized
modularity is the fraction of time spent by a random walker moving within communities minus the expected value of this fraction.
In a second phase, any existing model for community detection in undirected networks can be used to optimize this generalized
modularity. Although, transforming a directed social network into a weighted undirected gives us the valuable advantage of
directly using previously developed methods for undirected networks to find communities in directed ones; there is no real
guarantee that this transformation is done without “information loss”; i.e., without altering the hidden real community structure
of the original oriented network. Stated otherwise, ignoring edge orientations may discard potentially useful information. In
addition, these “random walk”-based methods suffer from the high spatial complexity [15].

Graph mining is also another used technique for community detection in oriented social networks. In [5], the authors define a
community as being a “dense area” in the original graph. Thereby, the problem of community detection is reduced to the
problem of extracting the set of meaningful dense subgraphs from a given sparse graph. The proposed idea in the algorithm
bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques and which utilizes the
cosine similarity of matrix columns. Doing it this way, a partial clustering of the vertices in a graph is computed, where each
cluster represents a dense subgraph. The proposed algorithm is parametric and requires a density threshold above which the
output subgraphs are considered to be dense. Unfortunately, the proposed method is unable to detect communities with
unbalanced sizes [5]. Stated otherwise, in the presence of large dense communities; smaller sparse ones will be ignored.

Hierarchical clustering is a widely used technique, among others, which puts together similar vertices into larger communities.
Hierarchical clustering algorithms build the communities gradually in a hierarchical manner. Sometimes we use some terminating
conditions to select the partition or the group of partitions that satisfy a given criteria such as the number of communities
desired, the minimum (or maximum) number of objects in each community, the optimization of an objective function, etc. [10]. In
[17], the well-known modularity function is generalized in a principled fashion to incorporate the information contained in edge
directions. Then the community structure of the networks is computed by maximizing this generalized modularity function using
an hierarchical clustering approach; i.e., over several possible divisions of the network. Unfortunately, as any modularitybased
model, this approach will ignore small communities which will be merged with bigger ones. This is known in the literature as the
“resolution limit” problem and is discussed in details in [11].

In this paper, we propose an algorithm, called ACODIG, for community detection in directed social networks. In ACODIG, we

Journal of Networking Technology Volume 4 Number 3 September 2013 111

define an objective function that takes into account edge orientation, and we use ant colony for its optimization. A strong feature
of our model is its robustness in detecting communities of unbalanced sizes; and thereby avoids the “resolution limit” problem.
The rest of this paper is structured as follows. In Section II, we outline preliminary material. Section III details our proposals;
illustrates it on a sample network; and analyzes its time and space complexity. In Section IV, we conduct an experimental analysis
and compare our model to other recent proposals using large scale real-world and synthetic social networks; while the last
section offers concluding remarks. Many complex systems, including physical, biological and social systems as well as many
manmade technical systems can be modeled by networks [2]. Networks can be represented by a graph G = (V, E), where V is the
set of vertices (or nodes) and E is the set of edges (or links) representing system units and relations between these units,
respectively. When the edges have a direction, the network is called directed and; otherwise, it is called undirected.

Many networked systems are found to divide naturally into modules or communities; i.e., groups of vertices with relatively
dense connections within groups but sparser connections between them. Detecting such communities could have a wide range
of potential applications in real-world as detecting genes with the same functionality in a biological network, detecting the
actors of influence in a political network, etc. From a theoretical perspective, community detection in a social network can be
modeled as graph partitioning problem which is known to be NP-complete [10]. To overcome this inherit difficulty, researchers
proposed several methods to obtain the best partitioning of the given network [10], [17], [21], [22]. At this stage, it is important
to notice that most existing methods can only be applied to undirected networks. However, many complex networks in the real-
world are directed. Among these networks, let us mention PPI (Protein-Protein Interaction) networks in biology; the World Wide
Web; citation networks in the research community; telecommunication/phone call networks; and email networks to highlight
just a few. In this kind of networks, the direction of a link contains important information such as asymmetric influence or
information flow. A link between a pair of nodes may represent fundamentally different dynamics when its direction is reversed.
Therefore, any kind of approach that disregards the direction of links may fail to understand the dynamics and the function of
these directed networks. Also, any kind of community detection approach may fail to detect the communities correctly if the
direction of the link is not considered properly. In this regard, several recent proposals [5], [15], [16], [17] have tried to resolve
this problem. A common background between all of these methods is that each of them outlines its own definition of a
community in a directed network. Actually, no definition is universally accepted. Hereafter, we will outline the most known
methods for community detection in oriented social graphs. For a substantial review of the existing approaches as well as their
basics, we refer the interested reader to the specialized literature– see for example [10].

