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ABSTRACT: Community detection plays a key rolein such important fields as biology, sociology and computer science. For
example, detecting the communities in proteinprotein interactions networks helps in understanding their functionalities.
Most existing approaches were devoted to community mining in undirected social networks (either weighted or not). In fact,
despite their ubiquity, few proposals were interested in community detection in oriented social networks. For example, in a
friendship network, theinfluence between individual s could be asymmetric; in a networ ked environment, the flow of information
could be unidirectional. In this paper, we propose an algorithm, called ACODIG, for community detection in oriented social
networks. ACODIG uses an objective function based on measures of density and purity and incorporates the information
about edge orientations in the social graph. ACODIG uses ant colony for its optimization. Smulation results on real-world
aswell as power law artificial benchmark networks reveal a good robustness of ACODIG and an efficiency in computing the
real structure of the network.
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1. Introduction

Many complex systems, including physical, biological and social systemsaswell as many man-made technical systemscan be
modeled by networks[2]. Networks can be represented by agraph G = (V, E), whereV isthe set of vertices (or nodes) andE is
the set of edges (or links) representing system units and relations between these units, respectively. When the edges have a

direction, the network is called directed and; otherwise, it is called undirected.

Many networked systems are found to divide naturally into modules or communities; i.e., groups of vertices with relatively
dense connections within groups but sparser connections between them. Detecting such communities could have awide range
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of potential applications in real-world as detecting genes with the same functionality in a biological network, detecting the
actors of influence in a political network, etc. From atheoretical perspective, community detection in a social network can be
model ed as graph partitioning problem which isknown to be NP-complete[10]. To overcomethisinherit difficulty, researchers
proposed several methodsto obtain the best partitioning of the given network [10], [17], [21], [22]. At thisstage, it isimportant
to notice that most existing methods can only be applied to undirected networks. However, many complex networksin thereal-
world are directed. Among these networks, let us mention PPl (Protein-Protein I nteraction) networksin biology; the World Wide
Web; citation networks in the research community; telecommunication/phone call networks; and email networks to highlight
just afew. In this kind of networks, the direction of alink contains important information such as asymmetric influence or
information flow. A link between apair of nodes may represent fundamentally different dynamicswhenitsdirectionisreversed.
Therefore, any kind of approach that disregards the direction of links may fail to understand the dynamics and the function of
these directed networks. Also, any kind of community detection approach may fail to detect the communities correctly if the
direction of thelink isnot considered properly. In thisregard, several recent proposals[5], [15], [16], [17] havetried to resolve
this problem. A common background between all of these methods is that each of them outlines its own definition of a
community in a directed network. Actualy, no definition is universally accepted. Hereafter, we will outline the most known
methods for community detection in oriented social graphs. For asubstantial review of the existing approaches aswell astheir
basics, werefer theinterested reader to the specialized literature— see for example[10].

Random Walksisawidely used technique for community detection in directed (aswell asundirected graphs). The basicideais
to usearandom walker from one vertex to another; and edges (resp. nodes) “central” to acommunity will form atrap in arandom
walk journey. Darong Lai [16] uses PageRank random walk induced network embedding to transform adirected network into an
undirected one, where the information on edge directions is effectively incorporated into the edge weights. The purpose of
network embedding is to represent each vertex of a network as a low dimensional vector that preserves these similarities
between the vertex pairs, usually measured by the edge weights. Starting from this new undirected weighted network, previously
developed methods for undirected social graphs can be used without any modification. In[15], Kim et al propose asimilar model
but based on the importance of links rather than nodes. In fact, the authors proposed a new generalization of modularity based
on LinkRank, which is a quantity that indicates the importance of links in a directed social graph. The proposed generalized
modularity isthe fraction of time spent by arandom walker moving within communities minusthe expected val ue of thisfraction.
In asecond phase, any existing model for community detection in undirected networks can be used to optimize this generalized
modularity. Although, transforming a directed social network into a weighted undirected gives us the valuable advantage of
directly using previously developed methods for undirected networks to find communities in directed ones; there is no real
guaranteethat thistransformation is done without “informationloss’; i.e., without altering the hidden real community structure
of the original oriented network. Stated otherwise, ignoring edge orientations may discard potentially useful information. In
addition, these “random walk” -based methods suffer from the high spatial complexity [15].

Graph mining is also another used technique for community detection in oriented social networks. In [5], the authors define a
community as being a “dense area” in the original graph. Thereby, the problem of community detection is reduced to the
problem of extracting the set of meaningful dense subgraphs from a given sparse graph. The proposed idea in the algorithm
bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques and which utilizes the
cosine similarity of matrix columns. Doing it this way, a partial clustering of the vertices in a graph is computed, where each
cluster represents a dense subgraph. The proposed algorithm is parametric and requires a density threshold above which the
output subgraphs are considered to be dense. Unfortunately, the proposed method is unable to detect communities with
unbalanced sizes[5]. Stated otherwise, in the presence of large dense communities; smaller sparse ones will beignored.

