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ABSTRACT

When dealing with a collection of intervals on the real number line, an interval graph represents  these

intervals as nodes and their overlaps as edges. Merging pairs of nodes in an interval graph leads to forming

a multiple-interval graph. We seek to answer some critical questions with access only to the nodes and edges
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 of this multiple-interval graph without the original intervals. Is it possible to determine how many intervals

are associated with each node? Can we find a path through the nodes of the multiple-interval graph that

reflects the sequence of the original intervals? These inquiries are closely tied to linked-read DNA sequencing,

where long molecules are labeled with barcodes, and their intersection graph creates an interval graph.

Each barcode might represent several molecules, complicating further analysis and correlating with the

identification of nodes in the respective interval graph. Addressing these graph-theoretic challenges would

enhance the analysis of linked-reads sequencing data by allowing for the conceptual distinction of barcodes

into individual molecules and providing a framework for accurately reconstructing the genome through the

arrangement of these molecules. In this context, we introduce a framework that accepts any given intersection

graph (like the overlap graph of barcodes) and produces a heuristic estimate of the arrangement of the

original intervals.
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1. Introduction

A well-known limitation of short-read sequencing is that it does not provide long-range information, which is

crucial to many biological endeavors, such as genome assembly and structural variant identification. There

have been several sequencing technologies developed to overcome this limitation, such as matepair libraries,

Hi-C, and long reads (PacBio & Oxford Nanopore). Another family of approaches is linked-read sequencing,

which includes 10XGenomics Chromium, stLFR [28], CPTv2-seq [32] and TELL-seq [8]. In these approaches,

DNA is cloned and cut into large molecules (10-100 kbp), which are then isolated (physically in 10X, or

virtually using beads) and sheared into shorter fragments. A barcode is attached to each short fragment for

identification of its originating molecule. Importantly, barcodes do not uniquely identify molecules: several

molecules are typically labeled with the same barcode. The number of different barcodes differ from 150k for

CPTv2 to 2 billions for TELL-seq. Fragments are then sequenced using a standard short-read protocol (e.g

Illumina).

Linked-reads have been used to assemble genomes [29], detect complex structural variants [16], and more

recently assemble metagenomes [4]. A common challenge faced by most linked-read methods is that in order

to make use of the linking information, the reads within each barcode should be first separated into their

constituent molecules. More formally, for each read r, we would like to find the identifier mi(r) of its originating

molecule, given as input an observed identifier b(mi(r)), where b(x) associates a barcode identifier to a molecule

x. Note that the image of b (all barcodes) is significantly smaller than its domain (all molecules), hence b can be

viewed as a non-invertible hash function. Currently, this problem is being tackled, one way or another, as part

of any method using linked-read data. Switching from a read-centric view to a molecule-centric view opens the

possibility of using methodology similar to long-read overlap graphs. Finding an ordering of barcodes that

reflects the underlying order of molecules would indeed greatly facilitate and decrease errors during the

scaffolding stage of genome assembly. As noted by the authors of the ARCS scaffolder [31], different molecules

having the same barcode can induce false joins in a scaffolding algorithm, resulting in misassemblies.
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Linked-read mapping tools such as longranger or ema [25] are able to infer molecules by clustering mapping

locations of reads from the same barcode. While such reference-based algorithms are often applicable, they do

not replace the need for de novo algorithms. The quality of reference-based algorithms is related to the quality

of the assembly, since clusters cannot be identified across different contigs. When the genome or metagenome

references are in a draft state, molecules will frequently span multiple contigs, preventing their identification.

Moreover, in many situations the reference is simply unavailable.

To the best of  our knowledge, the barcode ordering problem has not been previously studied, and the

assignment of molecule identifiers to reads without a reference has only been previously studied in [11], where

it was referred to as barcode deconvolution. The authors first constructed a bipartite graph between reads and

barcodes. An edge (r, b) was added when a k-mer of read r was found in another read of barcode b. Then a

second graph was constructed with reads as nodes, and edges indicating whether two reads were connected to

sufficiently many common barcodes in the bipartite graph. Finally, the second graph was clustered and each

cluster reflected reads from the same molecule. This algorithm was implemented in a software called Minerva.

We note that Minerva only assigns molecules identifiers to a fraction of the reads. In our tests on a simulated

E. coli dataset, Minerva reported results for 12% of the reads, inferring around 50% of the true number of

molecules.