Random Walks is a widely used technique for community detection in directed (as well as undirected graphs). The basic idea is
to use a random walker from one vertex to another; and edges (resp. nodes) “central” to a community will form a trap in a random
walk journey. Darong Lai [16] uses PageRank random walk induced network embedding to transform a directed network into an
undirected one, where the information on edge directions is effectively incorporated into the edge weights. The purpose of
network embedding is to represent each vertex of a network as a low dimensional vector that preserves these similarities
between the vertex pairs, usually measured by the edge weights. Starting from this new undirected weighted network, previously
developed methods for undirected social graphs can be used without any modification. In [15], Kim et al propose a similar model
but based on the importance of links rather than nodes. In fact, the authors proposed a new generalization of modularity based
on LinkRank, which is a quantity that indicates the importance of links in a directed social graph. The proposed generalized
modularity is the fraction of time spent by a random walker moving within communities minus the expected value of this fraction.
In a second phase, any existing model for community detection in undirected networks can be used to optimize this generalized
modularity. Although, transforming a directed social network into a weighted undirected gives us the valuable advantage of
directly using previously developed methods for undirected networks to find communities in directed ones; there is no real
guarantee that this transformation is done without “information loss”; i.e., without altering the hidden real community structure
of the original oriented network. Stated otherwise, ignoring edge orientations may discard potentially useful information. In
addition, these “random walk”-based methods suffer from the high spatial complexity [15].

Graph mining is also another used technique for community detection in oriented social networks. In [5], the authors define a
community as being a “dense area” in the original graph. Thereby, the problem of community detection is reduced to the
problem of extracting the set of meaningful dense subgraphs from a given sparse graph. The proposed idea in the algorithm
bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques and which utilizes the
cosine similarity of matrix columns. Doing it this way, a partial clustering of the vertices in a graph is computed, where each
cluster represents a dense subgraph. The proposed algorithm is parametric and requires a density threshold above which the

 112 Journal of Networking Technology Volume 4 Number 3 September 2013

output subgraphs are considered to be dense. Unfortunately, the proposed method is unable to detect communities with
unbalanced sizes [5]. Stated otherwise, in the presence of large dense communities; smaller sparse ones will be ignored.

Hierarchical clustering is a widely used technique, among others, which puts together similar vertices into larger communities.
Hierarchical clustering algorithms build the communities gradually in a hierarchical manner. Sometimes we use some terminating
conditions to select the partition or the group of partitions that satisfy a given criteria such as the number of communities
desired, the minimum (or maximum) number of objects in each community, the optimization of an objective function, etc. [10]. In
[17], the well-known modularity function is generalized in a principled fashion to incorporate the information contained in edge
directions. Then the community structure of the networks is computed by maximizing this generalized modularity function using
an hierarchical clustering approach; i.e., over several possible divisions of the network. Unfortunately, as any modularitybased
model, this approach will ignore small communities which will be merged with bigger ones. This is known in the literature as the
“resolution limit” problem and is discussed in details in [11].

In this paper, we propose an algorithm, called ACODIG, for community detection in directed social networks. In ACODIG, we
define an objective function that takes into account edge orientation, and we use ant colony for its optimization. A strong feature
of our model is its robustness in detecting communities of unbalanced sizes; and thereby avoids the “resolution limit” problem.
The rest of this paper is structured as follows. In Section II, we outline preliminary material. Section III details our proposals;
illustrates it on a sample network; and analyzes its time and space complexity. In Section IV, we conduct an experimental analysis
and compare our model to other recent proposals using large scale real-world and synthetic social networks; while the last
section offers concluding remarks.

2. Basic Concepts

2.1 Problem formulation
A social network can be modeled by a graph G = (V, E) where V denotes the set of vertices and E ⊆ (V, V) denotes the set of edges.
In a directed network an edge is an ordered vertex pair (i , j), while in an undirected one both the vertex pair (i, j) and (j, i) represent
the same edge. A network can be represented by an adjacency matrix A whose elements are non negative; i.e., A

ij
 is positive if

there is an edge between vertex i and vertex j, and 0 otherwise. We should note that A is asymmetric for directed graphs. The
problem of community detection could be defined as follows.

[Community detection] Let G = (V, E) be a directed graph modeling the directed social network at hand. Let f be an objective
function measuring the quality of a partitioning of G. The problem of community detection consists in finding a partitioning P =
{C

1
,...,C

k
} of G

k
 such that: (i) C

i
 ⊂ V; (ii) C

i
 ∩ C

j
 = 0 ∀C

i
 , C

j
 ∈ P; (iii) ∪

i = 1
 C

i
 = V ; and (iv) f (P) is optimal.

From Definition II-A, we can state that a good partitioning is that optimizing a given objective function measuring the overall
quality of the detected communities. In a computed partitioning, we assume that communities do not overlap. We should notice
that we do not know a priori neither the size nor the number of communities.

2.2 Notations and basic definitions
The main goal of this section is to introduce preliminary concepts and the basic definitions fundamental to our model. Given a
directed graph G = (V, E), we denote by | V | its number of vertices and | E | its number of edges.

[Degree of vertex] Given a graph G = (V, E), then the degree of a vertex s is the number of incoming and outgoing edges from s
given by:

k

Degree (s) = E (s
i
, s) + E (s, s

i
)Σ

i ∈ G

[Importance of a vertex] Given a graph G = (V, E), we define the importance of a vertex s as the fraction of the sum of the outgoing
edges from s divided by the sum of the maximum number of incoming edges and the maximum outgoing edges existing in G. It is
given by:

Importance (s) =
D

out
 (s)

D
max_in

 + D
max_out

(1)

(2)

Journal of Networking Technology Volume 4 Number 3 September 2013 113

From Definition II-B, we can see that the importance of a node increases as the number of its outgoing edges increases which
means that it flows more information to the rest of he nodes. Intuitively speaking, the importance of a node in a directed graph
quantifies how “influential” is this node in forwarding information to the rest of the graph [22].