Hierarchical clustering isawidely used technique, among others, which putstogether similar verticesinto larger communities.
Hierarchical clustering algorithmsbuild the communities gradually in ahierarchical manner. Sometimeswe use someterminating
conditions to select the partition or the group of partitions that satisfy a given criteria such as the number of communities
desired, the minimum (or maximum) number of objectsin each community, the optimization of an objectivefunction, etc.[10]. In
[17], thewell-known modularity function isgeneralized in aprincipled fashion to incorporate the information contained in edge
directions. Then the community structure of the networksis computed by maximizing thisgeneralized modularity function using
an hierarchical clustering approach; i.e., over several possible divisions of the network. Unfortunately, asany modul aritybased
model, thisapproach will ignore small communitieswhich will be merged with bigger ones. Thisisknownintheliterature asthe
“resolution limit” problem and is discussed in detailsin [11].

In this paper, we propose an algorithm, called ACODI G, for community detection in directed social networks. In ACODIG, we

110 Journal of Networking Technology Volume 4 Number 3 September 2013




define an objectivefunction that takesinto account edge orientation, and we use ant colony for its optimization. A strong feature
of our model isitsrobustnessin detecting communities of unbalanced sizes; and thereby avoidsthe“resolution limit” problem.
Therest of this paper is structured asfollows. In Section |1, we outline preliminary material. Section |11 details our proposals;
illustratesit on asample network; and analyzesitstime and space complexity. In Section IV, we conduct an experimental analysis
and compare our model to other recent proposals using large scale rea-world and synthetic social networks; while the last
section offers concluding remarks. Many complex systems, including physical, biological and social systems aswell as many
manmade technical systems can be modeled by networks[2]. Networks can berepresented by agraph G = (V, E), whereVisthe
set of vertices (or nodes) and E is the set of edges (or links) representing system units and relations between these units,
respectively. When the edges have a direction, the network is called directed and; otherwise, it is called undirected.

Many networked systems are found to divide naturally into modules or communities; i.e., groups of vertices with relatively
dense connections within groups but sparser connections between them. Detecting such communities could have awide range
of potential applicationsin real-world as detecting genes with the same functionality in a biological network, detecting the
actors of influencein a political network, etc. From atheoretical perspective, community detection in a social network can be
model ed as graph partitioning problem which isknown to be NP-complete[10]. To overcomethisinherit difficulty, researchers
proposed several methodsto obtain the best partitioning of the given network [10], [17], [21], [22]. At thisstage, it isimportant
to notice that most existing methods can only be applied to undirected networks. However, many complex networksin thereal-
world are directed. Among these networks, let us mention PPl (Protein-Protein I nteraction) networksin biology; the World Wide
Web; citation networks in the research community; telecommunication/phone call networks; and email networks to highlight
just afew. In this kind of networks, the direction of alink contains important information such as asymmetric influence or
information flow. A link between apair of nodes may represent fundamentally different dynamicswhenitsdirectionisreversed.
Therefore, any kind of approach that disregards the direction of links may fail to understand the dynamics and the function of
these directed networks. Also, any kind of community detection approach may fail to detect the communities correctly if the
direction of thelink isnot considered properly. In thisregard, several recent proposals[5], [15], [16], [17] havetried to resolve
this problem. A common background between all of these methods is that each of them outlines its own definition of a
community in a directed network. Actualy, no definition is universally accepted. Hereafter, we will outline the most known
methods for community detection in oriented social graphs. For asubstantial review of the existing approaches aswell astheir
basics, werefer theinterested reader to the specialized literature— see for example[10].

Random Walksisawidely used technique for community detection in directed (aswell asundirected graphs). The basicideais
to usearandom walker from one vertex to another; and edges (resp. nodes) “central” to acommunity will form atrap in arandom
walk journey. Darong Lai [16] uses PageRank random walk induced network embedding to transform adirected network into an
undirected one, where the information on edge directions is effectively incorporated into the edge weights. The purpose of
network embedding is to represent each vertex of a network as a low dimensional vector that preserves these similarities
between the vertex pairs, usually measured by the edge weights. Starting from this new undirected weighted network, previously
developed methods for undirected social graphs can be used without any modification. In[15], Kim et al propose asimilar model
but based on the importance of links rather than nodes. In fact, the authors proposed a new generalization of modularity based
on LinkRank, which is a quantity that indicates the importance of links in adirected social graph. The proposed generalized
modularity isthe fraction of time spent by arandom walker moving within communities minusthe expected val ue of thisfraction.
Inasecond phase, any existing model for community detection in undirected networks can be used to optimize this generalized
modularity. Although, transforming a directed social network into a weighted undirected gives us the valuable advantage of
directly using previously developed methods for undirected networks to find communities in directed ones; there is no real
guaranteethat thistransformation isdone without “informationloss’; i.e., without altering the hidden real community structure
of the original oriented network. Stated otherwise, ignoring edge orientations may discard potentially useful information. In
addition, these “random walk” -based methods suffer from the high spatial complexity [15].

