A TLV Structure Semantic Constraints based Method for Reverse Engineering
Protocol Packet Formats

Lian He, Qiao-yan Wen, Zhao Zhang (C:"
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications

Beijing, 100876, China

{ hlpower, 108283, wqy} @bupt.edu.cn

ABSTRACT: Mining unknown protocol packet formats is a very effective way to improve network security, especially in
promoting the accuracy of network fuzz test. However, researches reverse engineering unknown protocol packets mostly
depend on manual analysis, which is extremely time consuming and low efficiency. In this paper, we proposed a new method
to infer the unknown protocol packet formats automatically. This method could infer the potential TLV fields and extract
protocol format with low time consuming. First we define a threshold value for the sum of tag field types. Then weincreasethe
value of a variable standing for the length of a tag filed until the type number of thistag fields reaches the threshold. After the
tag filed is obtained, we can easily get the length field and the value field next to it. Run this process on the value field
recursively, and we could finally get the whole structure of packet formats. In order to demonstrate the effectiveness, we
applied our methods on the Get-Request packets of SNMP. As a result, almost 90% of the TLV structures of packets are
extracted, at the same time, the field of Get-Request Id is also inferred successfully.

Keywords: Reverse Engineering, TLV Structure, Packets Format, Protocol Analysis, Sequence Minning
Received: 11 November 2013, Revised 5 December 2013, Accepted 10 December 2013

© 2014 DLINE. All Rights Reserved

1. Introduction

Extracting field formats from unknown protocolsisakind of reverse engineering, and the application-level protocol reversingis
especially useful for network security. For example, in network robust testing, we can reduce the testing cases and broaden the
coverage of fuzz test [1]. Whilein the intrusion-prevention system [2] [3], protocol analyzer is an important mechanisms for
intrusion detection and firewall systems to perform deep packet inspection. However, most researches are done by manual
analysis, which is atime-consuming and error-prone job. For example, it took an open-source SAMBA[4] project 12 yearsto
manually reverse the Microsoft SMB protocol. Some methods of reversing engineering unknown protocol formats are hard to
operate, such us Dicoverer [5]. This method is based on distinguish printable character from unprintable character, but this
assumption isnot applied for most protocols. Other open source projects are suspended asthe protocol s used for communication
change frequently. Therefore, how to obtain packet formats and semantic information of fieldsisstill an open problem.

Journal of Networking Technology Volume 5 Number 1 March 2014 9




There are two branchesin protocol reverse engineering to extract packet formats: The first one focus on network traffic traces,
which analyses packets from both sides of the conversation [5] [6] directly. And the other one analyses the execution programs
[7] by tainted dynamic technol ogy, which could extract the packet format more accurate than the former one, as we can obtain
how apacket is constructed and parsed. However, in most cases, we could not have the privilege of getting accessto the source
code.

In this paper, we propose a method based on the network traffic traces to reverse engineer unknown TLV packets. We use this
method to get the structure of the message format and some semantic information. The contributions of our research are as
follows:

» Apply ahighly efficient way to filter network traffic to get representative data samples.

* Extract the packet information from the data samples by forward analysing the structure of TLV packetsiteratively, with alower
time consuming method compare to the bioinformaticsalgorithm [8].

* Propose a method to get the best result of hierarchical structure of unknown protocaols.
2.Application Scenario

There are many kinds of patterns applied in protocol specifications, such as, the key-value pattern, the division pattern and the
TLV pattern[9]. Inthe key-value pattern, every valuefield correspondsto akey field, while the byte’s number of key and value
fieldsisconstant. The division pattern has some symbol for dividing packets, so we can get structure of packets by recognizing
division symbols. And the TLV pattern uses the tag-length-value structure to describe the packet formats. The TLV pattern
supports variable length fields compared to the key-value pattern, which is more robust than the division pattern. So the TLV
pattern is used much more widely.

In this paper, wefocus on how to reverse aprotocol, which hasahigh possibility in TLV pattern. There arethreerestrainsin the
TLV pattern:

* The order of the sequence must be: the T field appears on the head, the L field isnext to T, and the V field is at the end.

L field and V field must satisfy: Value (L) = Length (V) Value (L) meansthe value of the L field, and Length (V) standsfor the
number of bytes of the V field.

» The number of tag typesis under athreshold value.

Trafficfor anaysis

capture
[ Server Network Traffic Client ]

Figure 1. Application Scenario

The application scenario of our approachisillustrated in Figure 1 There are two communication entities, the server terminal and
the client terminal. We capture the network traffic by WireShark [10] or TcpDump [11] and store it into some temporary files.
Thesefilesare our input data samples. When collecting network traffic traces, we have to obey somerulesto makethetracefiles
more representative:

» Experiments should be operated for several times, and at each time the input data sample should be obtained under different
situations, such as changing the | P address and querying information.