[Direct neighbor] In the graph G = (V, E), vertex v is said to be a direct neighbor of vertex s if s have a directed edge to v. This
relationship is represented by the edge (s, v) ∈ E. We should notice from Definition II-B that, unlike in undirected graphs, if node
s is a direct neighbor of node v; then the opposite is not necessarily true.

[Cardinality of a community] The cardinality of a community C, denoted by | C |, is its number of vertices.

[Free vertex] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), a vertex s ∈ C

i
 is said to be free if C

i
 contains only s. In other terms,

a free vertex composes a community on its own.

Given a partitioning P = {C
1
,...,C

k
} of G = (V, E) and a vertex s, we denote by NFDN (s) the number of neighbors of s that are at

the same time free and direct.

[Compatibility of a vertex to a community] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), a vertex s and a community C ∈ P; we

define the compatibility of s to C as the number of incoming edges to s from C and is given by:

(3)comp (s, C) = E (s
i
, s)Σ

s
i
∈C

In Definition II-B, the compatibility of a vertex to a community quantifies its “attachment” to it.

[Internal degree of a vertex] Given a partition P = {C
1
,...,C

k
} of G = (V, E), a vertex s and a community C ∈ P; we define the internal

degree of s in C as the number of outgoing and ingoing edges to s from the members of C; and is given by:

Degree
in

 (s, C) = E (s
i
, s) + E (s, s

i
)Σ

s
i
∈G

[Compatibility of a vertex] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E) and a vertex s; we define the compatibility of s as the

the maximum between the number of its free and direct neighbors and the values of its compatibility to all existing communities
in P; and is given by:

Comp
max

(s) = max {Comp (s, C
i
), ∀C

i
 ∈ P; NFDN (s)}

Intuitively, the compatibility of a vertex (in definition II-B) answers the following question: is a free vertex, say s, closer to an
already computed community; or closer to its free direct neighbors (and with whom s may compose a new community)?

[Importance of a community] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), we define the importance of a community C in P as

the the average importance of its nodes; i.e.,

Importance (C) =
| C |

Σ s
i
∈ C Importance (s

i
)

[Local density of a vertex] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), a vertex s and a community C ∈ P; we define the local

density of node s in community C as the the fraction of the internal degree of s in C divided its degree in G; and is given by:

Density (s, C) =
degree (s)

degree
in

 (s, C)

where the degree
in

(s, C) is given by equation (4) and degree (s) by equation (1). The local density of a node s w.r.t. a given
community C quantifies how “typical” is s w.r.t. C.

(4)

(5)

(6)

(7)

 114 Journal of Networking Technology Volume 4 Number 3 September 2013

Now, we are ready to define the density of a partitioning as follows:

[Density of a partitioning] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), we define the density of P as the average density of

its communities; and is given by:

Density (P) =
| P |

1 Density (C
i
)Σ

c
i
∈ P

The density of a node, community and a partitioning has the following natural properties, respectively.

For each vertex s ∈ G, we have: 0 ≤ Density (s) ≤ 1. For each Community C ∈ P, we have: 0 ≤ Density (C) ≤ 1. For each partitioning
P, we have: 0 ≤ Density (P) ≤ 1. After having defined the concept of density, now we will introduce the concept of purity. [Purity
of a vertex] Given a partitioning P = {C

1
,...,C

k
} of G = (V, E), a vertex s and a community C ∈ P; s is said pure w.r.t. C if the following

holds:

Comp (s, C) = Comp
max

(s)

(9)

(10)

[Density of a community] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E) and a community C ∈ P, we define the density of C as

the average density of its vertices; and is given by:

Density (C) =
| C |

1 Density (s
i
, C)Σ (8)

s
i
∈ C

where Comp (s, C) is the compatibility of s to C given by equation (3); and Comp
max

 (s) is the maximal compatibility of node s
given by equation (5). From Definition II-B, one can state that a vertex s is pure to C if it is attached to C more than it is attached
to its direct free neighbors (and with whom it may compose a new community) and to the rest of already computed communities.
[Purity of a community] Given a partitioning P = {C

1
,...,C

k
} of G = (V, E) and acommunity C ∈ P, we define the purity of C as the

average of the importance of its pure vertices. It is computed by:

(11)Purity (C) =
| C |

1
Importance (s

i
)Σ

s
i
∈ C / s

i
 is pure

[Purity of a partitioning] Given a partitioning P = {C
1
,...,C

k
} of G = (V, E), we define the purity of P as the average of the weighted

sum of the purity of its communities; and is given by:

Purity (P) =
| P |

1 Σ
C

i
∈ P
w

i
∗ Purity (C

i
) (12)

where w
i
is a weighting factor measuring the importance of community C

i
w.r.t. the rest and is given by:

w
i
 =

| C
i
 |

max {|C
j
|; ∀C

j
∈ P}

(13)

The best partitioning maximizes purity. In fact, this case corresponds to a partitioning in which each vertex is more attached to
its community than to the rest. The purity measure has the following straightforward properties. Each free vertex is an impure
vertex. For each Community C ∈ P, we have: 0 ≤ Purity (C) ≤ 1. For each partitioning P, we have: 0 ≤ Purity (P) ≤ 1.