Graph mining is also another used technique for community detection in oriented social networks. In [5], the authors define a
community as being a “dense area” in the original graph. Thereby, the problem of community detection is reduced to the
problem of extracting the set of meaningful dense subgraphs from a given sparse graph. The proposed idea in the algorithm
bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques and which utilizes the
cosine similarity of matrix columns. Doing it this way, a partial clustering of the vertices in a graph is computed, where each
cluster represents a dense subgraph. The proposed algorithm is parametric and requires a density threshold above which the
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output subgraphs are considered to be dense. Unfortunately, the proposed method is unable to detect communities with
unbalanced sizes[5]. Stated otherwise, in the presence of large dense communities; smaller sparse ones will beignored.

Hierarchical clustering isawidely used technique, among others, which putstogether similar verticesinto larger communities.
Hierarchical clustering algorithmsbuild the communities gradually in ahierarchical manner. Sometimeswe use someterminating
conditions to select the partition or the group of partitions that satisfy a given criteria such as the number of communities
desired, the minimum (or maximum) number of objectsin each community, the optimization of an objectivefunction, etc.[10]. In
[17], thewell-known modularity function isgeneralized in aprincipled fashion to incorporate the information contained in edge
directions. Then the community structure of the networksis computed by maximizing thisgeneralized modularity function using
an hierarchical clustering approach; i.e., over several possible divisions of the network. Unfortunately, as any modul aritybased
model, thisapproach will ignore small communitieswhich will be merged with bigger ones. Thisisknownintheliterature asthe
“resolution limit” problem and is discussed in detailsin [11].

In this paper, we propose an algorithm, called ACODI G, for community detection in directed social networks. In ACODIG, we
define an objective function that takesinto account edge orientation, and we use ant colony for its optimization. A strong feature
of our model isitsrobustnessin detecting communities of unbalanced sizes; and thereby avoidsthe“resolution limit” problem.
Therest of this paper is structured as follows. In Section 11, we outline preliminary material. Section |11 details our proposals;
illustratesit on asample network; and analyzesitstime and space complexity. In Section IV, we conduct an experimental analysis
and compare our model to other recent proposals using large scale rea-world and synthetic social networks; while the last
section offers concluding remarks.

2.Basic Concepts

2.1 Problemformulation

A socia network can be modeled by agraph G = (V, E) whereV denotesthe set of verticesand E c (V, V) denotesthe set of edges.
Inadirected network an edgeisan ordered vertex pair (i , j), whilein an undirected one both the vertex pair (i, j) and (j, i) represent
the same edge. A network can be represented by an adjacency matrix A whose elements are non negative; i.e., Aij ispositive if
thereis an edge between vertex i and vertex j, and O otherwise. We should note that A is asymmetric for directed graphs. The
problem of community detection could be defined as follows.

[Community detection] Let G = (V, E) be adirected graph modeling the directed social network at hand. Let f be an objective
function measuring the quality of apartitioning of G. The problem of community detection consistsin finding apartitioning P =

{C,.....C} of G, suchthat: (i) C, < V; (ii) C. C]. =!JVCi , C]. e P; (iii) Uik:lCi =V;and(iv) f (P) isoptimal.

From Definition |1-A, we can state that agood partitioning is that optimizing a given objective function measuring the overall
quality of the detected communities. In acomputed partitioning, we assume that communities do not overlap. We should notice
that we do not know apriori neither the size nor the number of communities.

2.2 Notationsand basic definitions
Themain goal of thissection istointroduce preliminary concepts and the basi ¢ definitions fundamental to our model. Given a
directed graph G = (V, E), wedenote by | V | its number of verticesand | E | its number of edges.

[Degree of vertex] Given agraph G = (V, E), then the degree of avertex sisthe number of incoming and outgoing edgesfrom s
given by:

Degree(s) =_ZGE (s,9+E(ss) @

[Importance of avertex] Givenagraph G = (V, E), we definetheimportance of avertex sasthefraction of the sum of the outgoing
edgesfrom sdivided by the sum of the maximum number of incoming edges and the maximum outgoing edgesexistingin G. Itis
given by:

@

Importance (s) = D
max_in max_out
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From Definition |1-B, we can see that the importance of a node increases as the number of its outgoing edges increases which
meansthat it flows more information to the rest of he nodes. Intuitively speaking, the importance of anodein adirected graph
quantifies how “influential” isthis node in forwarding information to the rest of the graph [22].

[Direct neighbor] Inthe graph G = (V, E), vertex vis said to be adirect neighbor of vertex sif shave adirected edgetov. This
relationship isrepresented by the edge (s, v) € E. We should noticefrom Definition 11-B that, unlikein undirected graphs, if node
sisadirect neighbor of node v; then the opposite is not necessarily true.

[Cardinality of acommunity] The cardinality of acommunity C, denoted by | C |, isits number of vertices.

[Freevertex] GivenapartitioningP={C,,..,C,} of G=(V, E), avertexse C, issaidtobefreeif C, containsonly s. Inother terms,
afree vertex composes acommunity onitsown.

GivenapartitioningP={C,,...,C,} of G=(V, E) and avertex s, we denote by NFDN (s) the number of neighborsof sthat are at
the sametimefree and direct.