* Packets must be sent from the same protocol implementation.
* Packets must be captured in increasing time to make the request/response id progressive increase

» The length of packets should be different to make the L field different from each other, and the length must be less than 255
bytes.

10 Journal of Networking Technology Volume 5 Number 1 March 2014




3.Algorithm Design

3.1 Condition

This algorithm can be designed when taking the following conditions into consideration.

1) Thetypesof T field arelimited.

2) TheL field occurs before the V field, so that it’s convenient to deal with the mutable-length field.
3) The request/response id is progressive increasing.

4) Asthe packet length is less than 255 bytes, we can assume the L field is only one byte.

3.2 Design

Algorithm: getTreeStruct

Input: A group of packetswith the sameformat: P1, P2,... , Pm, Number of T filed ‘snumber X.

Output: Fieldtreewithinferred VTL fieldsand corresponding referred fiel ds. Describe: We use
this function to get the tree structure of input parameters.

Do
Fori = 1..length (P)
If (types(P1[0..i], P2[0..i],...Pm[0..i]) < X)
if (isldProgressivelncrese (P1[i], P2[i],...Pm[i])
continue;
elseif (i==1)
return P,
else
[TLV1... TLVm] = DevidePacket (P1..Pm, i)
TreeStruct1 = getTreeStruct (V1,V2,..Vm)
Treestruct? = getTreeStruct (P1’, P2',..Pm’);
return constructTree (TreeStruct 1, TreeStruct 2)

Figure 2. Pseudo-code of thisget TLV structure algorithm

types () gets the total number of different values given as the input parameter. isldProgressivelncrese () is used to check
whether the values of the input are increasing monotonously. While function constructTree () combinestwo tree into one tree
structure by adding a root node for them.

TheTLV, fieldsstand for thefirst level of the TLV structure of bytes stream given asith input parameters. Then the Vi field isthe
Vpartof TLV,. Andthe Pi’ field isthe remaining part of ith input parameters after weinferred the TLV, fields.

Asassumptionin the condition of section 3, the number of the T field typeislimited. We check every packet forward with length
of i to see how many different substrings there are, and set these substrings as tag fields.

We add oneto variablei each time until the number of tagstypes grows more than the threshold whose valueis X. Then thefield
on the ith position may have three states:

First, request/response id. If the values of this field are progressive increasing. We just treat it as the T field, and keep on
increasing i.

Second, the minimum unit of the V field. If the value of variablei equalsto one and the number of the T typesisalready over the
threshold, we regard this packet as an entirety unit and we don’t need to mine recursively on thisfield.

Third, the L field. Asmost packets we collected have different lengths, thisfield hasahigh possibility to bethe L field if it does

Journal of Networking Technology Volume 5 Number 1 March 2014 11




not satisfy the other two states.

After wefigureout the L field, we can obtain the TLV structure of thislevel. Then werunthisprocessrecursively onthe Vfield
to get thewholefield tree. Figure 3 showsthefirst level of therecursion, P’ meanstheremaining field of P after thefirst recursion,
Figure 4 shows the second recursion, which is operated on V and P’ field.

Figure 3. First level of recursion

T2 L2 V2 T2 L2 V2

Figure 4. Second level of recursion

We can get different tree structures of packets by changing the input parameter X, We select the most stable structure among
them, that is to say this structure changes least when using other data samples as input files.

4. Experiment And Analysis

We applied two indicatorsto eval uate thereliability of the algorithm: therate of the TLV structuresthat are found, and the error
rate of these structures.

We applied our approach to the data of SNMP V1 which contains many TLV structures, so that we can test our algorithm
expediently. We treated SNMPV 1 as an unknown protocol, and then analyzed its packets by our algorithm., We can evaluate the
algorithm by comparing the analysisresult with the specifications. asthe specifications of SNMP V1 can be easily obtained on
the Internet.

First, we captured the network traffic and saveit into a pcap file. Then, filtered thisfile according to the standard proposed in
section 2, and get the input data samples. We extract their formats by our algorithm for several times. And for each time, we
change the threshold value. Finally, compare the results to get the most stable one.

Figure 3 shows an example in which the threshold valueis set to 2. The format and the semantic information we extracted isas
follows:

* T: Thetag field, whose value changesin alimited range. In this experiment, it can be the community field, theversionfield or
some separator fields.

* L: Thelengthfield of thislayer.

* V: Thevaluefield, which contains the information to transport.