Given all these definitions, now we are ready to outline our proposal subsequently.

3. Our Proposal

Our model, called ACODIG1, uses an objective function that characterizes the overall quality of a partitioning and uses ant
colony for its optimization.

1ACODIG is an acronym for Ant colony optimization for Community detection in DIrected Graphs

Journal of Networking Technology Volume 4 Number 3 September 2013 115

3.1 The objective function of our model
Our objective function is based on the concepts of purity and density outlined in the previous section. Given a partitioning
P = {C

1
,...,C

k
} of graph G = (V, E), it is qualified by:

DP (P) =
Density (P) + Purity (P)

2
(14)

where Density (P) and Purity (P) are given by equations (9) and (12), respectively. Maximizing our objective function tends to
produce a partitioning in which communities are dense and pure; i.e., in which vertices of the same community are well
connected together and well separated from the rest of communities. Hence, maximizing our objective function will maximize the
connectivity intra community and minimize the connectivity inter community. Our objective function in equation (14) has the
following property. For any partitioning P, we have 0 ≤ DP (P) ≤ 1.

In order to maximize our objective function, we use ant colony optimization (ACO, for short), a class of meta heuristics which
turned out to be efficient in solving a variety of NPhard problems to our satisfaction. ACO was first introduced by Marco Dorigo
in his PhD thesis [8]. ACO is based on a collective behavior for filling and tracking of colonies observed in ants. A colony of
simple ants communicate indirectly via dynamic changes in their environment (pheromone trails) and built as a solution to a
problem, based on their collective experience. ACO has shown promise in solving hard problems including project scheduling
[18], travelling salesman [13], vehicle routing [12] and routing in communications networks [7] to highlight just a few. For a
survey of ACO in solving hard problems, we refer the interested reader to [4], [19], [20]. Subsequently, we detail the distinct
steps of our approach.

3.2 Algorithm
In ACODIG, outlined in Algorithm 1, we start by an initial partitioning in which each vertex is considered as being free; i.e., not
included yet in any community. For this, the vector FREE is composed of all vertices of the graph. By the same way, the set of
computed partitions P is empty. In computing the set of communities, the nodes are considered with respect to their “influence”
in the social graph. This influence is measured by their importance degree given by equation (2). For this, we compute thereafter
the importance of each vertex and sort them (in descending order) w.r.t. that importance. Indeed, the most important influential
vertex (and which is still free) will be the starting point (center) for he next community (line 6 in the algorithm). Thereafter, we call
Mark outlined in Algorithm 2 which accepts as parameters the graph G, the center v, and outputs the computed community C

j
.

In Algorithm 2, we initialize community C
j
 with its its central node S on which we place an ant with a given label color. Therefore,

S is labelled with the color of this ant. Then, we compute the set of direct free neighbors of S. The ant on S will probabilistically
put other ants (with the same color label) on this set of free direct neighbors. Generally speaking, the probability of transition
from vertex i to vertex j is subject to the following probability function:

P
i, j

 = Importance (j) ∗ Purity (j, C
i
) (15)

where Importance (j) is the importance of vertex j and Purity (j, C
i
) is the purity of vertex j with respect to community C

i
 and

computed by equations (2) and (10), respectively. We should notice that this probability is high as long as vertex j is important
in the graph and is “close” (pure) to community C

i
 (to which the labelled vertex i already belongs). For this, free and direct

neighbors of S are considered with respect to this probability. Being on a given vertex, an ant has to decide to add it to the actual
community (by labelling it with its color label) or not. This decision is based upon the value of our objective function DP given
by equation (14).

If the actual node will increase the value of that function, then it is added; otherwise, it is ignored (and thereby remains
unlabelled). After adding a vertex to the actual community, the latter is recursively extended from that vertex (line 8 in Algorithm
2). In the next subsection, we will illustrate the distinct steps of ACODIG on a sample direct graph.

3.2.1 Illustration
The main purpose of this section is to illustrate the distinct steps of our algorithm ACODIG on a sample oriented social graph
composed of 12 nodes an 20 edges (see Figure 1).

 116 Journal of Networking Technology Volume 4 Number 3 September 2013

 Algorithm 1: ACODIG

 Input: A graph G = (V, E)

 Output: A partitioning P = {C1,...,C
k
}

 begin
1 FREE ← V
2 P ← 0
3 Sort vertices in FREE with respect to their

importance (in descending order)
4 j ← 1
5 while (FREE ≠ 0) do
6 v ← (the vertex in FREE with the highest

 importance)

7 C
j
 ← 0

8 Mark (G, v, C
j
)

9 delete labelled nodes from FREE

10 P ← P ∪ C
j

11 j ← j + 1
end

12 return P
 end

/

/

/

 Algorithm 2: Mark (G, S, C)