[Compatibility of avertex to acommunity] GivenapartitioningP={C,,...,.C,} of G=(V, E), avertex sand acommunity Ce P; we
define the compatibility of sto C asthe number of incoming edgesto sfrom C and isgiven by:

comp(s,C)= Y E(s.9 €
seC

In Definition 11-B, the compatibility of avertex to acommunity quantifiesits“attachment” toit.

[Internal degreeof avertex] GivenapartitionP={C,,....C,} of G=(V, E), avertex sand acommunity C e P; wedefinetheinterna
degree of sin C asthe number of outgoing and ingoing edgesto s from the members of C; and is given by:

Degree, (s,0)= 3 E(s,9+E(s's) @
seG

[Compatibility of avertex] GivenapartitioningP={C,,...,C,} of G=(V, E) and avertex s; we define the compatibility of sasthe
the maximum between the number of itsfree and direct neighbors and the values of itscompatibility to all existing communities
in P; and isgiven by:

Comp__ (s)=max{Comp(s, C,), VC, e P;NFDN(s)} ®

Intuitively, the compatibility of avertex (in definition I1-B) answersthe following question: isafree vertex, say s, closer to an
already computed community; or closer to itsfree direct neighbors (and with whom s may compose a new community)?

[Importance of acommunity] Given apartitioningP={C
the the average importance of its nodes; i.e.,

-Gt of G=(V, E), wedefinetheimportance of acommunity CinP as

Zsleclmportance(sl)
|Cl

Importance (C) = ©

[Local density of avertex] GivenapartitioningP={C,,...,C,} of G=(V, E), avertex sand acommunity Ce P; wedefinethelocal
density of node sin community C asthe the fraction of theinternal degree of sin C divided its degreein G; and is given by:

degree, (s, C)

Density (s,C) = @

degree(s)

where the degree, (s, C) is given by equation (4) and degree (s) by equation (1). The local density of anode s w.r.t. agiven
community C quantifieshow “typical” issw.r.t. C.
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[Density of acommunity] Given apartitioningP={C
the average density of its vertices; and is given by:

-Gt of G=(V, E) andacommunity C e P, wedefinethedensity of Cas

Density (C) = | él sZE‘,CDensity(S,,C) )

Now, we are ready to define the density of a partitioning asfollows:

[Density of apartitioning] Given apartitioningP={C,,...,.C,} of G=(V, E), wedefinethe density of P asthe average density of
its communities; and is given by: 9

Density (P)= 1 Pl| ¥ Density(C,)

The density of anode, community and a partitioning has the following natural properties, respectively.

For eachvertex se G, wehave: 0< Density (s) < 1. For each Community C e P, wehave: 0 < Density (C) < 1. For each partitioning
P, we have: 0 < Density (P) < 1. After having defined the concept of density, now wewill introduce the concept of purity. [Purity
of avertex] GivenapartitioningP={C,,...,.C,} of G=(V, E), avertex sandacommunity Ce P; sissaid purew.r.t. Cif thefollowing
holds:

Comp (s, C)=Comp,__ () (10)

where Comp (s, C) isthe compatibility of sto C given by equation (3); and Comp___ (s) isthe maximal compatibility of node s
given by equation (5). From Definition I1-B, one can state that avertex sispureto Cif it isattached to C morethan it is attached
toitsdirect free neighbors (and with whom it may compose anew community) and to the rest of aready computed communities.
[Purity of acommunity] GivenapartitioningP={C,,...,C,} of G=(V, E) and acommunity Ce P, wedefinethe purity of Casthe
average of the importance of its pure vertices. It is computed by:

Purity (C) = Y. Importance(s) (1)

se C/s ispure

1
IC]
[Purity of apartitioning] GivenapartitioningP={C,,...,
sum of the purity of its communities; and is given by:

C} of G=(V, E), wedefinethe purity of P asthe average of theweighted

Purity (P) = ﬁ Z v Purity(©) 1)

where w, isaweighting factor measuring the importance of community C, w.r.t. therest and is given by:
IC |

= _ (13
'~ max{|C |; VC e P}

The best partitioning maximizes purity. In fact, this case correspondsto a partitioning in which each vertex is more attached to
its community than to the rest. The purity measure has the following straightforward properties. Each free vertex isan impure
vertex. For each Community C e P, wehave: 0 < Purity (C) < 1. For each partitioning P, we have: 0 < Purity (P) < 1.

Given all these definitions, now we are ready to outline our proposal subsequently.

3.Our Proposal

Our model, called ACODIG?, uses an objective function that characterizes the overall quality of a partitioning and uses ant
colony for its optimization.