12 Journal of Networking Technology Volume 5 Number 1 March 2014




* Index: The counter field whose value increases monotonously.In this experiment, it is the request-id field.

* T (terminate) : Theindeterminate tag field. Wetreat it asthe typefield because it changes under the threshold value. Thefield
istoo long, and it may contain nested structuresinside. However we can’t get the information from the input data samples. By
improving the representation of the data samples, we can solve this problem.

7 ]

| Tang) [ [L] V] MI?_?\I
Ripmi
B =1
| TGnd) || index | | T(ind) |

T o O

Figure 5. Packet structure we mined

Tags length Requstid Tags length Errorindex[ Tags [ length .
Tags length

\
Tags [ length }[ Object ]

Figure 6. SNMP v1 Get-Request packet

Figure 5 showstheformat specification of SNMPV 1. Compare our result with the format specifications, we can get thefollowing
conclusions:

Journal of Networking Technology Volume 5 Number 1 March 2014 13




* Thereare 9 TLV structuresin the SNM P specificationintotal . In the result, wefound 5 of them and took 3into theindeterminate
fields. In other words, with enough representative data samples, we can make the found rate of TLV structures approximate to
89 percent.

 Theerror found rateis 0 in this experiment.
* The hierarchy structure we extracted nearly approximatesto the real packet.

* We got theid field, but couldn’t infer the semantic of other type fields.

Although we did not get thewhole format of the given protocol, these features obtained can obviously improve the fuzz test and
intrusion detection systems. By get more typical data samples, we can get more information of the format.

5. Complexity Analysis

The computational complexity analysisis done for TLV structure semantic constraints based method for reverse engineering
protocol packet formats. In order to start the complexity analysis, we have to declare some variables:

* N: The number of packetsin the data samples.

» M: The average length of packetsin the data samples.

The complexity includes space complexity and time complexity. We increase the length of T by one each time, and check the
packets of every datasample. If thelength isright, we don’t roll back the bytes, which have already been checked. It costs O (N)
for each check, so the time complexity of the whole processis O (MN). It is obviously faster than some automatic reversing
methods, such as methods based on MSA.

In order to save check result of each step, we need the space complexity of O (N). The construction of the tree structures of the
packets need O (M), so the space complexity isO (M + N).

6. Conclusion

In this paper, we make someimprovement to previous researches. We can use this algorithm to get some protocol structuresand
even some semantic information. The experimental results demonstrate our approach isavailablein network security, especially
for protocol fuzz test and intrusion detection systems.

7. Acknowledgment

Thiswork issupported by NSFC (Grant Nos. 60873191, 60903152, 61003286, 60821001) and the Fundamental Research Fundsfor
the Central Universities(Grant Nos. BUPT2011Y B0O1, BUPT2011RC0505).

References
[1] Li Weiming, ZhangAifang, Liu Jiancai, et a. (2011). An automatic network protocol fuzz testing and vul nerability discovering
method [J]. Chinese Journal of Computers, 34 (2) 242-255.

[2] Paxson, V. (1999). Bro: A system for detecting network intrudersin real-time, Computer Network, 31 (23-24) 2435-2463.

[3] Dreger, H., Feldmann, A., Mai, M. et a. (2006). Dynamic application-layer protocol analysisfor network intrusion detection
[C] In: Proc of the 15" USENIX Security Symposium. p. 257-272.

[4] Tridgell, A. How sambawaswritten [OL]. http://samba.org/ftp/tridge/misc/french_cafe.txt.

[5] Weidong Cui, Jayanthkumar Kannan Helen J.Wang. Discoverer: Automatic Protocol Reverse Engineering from Network
Tracs.

[6] BEDDOE, M. Protocol information project [EB/OL]. (2004-10-05) http://www.4tphi.net/~awalters/Pl/Pl.html.

[7] Zhigiang Lin, Xiangyu Zhang, Dongyan Xu. Reverse Engineering I nput Syntactic Structure from Program Execution and Its
Application, |EE Transaction on Software Engineering, 36 (5) 688-704

14 Journal of Networking Technology Volume 5 Number 1 March 2014




[8] Beddoe, M. A. (2004). Network protocol analysis using bioinformatics al gorithms, http://www.baselineresearch. net/Pl/.

[9] Hang Liu, Dan Zhang Communications (ICC), | EEE International Conference 5822-2827 A TLV-Structured Data Naming
Schemefor Content-Oriented Networking.

[10] Wireshark [OL]: Theworld'sMost Popular Network Protocol Analyzer. http://www. Wireshark.org/
[11] TCPDUMP& LiBPCAP[OL]. http://www.tcpdump.org.

Journal of Networking Technology Volume 5 Number 1 March 2014 15