 Input: A graph G = (V, E), vertex S

 Output: C, a set of labelled (colored) vertices

 begin
1 C ← C ∪ S

2 Place an ant on vertex S and label it with the label
color of that ant

2 PROB(S) ← (the probabilities of transitions from 3
node S to its direct and free neighbors computed by
equation (15))

4 Sort PROB (S) (in descending order)

for k = 1 → PROB (S). size do

5 v
k
 ← (the vertex with the highest probability in

 PROB (S))

6 if (DP (C) < DP(C ∪ v
k
)) then

7 place an ant on v
k
 with the same color label

 as S

8 Mark (G, v
k
, C

)

 end
 end
 end

Initially all vertices are in FREE. After computing the importance of the vertices, it appears that vertex n
1
 is the most important

and therefore will be the central node of the first community, say C
1
. Then, we call algorithm Mark (G, n

1
, C

1
) which will consider

Journal of Networking Technology Volume 4 Number 3 September 2013 117

the direct and free neighbors of n
1
 w.r.t. their transition probabilities. The direct free neighbors of n

1
 is the set {n

3
, n

4
, n

5
, n

6
, n

9
};

and vertex n
9
 has the maximal probability of transition. Unfortunately, adding n

9
 will not increase our objective function, and

therefore it is not added. The next explored neighbor of n
1
 is n

3
 which increases our objective function; and thereby is labelled

(colored) with same color as n
1
. This process is recursively repeated until no extensions of C

1
 are possible–see figures 2(a)–(h).

Then the next most important free vertex is n
9
 which will compose next community C

2
– see figures 2(i)– (l). Consequently,

ACODIG divides our sample graph into two communities C
1
 = {n

1
, n

2
, n

3
, n

4
, n

5
, n

6
, n

7
, n

8
} and C

2
 = {n

9
, n

10
, n

11
, n

12
}– see figure

3.

In the next section, we will analyze the complexity (temporal and spatial) of ACODIG.

3.2.2 Complexity of our algorithm
Due to the large scale of real world social networks, the complexity (temporal and spatial) becomes crucial. In this section, we will
theoretically analyze the time and space complexities of our algorithm ACODIG. The following theorem is about the time
complexity. The time complexity of ACODIG is O (n2) where n is the number of vertices in the social directed network.

Proof: To evaluate the time complexity of our algorithm, we start by calculating complexity of each step. First, we consider the
initialization step of the degree vector and the partition initial time complexity of this step is O(n). The vector calculation step
open containing the values of the importance of vertices is done with a time complexity O(n2). Then, we sort the vertices
according to the value of their importance in the free vector the time complexity of sorting (bubble sort) and the distribution is
O(n2). The time complexity of the initialization phase is:

T
initial

 = O (max (n, n2))

= O (n2)

1

2

6

9

10

11

12

5

4

8

3

7

Figure 1. Sample directed graph

After the distribution of ants, we apply the functions mark on each element of free vector. Hence the complexity of recursive
function Mark is O (n2). The complexity of removing labelled nodes is O (n). Hence, The time complexity of this phase is O (n2).

T
main

 = O (max (n, n2))

= O (n2)

So the total time complexity of the worst case is:

 118 Journal of Networking Technology Volume 4 Number 3 September 2013

1

2

10

11

3

4

7 8

5

6

12

9

1

2

10

3
4

7 8

5

6

12

9 11

1

2

10

3
4

7
8

5

6

12

9 11

1

2

10

11

3

4

7 8

5

6

12

9

1

2

10

11

3

4

7
8

5

6

12

9

1

2

10

11

3

4

7
8

5

6

12

9

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Visualization of the main steps of our algorithm

Journal of Networking Technology Volume 4 Number 3 September 2013 119

Figure 3. Computed communities

complexity_temporal = O(n2)

The following theorem is about the spatial complexity of ACODIG. The space complexity of ACODIG is O(m) where m is the
number of edges (relations) in the social directed network.

Proof: In our approach, we use two vectors: the first vector stores the importance of nodes; and the second stores the free
nodes. We also build a graph with m edges. Considering the worst case where the input graph is very dense (w.r.t. the number
of edges), then we have:

complexity_spatial = O(max{m, n}= O(m)

After having theoretically analyzed the complexity of our algorithm ACODIG, we will analyze it experimentally and compare it to
other proposals in the next section.

4. Benchmarks

The main purpose of this section is to analyze experimentally our model ACODIG and to compare it to other recent proposals for
community detection in directed graphs. We will compare ACODIG to two well-known proposals; namely, the model in [15]
(noted LR) based on link ranking, and the model in [17] (noted M). We should remind that both proposals are based on an
objective function derived from the standard well-known modularity. As a test bed, we considered large scale real-world
networks as well as synthetic networks generated using the LFR benchmarks [9]. As evaluation criteria for a computed partitioning,
we considered these standard measures: density, coverage and performance. When the real partitioning is available (which is
the case for LFR benchmarks), we considered in addition the normalized mutual information. Now, we will define these criteria.
For this, let P = {C

1
, C

2
,..., C

k
} a computed partitioning by any model.