TACODIG isan acronym for Ant colony optimization for Community detectionin DIrected Graphs
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3.1 Theaobjectivefunction of our model
Our objective function is based on the concepts of purity and density outlined in the previous section. Given a partitioning

P={C,....C} of graph G =(V, E), itisqualified by:

SIR

DP(P)= Density (P) w; Purity (P) (14

where Density (P) and Purity (P) are given by equations (9) and (12), respectively. Maximizing our objective function tendsto
produce a partitioning in which communities are dense and pure; i.e., in which vertices of the same community are well
connected together and well separated from the rest of communities. Hence, maximizing our objective function will maximize the
connectivity intracommunity and minimize the connectivity inter community. Our objective function in equation (14) hasthe
following property. For any partitioning P, wehave 0<DP (P) < 1.

In order to maximize our objective function, we use ant colony optimization (ACO, for short), a class of meta heuristicswhich
turned out to be efficient in solving avariety of NPhard problemsto our satisfaction. ACO wasfirst introduced by Marco Dorigo
in his PhD thesis[8]. ACO is based on a collective behavior for filling and tracking of colonies observed in ants. A colony of
simple ants communicate indirectly via dynamic changesin their environment (pheromone trails) and built asa solutionto a
problem, based on their collective experience. ACO has shown promisein solving hard problemsincluding project scheduling
[18], travelling salesman [13], vehicle routing [12] and routing in communications networks [7] to highlight just afew. For a
survey of ACO in solving hard problems, we refer the interested reader to [4], [19], [20]. Subsequently, we detail the distinct
steps of our approach.

3.2Algorithm

In ACODIG, outlined inAlgorithm 1, we start by aninitial partitioning in which each vertex isconsidered asbeing free; i.e., not
included yet in any community. For this, the vector FREE is composed of all vertices of the graph. By the same way, the set of
computed partitions P isempty. In computing the set of communities, the nodes are considered with respect to their “influence”
inthesocial graph. Thisinfluenceismeasured by their importance degree given by equation (2). For this, we compute thereafter
theimportance of each vertex and sort them (in descending order) w.r.t. that importance. Indeed, the most important influential
vertex (and whichisstill free) will bethe starting point (center) for he next community (line 6 intheal gorithm). Thereafter, we call
Mark outlined in Algorithm 2 which accepts as parameters the graph G, the center v, and outputs the computed community C..

InAlgorithm 2, weinitialize community C withitsits central node Son which we place an ant with agiven label color. Therefore,
Sislabelled with the color of thisant. Then we compute the set of direct free neighborsof S. Theant on Swill probabilistically
put other ants (with the same color |abel) on this set of free direct neighbors. Generally speaking, the probability of transition
fromvertex i to vertex j issubject to the following probability function:

Pi,j = Importance (j) * Purity (], C,) (15

where Importance ( j) istheimportance of vertex j and Purity (j, C,) isthe purity of vertex j with respect to community C, and
computed by equations (2) and (10), respectively. We should notice that this probability is high aslong as vertex j isimportant
in the graph and is “close” (pure) to community C, (to which the labelled vertex i aready belongs). For this, free and direct
neighbors of Sare considered with respect to this probability. Being on agiven vertex, an ant hasto decide to add it to the actual
community (by labelling it with its color label) or not. Thisdecision is based upon the value of our objective function DP given
by equation (14).

If the actual node will increase the value of that function, then it is added; otherwise, it is ignored (and thereby remains
unlabelled). After adding avertex to the actual community, thelatter isrecursively extended from that vertex (line 8 in Algorithm
2). Inthe next subsection, we will illustrate the distinct steps of ACODIG on asample direct graph.

3.2.11llustration
The main purpose of this sectionisto illustrate the distinct steps of our algorithm ACODIG on a sample oriented social graph
composed of 12 nodes an 20 edges (see Figure 1).
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Algorithm 1: ACODIG

N

(o203

':‘IS@Q)\I

12

Input: AgraphG=(V,E)
Output: A partitioning P={C1,...C}
begin
FREE « V
P<0
Sort verticesin FREE with respect to their
importance (in descending order)
je1
while (FREE #0) do
v < (thevertex in FREE with the highest
importance)
C]. <D
Mark (G, v, CJ.)
delete labelled nodes from FREE
P«—PU C,-
jej+1

end
returnP
end

Algorithm 2: Mark (G, S, C)

Input: A graph G=(V, E), vertex S

Output: C, aset of labelled (colored) vertices

begin

C«CuS

Place an ant on vertex Sand label it with the |abel
color of that ant

PROB(S) « (the probabilities of transitionsfrom 3
node Sto its direct and free neighbors computed by
equation (15))
Sort PROB (S) (in descending order)
for k=1— PROB (). sizedo
v, < (the vertex with the highest probability in
PROB (S))
if (DP (C) <DP(CUV,)) then
place an ant on v, with the same color label
asS
Mark (G,v,, C)
end
end

end

Initially all verticesarein FREE. After computing theimportance of the vertices, it appearsthat vertex n, isthe most important

and thereforewill bethe central node of thefirst community, say C,. Then, wecall algorithm Mark (G, n

1’

C,) whichwill consider

116

Journal of Networking Technology Volume 4 Number 3 September 2013




thedirect and free neighbors of n, w.r.t. their transition probabilities. The direct free neighbors of n, istheset{n,, n,, n_, n, n.};
and vertex ny has the maximal probability of transition. Unfortunately, adding n, will not increase our objective function, and
therefore it is not added. The next explored neighbor of n, isn, which increases our objective function; and thereby islabelled
(colored) with same color asn,. This processisrecursively repeated until no extensions of C, are possible-seefigures 2(a)—(h).
Then the next most important free vertex is ng which will compose next community C,— see figures 2(i)— (1). Consequently,
ACODIG dividesour samplegraphinto two communitiesC, ={n,, n,, n,, n,, n,, n,,n_,n;} andC,={n,, n,n , n }—seefigure
3

Inthe next section, wewill analyze the complexity (temporal and spatial) of ACODIG.