The density of a partitioning is defined as follows [6]:

(16)

(17)

D (P) = Σ
C

i
∈ P

D (C
i
)

| P |
(18)

 120 Journal of Networking Technology Volume 4 Number 3 September 2013

where the density of a community C is computed by:

D (C) =
|V | (|V | − 1)

| E |
(19)

We should notice that a good partitioning should maximize density; i.e., produce dense communities. As for the coverage
criteria, it measures the fraction of edges inside a community w.r.t. the total number of edges in the graph and is given by [3]:

Coverage (P)= Σ | E | (20)
| E

i
 |

i = 1

Regarding the performance, it measures the rate of edges well positioned according to the partitioning P and is defined by [3]:

k

Per f (P) = 2
| False + | + | False − |

N (N − 1)
⎛
⎝

⎛
⎝

(21)

where | False + | is the number of inter-community edges; | False − | is the number of pairs (v
i
, v

j
) of a non-adjacent community.

However, when the real community structure is available, we can compare it to the computed one using the normalized mutual
information (NMI) given by [15]:

NMI (A, P) =
Σ a

∈ A− 2 Σ b

∈ P |a ∩ b| log |a ∩ b| n

|a || b|
()

Σ a

∈ A | a | log +()

| a |
n Σ b

∈ P | b | log ()

| b |
n

(22)

where A is the real structure of the network. We should notice that NMI (A, P) = 1 when both partitions A and P coincide. Given
all these performance criteria, now we are ready to outline experimental results.

4.1 Evaluation on artificial networks
In this first set of runs, we used randomly generated social networks using the LFR benchmarks [9] and whose structure is
imposed during the generation phase. Having the latter as a reference point, we can use the normalized mutual information NMI
in equation (22) to evaluate the quality of the computed partitioning. The LFR generator has several parameters among them let
us mention the number of nodes (N); the average degree of incoming edges (k); the maximum degree of the incoming edges
(maxk); the fraction between incoming and outgoing edges inside a community (µ); the minimal community size (minc and the
maximal community size (maxc). We started our simulation with reference graphs and by varying one or several parameters of the
generator, we obtained several graphs of different complexities. For each simulation, we considered two graphs and computed
the CPU time (in seconds) taken by the model to output a partitioning2.

In addition, we take into account the computed number of communities (#comm) compared to the real exact one (EP).

4.1.1 First case: references graphs
We considered reference graphs composed of N = 5000, k = 15, maxk = 50, µ = 0.1; minc = 20 and maxc = 50. Simulation results
are reported in Tables 1 – 3.

First, we should remark that the model LR [15] was unable to compute a partitioning of the considered graphs mainly due to their
size. In fact reporting to [15], all used graphs are of small size mainly due to the high spatial complexity of the algorithm. We
notice from Tables 1 and 3 that our algorithm ACODIG computed better partitioning than M [17] with respect to NMI and the
number of communities. Unfortunately, this resulted in much more CPU time (see Table 2).

2 Due to systems’ overload, the CPU time is averaged over five trials for each case

Journal of Networking Technology Volume 4 Number 3 September 2013 121

 M LR ACODIG

NMI (g1) 0.512 - 0.892

NMI (g2) 0.558 - 0.911

 M LR ACODIG

CPU (g1) 154.123 - 161.434

CPU (g2) 162.156 - 165.381

 M LR ACODIG PE

comm (g1) 102 - 154 156

comm (g2) 105 - 155 156

Table 1. NMI for Reference Graphs

Table 2. Average CPU Time (in Seconds) for Reference Graphs

Table 3. Number of Computed Communities Compared
to the Exact one (EP) for Reference Graphs

 M LR ACODIG

NMI (g1) 0.745 0.521 0.956

NMI (g2) 0.785 0.498 0.914

 M LR ACODIG

CPU (g1) 64.562 842.465 66.241

CPU (g2) 66.254 975.397 67.834

 M LR ACODIG PE

comm (g1) 28 20 29 30

comm (g2) 28 19 30 31

Table 4. NMI for Graphs with Large Communities

Table 5. CPU Time (in Seconds) for graphs with large communities

Table 6. Number of Computed Communities Compared to
the Exact one (EP) for Graph with Large Communities

From Table 4, we can see that our algorithm ACODIG has the best partitioning with respect to NMI. This means that it computes
partitions that are very close to the exact real ones. Regarding the same criteria, M performs better than LR. In addition, we notice
in Table 6 that the computed number of communities by ACODIG are very close to the real ones than M or LR. Regarding the CPU
time in Table 5, our algorithm performs better than LR but has equivalent performance to M.

4.1.3 Third case: small communities:
In this third set of runs, we consider small communities with minc = 10, maxc = 30. Simulation results are summarized in Tables
7 – 9.

4.1.2 Second case: large communities
In this second set of runs, we consider graphs with large communities with minc = 30; maxc = 80. Simulation results are
summarized in Tables 4 – 6.

 122 Journal of Networking Technology Volume 4 Number 3 September 2013

 M LR ACODIG

NMI (g1) 0.356 0.578 0.899

NMI (g2) 0.389 0.599 0.923

 M LR ACODIG

CPU (g1) 71.256 855.164 70.445

CPU (g2) 70.895 999.224 71.369

 M LR ACODIG PE

comm (g1) 21 45 69 70

comm (g2) 22 44 66 69

Table 7. NMI for Graphs with Small Communities

Table 8. CPU Time (in Seconds) for graphs with Small Communities

Table 9. Number of Computed Communities Compared to
the Exact one (EP) for Graph with Small Communities

Here again, our model gives the best partitioning with respect to the normalized mutual information as well as the number of
computed communities. As for the CPU time in Table 8, our model performs as well as M; and much better than LR.

4.1.4 Fourth case: sparse graphs
In this set of runs, we consider sparse graphs with k = 20. Remind that k controls the average degree of incoming edges.
Simulation results are summarized in Tables 10-12.

 M LR ACODIG

NMI (g1) 0.784 0.458 0.968

NMI (g2) 0.791 0.496 0.933

 M LR ACODIG

CPU (g1) 50.456 513.148 49.498

CPU (g2) 51.195 582.391 48.342

 M LR ACODIG PE

comm (g1) 51 48 67 68

comm (g2) 52 46 69 69

Table 10. NMI for Sparse Graphs

Table 11. CPU Time (in Seconds) for Spares graphs

Table 12. Number of Computed Communities Compared
to the Exact one (EP) for Sparse Graph

Here again ACODIG outperforms LR and M with respect to NMI, the number of computed communities as well as the CPU time.
We should notice also that M performs better than LR.

4.1.5 Fifth case: very dense graphs
As a final simulation with LFR, we considered dense graphs with k = 100. Simulation results are summarized in Tables 13–15

Journal of Networking Technology Volume 4 Number 3 September 2013 123

 M LR ACODIG

NMI (g1) 0.598 0.651 0.978

NMI (g2) 0.568 0.698 0.966

 M LR ACODIG

CPU (g1) 68.592 899.664 69.497

CPU (g2) 66.544 789.734 65.453

 M LR ACODIG PE

comm (g1) 25 30 48 51

comm (g2) 28 33 50 52

Table 13. NMI for Dense Graphs

Table 14. CPU Time (in Seconds) for Dense graphs

Table 15. Number of Computed Communities Compared
to the Exact one (EP) for Dense Graph

Considering dense graphs, we can notice that our model performs much better than LR and M. It took less CPU time and
computes partitions that are very close to the exact ones. This may be explained by the fact that, in principle, ACODIG is based
on the concept of density (see Definition II-B).

4.2 Evaluation on real networks
In this second set of runs, we consider real networks. Unfortunately, the real hidden structure for these networks is, in general,
unknown. For this, we can not use the normalized mutual information as evaluation criteria. Instead, in addition to the objective
function of each model, we will consider the density, coverage and performance criteria in equations (18), (20) and (21),
respectively. The used real graphs are described in Table 16.

 N E

Football network [14] 10 44

Neurons network [11] 306 2345

Political blogs network [1] 1490 19090

Table 16. Characteristics of the Real Graphs: N Denotes
the number of Nodes and E Denotes the number of Edges

Subsequently, we will describe each network along with the simulation results.

4.2.1 Football network
The football network is a small one with ten vertices. It models the relationships of interaction between teams (winning and
losing) football for the 2005 season. ACODIG divides this network into two communities depicted in Figure 4. This partitioning
corresponds perfectly to that in [17]. Values of the considered criteria for this network are reported in Table 17. From this table
we can see that our model ACODIG is the best for Density and our objective function DP as well as the CPU time. The model M
is the best w.r.t. the modularity and Coverage criteria; whereas the model LR is the best w.r.t. Performance criteria.

4.2.2 Neurons network
This neurons networks of C. Elegans is made a directed network of 306 nodes (neurons), connected through 2345 links
(synapsis, gap junctions) [11]. It represents the structure of the nervous system of the nematode. We can notice from the
simulation results reported in Table 18 that our model is better w.r.t. Density, DP, Performance and CPU time. However, the model

 124 Journal of Networking Technology Volume 4 Number 3 September 2013

M is he best considering the modularity and coverage criteria. Although the model LR has the worst performance w.r.t. to all
criteria, but it remains not so far from both ACODIG and M especially for the modularity and coverage criteria.

4.2.3 Political blogs network
The “Political Blog Network” is a large directed network between a set of weblogs about US politics recorded by Adamic and
Glance [1]. In this network there are totally 1490 nodes and 19090 links. Each node is labelled as either conservative or liberal.
Simulation results for this network are summarized in Table 19. From this table, we notice that the model LR was unable to
compute a partitioning due to the large size of this network. We can state also that ACODIG performs better considering the
Density, DP, Performance and CPU criteria. However, the model M is better w.r.t. modularity.

As a summary to all these simulation results on real world and artificial networks, we can say that our algorithm ACODIG was

 M LR ACODIG

Modularity 0.691 0.592 0.571

Density 0.354 0.374 0.581

DP 0.589 0.548 0.642

Coverage 0.481 0.451 0.367

Performance 0.582 0.699 0.669

CPU (s) 2.133 268.541 2.012

Table 17. Quality Measures for the “Football Network”

Figure 4. Communities detected by ACODIG in the football network

 M LR ACODIG

Modularity 0.681 0.611 0.474

Density 0.659 0.298 0.692

DP 0.478 0.329 0.667

Coverage 0.577 0.532 0.423

Performance 0.641 0.414 0.691

CPU (s) 10.422 995.258 9.589

Table 18. Quality Measures for the “Neurons Network”

Journal of Networking Technology Volume 4 Number 3 September 2013 125

 M LR ACODIG

Modularity 0.695 - 0.551

Density 0.569 - 0.684

DP 0.482 - 0.564

Coverage 0.512 - 0.454

Performance 0.458 - 0.624

CPU (s) 90.122 - 89.152

able to compute good partitions in reasonable time scales.