3.2.2 Complexity of our algorithm
Duetothelarge scale of real world social networks, the complexity (temporal and spatial) becomes crucial . In this section, wewill
theoretically analyze the time and space complexities of our algorithm ACODIG. The following theorem is about the time

complexity. Thetime complexity of ACODIG is O (n?) wherenisthe number of verticesin the social directed network.

Proof: To evaluate the time complexity of our algorithm, we start by cal culating complexity of each step. First, we consider the
initialization step of the degree vector and the partition initial time complexity of this step is O(n). The vector calculation step
open containing the values of the importance of vertices is done with a time complexity O(n?). Then, we sort the vertices
according to the value of their importance in the free vector the time complexity of sorting (bubble sort) and the distribution is
O(n?). Thetime complexity of theinitialization phaseis:

T

it = O (Max (n, n%)

=0(")

Figure 1. Sampledirected graph

After the distribution of ants, we apply the functions mark on each element of free vector. Hence the complexity of recursive
function MarkisO (n?). The complexity of removing labelled nodesis O (n). Hence, Thetime complexity of thisphaseisO (7).

T ., =0 (max(n,n?)

=0(nd

So thetotal time complexity of theworst caseis:
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(d) (€) ()

(9 (h) (i)

()] (k) )

Figure 2. Visualization of the main steps of our algorithm
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Figure 3. Computed communities

complexity_temporal = O(n?) (16)

Thefollowing theorem is about the spatial complexity of ACODIG. The space complexity of ACODIG is O(m) where misthe
number of edges (relations) in the social directed network.

Proof: In our approach, we use two vectors: the first vector stores the importance of nodes; and the second stores the free
nodes. We also build a graph with m edges. Considering the worst case where the input graph is very dense (w.r.t. the number
of edges), then we have:

complexity_spatial = O(max{ m, n} = O(m) (17)

After having theoretically analyzed the complexity of our algorithm ACODIG, wewill analyzeit experimentally and compareit to
other proposals in the next section.

4, Benchmarks

Themain purpose of thissection isto analyze experimentally our model ACODIG and to compareit to other recent proposal sfor
community detection in directed graphs. We will compare ACODIG to two well-known proposals; namely, the model in [15]
(noted LR) based on link ranking, and the model in [17] (noted M). We should remind that both proposals are based on an
objective function derived from the standard well-known modularity. As a test bed, we considered large scale real-world
networksaswell as synthetic networks generated using the LFR benchmarks[9]. Aseval uation criteriafor acomputed partitioning,
we considered these standard measures: density, coverage and performance. When the real partitioning is available (which is
the casefor LFR benchmarks), we considered in addition the normalized mutual information. Now, we will definethese criteria.

For this, letP={C,, C,,..., C,} acomputed partitioning by any model.

The density of a partitioning is defined asfollows [6]:
D(C)

18
CieP |P| ( )

D(P)=
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where the density of acommunity C is computed by:

|E|

19
VI(VI=1) “

D)=

We should notice that a good partitioning should maximize density; i.e., produce dense communities. As for the coverage
criteria, it measuresthe fraction of edges inside acommunity w.r.t. the total number of edgesin the graph and isgiven by [3]:

¥ IEl
Coverage (P )= 21 TET (20)

Regarding the performance, it measures the rate of edges well positioned according to the partitioning P and is defined by [3]:

|False+|+|False—|
N(N-1)

Per f(P)=2 (2)

where| False + |isthe number of inter-community edges; | False— |isthe number of pairs(v;, v ) of anon-adjacent community.

However, when the real community structureisavailable, we can compareit to the computed one using the normalized mutual
information (NMI) given by [15]:

—23 aca 2pcplanbllog (m‘)

Yacalallog@hy 3 ibjiog Lol

n

NMI (A, P) = (22

where Aisthereal structure of the network. We should notice that NMI (A, P) = 1 when both partitions A and P coincide. Given
all these performance criteria, now we are ready to outline experimental results.

4.1 Evaluation on artificial networks

In this first set of runs, we used randomly generated social networks using the LFR benchmarks [9] and whose structure is
imposed during the generation phase. Having the latter as areference point, we can use the normalized mutual information NMI
in equation (22) to evaluate the quality of the computed partitioning. The LFR generator has several parameters among them let
us mention the number of nodes (N); the average degree of incoming edges (k); the maximum degree of the incoming edges
(maxk); the fraction between incoming and outgoing edgesinside acommunity (u); the minimal community size (minc and the
maximal community size (maxc). We started our simulation with reference graphsand by varying one or several parameters of the
generator, we obtained several graphs of different complexities. For each simulation, we considered two graphs and computed
the CPU time (in seconds) taken by the model to output a partitioning?.