5. Conclusion

We have proposed in this paper ACODIG, a model for community detection in oriented social networks. ACODIG qualifies a
given partitioning using an objective function modeling both concepts of density and purity. While the density tends to
produce dense communities; the purity guarantees the “typicality” of each vertex to its own community. Doing it this way, we
guarantee the computation of a partitioning in which we have dense communities well separated from the rest. ACODIG uses ant
colony for the optimization of this objective function. Simulation results on real world and synthetic social networks reveal a
good performance of our proposal in computing optimal partitions in reasonable time scales. These results should stimulate
future research. Extending ACODIG to weighted social graphs with overlapping communities (i.e., in which a single vertex may
belong to several communities) constitute our immediate focus.

References

[1] Lada Adamic, Natalie Glance. (2005). The political blogosphere and the 2004 u.s. election: Divided they blog. In: LinkKDD 05:
Proceedings of the 3rd International Workshop on Link discovery, p. 36–43.

[2] Réka Albert, Albert-László Barabási. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47–97, Jan.

[3] Brandes, U., Gaertler, M. (2003). Experiments on graph clustering algorithms. LNCS, 14 (1) 51–65.

[4] Chandrasekhar, U., Naga, P. R. P. (2011). Recent trends in ant colony optimization and data clustering: A brief survey. In:
Intelligent Agent and Multi-Agent Systems (IAMA), 2011 2nd International Conference on, p. 32–36.

[5] Chen, J., Saad, Y. (2010). Dense subgraph extraction with application to community detection. Transactions on knowledge
and data engineering, 14 (1) 78–92.

[6] Chen, J., Saad, Y. (2010). Dense subgraph extraction with application to community detection. Transactions on knowledge
and data engineering, 14 (1) 78–92.

[7] Gianni Di Caro, Marco Dorigo. (1998). Antnet: distributed stigmergetic control for communications networks. J. Artif. Int.
Res., 9 (1) 317–365, December.

[8] Dorigo, M. (1992). Optimization, learning and natural algorithms. Politecnico di Milano, 32 (2) 137–172.

[9] San Fortunato. Benchmark graphs to test community detection algorithms. http ://sites.google.com/site/santofortunato/in
the press, 2.

[10] Santo Fortunato. (2009). Community detection in graphs. Physics Report, p. 75–174.

[11] Santo Fortunato, Marc Barthélemy. (2007). Resolution limit in community detection. In: Proceedings of the National Academy
of Sciences of the United States of America, p. 36–41.

[12] Gambardella, L., Taillard, E., Agazzi, G. (1999). New ideas in optimization, chapter macs-vptw: A multiple ant colony system
for vehicle routing problems with time windows. McGraw Hill, London, UK, 79 (1) 379– 458.

Table 19. Quality Measures for the “Political Blogs” Network

 126 Journal of Networking Technology Volume 4 Number 3 September 2013

[13] Rongwei Gan, Qingshun Guo, Huiyou Chang, Yang Yi. (2010). Improved ant colony optimization algorithm for the traveling
salesman problems. Systems Engineering and Electronics, Journal of, 21 (2) 329–333.

[14] Girvan, M., Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National
Academy of Sciences, 99 (12) 7821–7826, June.

[15] Youngdo Kim, Seung-Woo Son, Hawoong Jeong. (2010). Finding communities in directed networks. Phys. Rev. E, 81,
016103, Jan .

[16] Darong Lai, Hongtao Lu, Christine Nardini. (2010). Finding communities in directed networks by pagerank random walk
induced network embedding. Physica A: Statistical Mechanics and its Applications, 389 (12) 2443–2454.

[17] Leicht, E. A., Newman, M. (2007). Community structure in directed networks. physics.data-an, 5 (1) 91–96, January.

[18] Merkle, D., Middendorf, M., Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling.
Evolutionary Computation, IEEE Transactions on, 6 (4) 333–346.

[19] Chandra Mohan, B., Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on
several engineering domain. Expert Systems with Applications, 39 (4) 4618 – 4627.

[20] Suri, B., Singhal, S. (2012). Literature survey of ant colony optimization in software testing. In: Software Engineering
(CONSEG), 2012 CSI Sixth International Conference on, p. 1–7.

[21] Zardi, H., Ben Romdhane, L. (2013). An o(n2) algorithm for detecting communities of unbalanced sizes in large scale social
networks. Know.- Based Syst., 37, 19–36, January.

[22] Xiaohang Zhang, Ji Zhu, Qi Wang, Han Zhao. (2013). Identifying influential nodes in complex networks with community
structure. Knowledge-Based Systems, 42 (0) 74 – 84.