In addition, we take into account the computed number of communities (#comm) compared to the real exact one (EP).

4.1.1 First case: referencesgraphs
We considered reference graphs composed of N =5000, k = 15, maxk = 50, ¢ = 0.1; minc = 20 and maxc = 50. Simulation results
arereportedin Tables 1 - 3.

First, we should remark that the model LR [15] was unableto compute a partitioning of the considered graphs mainly dueto their
size. In fact reporting to [15], al used graphs are of small size mainly due to the high spatial complexity of the algorithm. We
notice from Tables 1 and 3 that our algorithm ACODIG computed better partitioning than M [17] with respect to NMI and the
number of communities. Unfortunately, thisresulted in much more CPU time (see Table 2).

2Dueto systems’ overload, the CPU timeis averaged over fivetrials for each case
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M [LR | ACODIG
NMI (¢1) | 0512 | - 0.892
NMI (¢2) | 0558 | - 0.911

Table 1. NMI for Reference Graphs

M [LR [ ACODIG
CPU (¢1) |154.123| - | 161.434
CPU (¢2) |162.156| - | 165.381

Table 2. Average CPU Time (in Seconds) for Reference Graphs

M LR | ACODIG | PE
#comm (¢1) | 102 - 154 156
#comm(g2) | 105 - 155 156

Table 3. Number of Computed Communities Compared
tothe Exact one (EP) for Reference Graphs

4.1.2 Second case: largecommunities
In this second set of runs, we consider graphs with large communities with minc = 30; maxc = 80. Simulation results are
summarized in Tables4 —6.

M | LR [AcCODIG
NMI (¢1) | 0.745 | 0521 | 0.956
NMI (¢2) | 0.785 | 0.498 | 0.914

Table4. NMI for Graphswith Large Communities

M LR |ACODIG
CPU (gl) | 64.562 |842.465 | 66.241
CPU (¢2) | 66.254 [975.397 | 67.834

Table5. CPU Time(in Seconds) for graphswith large communities

M LR | ACODIG | PE
#comm(gl) | 28 20 29 30
#comm (g2) | 28 19 30 31

Table 6. Number of Computed Communities Compared to
the Exact one (EP) for Graph with Large Communities

From Table 4, we can see that our algorithm ACODI G hasthe best partitioning with respect to NMI. Thismeansthat it computes
partitionsthat are very closeto the exact real ones. Regarding the same criteria, M performs better than LR. In addition, we notice
in Table 6 that the computed number of communitiesby ACODIG arevery closetotherea onesthan M or LR. Regarding the CPU
timeinTable 5, our algorithm performs better than LR but has equivalent performanceto M.

4.1.3Third case: small communities:
Inthisthird set of runs, we consider small communities with minc =10, maxc = 30. Simulation results are summarized in Tables
7-9.
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M | LR |ACODIG
NMI (g1) | 0.356 | 0.578 | 0.899
NMI (g2) | 0.389 | 0509 | 0.923

Table 7. NMI for Graphswith Small Communities

M LR |ACODIG
CPU (gl) | 71.256 | 855.164 | 70.445
CPU (¢2) | 70.895 | 999.224 | 71.369

Table8. CPU Time (in Seconds) for graphswith Small Communities

M LR |ACODIG | PE
#comm(gl) | 21 45 69 70
#comm(g2) | 22 44 66 69

Table 9. Number of Computed Communities Compared to
the Exact one (EP) for Graph with Small Communities

Here again, our model gives the best partitioning with respect to the normalized mutual information as well as the number of
computed communities. Asfor the CPU timein Table 8, our model performsaswell asM; and much better than LR.

4.1.4Fourth case: sparsegraphs
In this set of runs, we consider sparse graphs with k = 20. Remind that k controls the average degree of incoming edges.
Simulation resultsare summarizedin Tables10-12.

M | LR |ACODIG
NMI (g1) | 0.784 | 0.458 | 0.968
NMI (g2) | 0.791 | 0.496 | 0.933

Table 10. NMI for Sparse Graphs

M LR |ACODIG
CPU (gl) | 50.456 | 513.148 | 49.498
CPU (g2) | 51.195 | 582.391 | 48.342

Table 11. CPU Time (in Seconds) for Sparesgraphs

M LR |ACODIG | PE
#comm (g1) 51 48 67 68
# comm (¢2) 52 46 69 69

Table 12. Number of Computed Communities Compared
to the Exact one (EP) for Sparse Graph

Here again ACODI G outperforms LR and M with respect to NMI, the number of computed communitiesaswell asthe CPU time.
We should notice also that M performs better than LR.

4.1 5Fifth case: very densegraphs
Asafinal simulation with LFR, we considered dense graphswith k= 100. Simulation results are summarized in Tables 13-15
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M | LR |ACODIG
NMI (¢1) | 0.598 | 0.651 | 0.978
NMI (g2) | 0.568 | 0.698 | 0.966

Table 13. NMI for Dense Graphs

M LR |ACODIG
CPU (g1) | 68.592 | 899.664 | 69.497
CPU (¢2) | 66.544 | 789.734 | 65.453

Table 14. CPU Time (in Seconds) for Densegraphs

M LR |ACODIG | PE
#comm(gl) | 25 30 48 51
#comm(g2) | 28 33 50 52

Table 15. Number of Computed Communities Compared
to the Exact one (EP) for Dense Graph

Considering dense graphs, we can notice that our model performs much better than LR and M. It took less CPU time and
computes partitionsthat are very closeto the exact ones. Thismay be explained by thefact that, in principle, ACODIG isbased
on the concept of density (see Definition |1-B).

4.2 Evaluation on real networks

In this second set of runs, we consider real networks. Unfortunately, the real hidden structure for these networksis, in general,
unknown. For this, we can not use the normalized mutual information as evaluation criteria. Instead, in addition to the objective
function of each model, we will consider the density, coverage and performance criteria in equations (18), (20) and (21),
respectively. The used real graphs are described in Table 16.

N E
Football network [14] 10 44
Neuronsnetwork [11] 306 | 2345
Palitical blogsnetwork [1] | 1490 | 19090

Table 16. Characteristics of the Real Graphs: N Denotes
the number of Nodes and E Denotes the number of Edges

Subsequently, we will describe each network along with the simulation results.

4.2.1 Football network

The football network is a small one with ten vertices. It models the relationships of interaction between teams (winning and
losing) football for the 2005 season. ACODI G dividesthis network into two communities depicted in Figure 4. Thispartitioning
corresponds perfectly to that in[17]. Values of the considered criteriafor this network are reported in Table 17. From thistable
we can seethat our model ACODIG isthe best for Density and our objective function DP aswell asthe CPU time. The model M
isthe best w.r.t. the modularity and Coverage criteria; whereas the model LR isthe best w.r.t. Performance criteria.

4.2.2 Neur onsnetwor k

This neurons networks of C. Elegans is made a directed network of 306 nodes (neurons), connected through 2345 links
(synapsis, gap junctions) [11]. It represents the structure of the nervous system of the nematode. We can notice from the
simulation resultsreported in Table 18 that our model is better w.r.t. Density, DP, Performance and CPU time. However, the model
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Figure 4. Communities detected by ACODIG inthefootball network

M LR | ACODIG
Modularity 0.691| 0592 0.571
Density 0354 | 0.374 0.581
DP 0589 | 0.548 0.642
Coverage 0.481| 0451 0.367
Performance 0582 0.699 | 0.669
CPU (9 2133 | 268541 2.012

Table 17. Quality Measures for the “ Football Network”

M LR ACODIG
Modularity 0.681| 0611| 0474

Density 0659 | 0298| 0.692
DP 0478 | 0329| 0.667
Coverage 0.577| 0532| 0423
Performance 0641 0414 | 0.691
CPU(9) 10.422| 995.258| 9.589

Table 18. Quality Measures for the “ Neurons Network”

M is he best considering the modularity and coverage criteria. Although the model LR has the worst performance w.r.t. to all
criteria, but it remains not so far from both ACODIG and M especially for the modularity and coverage criteria.

4.2.3 Political blogsnetwor k

The " Political Blog Network” is alarge directed network between a set of weblogs about US politics recorded by Adamic and
Glance[1]. Inthisnetwork there aretotally 1490 nodes and 19090 links. Each nodeislabelled as either conservative or liberal.
Simulation results for this network are summarized in Table 19. From this table, we notice that the model LR was unable to
compute a partitioning due to the large size of this network. We can state also that ACODIG performs better considering the
Density, DP, Performanceand CPU criteria. However, themodel M isbetter w.r.t. modul arity.

Asasummary to all these simulation results on real world and artificial networks, we can say that our algorithm ACODIG was
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M LR ACODIG
Modularity 0.695| - 0.551
Density 0.569 - 0.684
DP 0.482 - 0.564
Coverage 0.512| - 0454
Performance 0458 - 0.624
CPU (s 0122| - 89.152

Table 19. Quality Measuresfor the* Political Blogs’ Network

able to compute good partitions in reasonabl e time scales.
5. Conclusion

We have proposed in this paper ACODIG, amodel for community detection in oriented social networks. ACODIG qualifiesa
given partitioning using an objective function modeling both concepts of density and purity. While the density tends to
produce dense communities; the purity guarantees the “typicality” of each vertex to its own community. Doing it thisway, we
guarantee the computation of a partitioning in which we have dense communitieswell separated from therest. ACODI G uses ant
colony for the optimization of this objective function. Simulation results on real world and synthetic social networksreveal a
good performance of our proposal in computing optimal partitions in reasonable time scales. These results should stimulate
futureresearch. Extending ACODI G to weighted social graphswith overlapping communities (i.e., inwhich asingle vertex may
belong to several communities) constitute our immediate focus.
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