This raises the question of whether reference-free inference of molecules is fundamentally unsolvable in the

setting of linked-read data, or whether an adequate technique has just not yet been found. Surely there exist

corner cases where the problem is either impossible, e.g. in an hypothetical situation where all molecules are

assigned to the same barcode, or trivial, when each molecule is assigned to a different barcode. As we will see

in Section 2, while there exist previous works in graph theory (e.g. in a setting corresponding to all barcodes

containing 2 molecules each), the general setting does not appear to have previously been studied.

In this paper, we establish theoretical grounds for studying the feasibility of inferring molecule without a

reference genome. We will not directly tackle the problem of assigning molecule identifiers to reads (as Minerva

does), but instead we look at two problems which can be reduced, in the complexity sense, to molecule

inference:

1. Molecule counting count the number of molecules assigned to each barcode

2. Molecule ordering reconstruct a total (or partial) order of molecules as a sequence of barcodes

Both problems, if solved accurately, can provide useful information for barcode deconvolution (molecule

counting) and genome scaffolding (molecule ordering). Staying at the level of barcodes and molecules instead

of reads will allow to thoroughly establish expectations on whether molecule inference is at all feasible, and

how various parameters (e.g. number of molecules, how many molecules per barcode, etc) influence its

difficulty.

We first present the commononalities between the barcodes ordering problem, and the previously-known

concepts of interval graphs and multiple-interval graphs. We then introduce the notion of barcode graph,

which models overlaps between molecules across different barcodes. We discuss its link with well-known

graph classes leading to the conclusion that solving the molecules ordering problem for a barcode graph is

likely difficult. Next we introduce another graph structure, the local clique-pairs graph, inspired of approaches
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used to realise an interval graph. By identifying maximal cliques in the barcode graph,which are then paired

into structures that we call local clique-pairs, we show that the local clique-pairs graph captures a strong

signal related to the ordering of the barcodes according to their underlying molecules. We apply this technique

to synthetic interval graphs, as well as barcode graphs constructed from simulated molecules from a real

genome, and show that on synthetic  interval graphs we are able to accurately count the number of molecules

per barcode, and reconstruct an approximate but accurate molecule ordering on barcodes. Finally, we

demonstrate how to construct a barcode graph directly from linked-read sequencing data.

2. Models and Methods

We consider the problem of sequencing a single long DNA molecule (e.g. a chromosome) using linked reads.

We assume that the sequencing data were obtained by sequencing n fragments (called molecules from now)

from the chromosome, each molecule being assigned a barcode, where several molecules can be assigned the

same barcode; for a molecule m we denote by b(m) its barcode. We denote by B the barcode alphabet and by

|| =  its size, i.e. the total number of observed barcodes; for a barcode b we denote by m(b) the molecules it

labels (the barcode size). Let F = max
bB

 |m(b)|. Finally, we assume that no two molecules do start at the same

coordinate, which implies that molecules can be totally ordered by their start coordinates.

2.1 Barcode graphs and families of interval graphs
The sequenced molecules can be seen as intervals along the real line if the sequenced chromosome is linear, or

arcs around a circle if it is circular; their intersection graph is the graph whose vertices are the n molecules and

two vertices are linked by an edge if the corresponding intervals do intersect. Intersection graphs of intervals

on the real line (resp. arcs around a circle) form the class of interval graphs (resp. circular-arc graphs). It is

well-known that deciding if a graph is an interval graph or an arc-circular graph can be done in linear time [6,

23], and many algorithmic problems that are computationally hard in general graphs are tractable in these

graph classes [15].

However, the result of the sequencing experiment with linked reads does not provide direct knowledge of the

sequenced molecules and of their intersections, as the reads originating from molecules having the same

barcode b are all labeled by b and, as discussed in introduction, the problem of separating reads with the same

barcodes into clusters corresponding to molecules is non-trivial. Nevertheless, we assume here first that it is

possible to infer, from the barcoded reads if, for a given pair of barcodes b
1
, b

2
 there exists molecules m1 and

m2 such that b(m
1
) = b

1
, b(m

2
) = b

2
 and and m

1 
and m

2
 do intersect: we then say that barcodes b

1 
and b

2 
do

intersect. We assume here moreover that we do not observe two intersecting molecules m
1
 and m

2
 such that

b(m
1
) = b(m

2
)1.

Definition 1 The exact barcode graph of a set of barcoded molecules is the graph with vertex set B and

edges between pairs of intersecting barcodes.

In the case of a linear chromosome, exact barcode graphs generalize the class of interval graphs and form

another well-studied graphs class, multiple-interval graphs [12]. Moreover if we assume that each barcode

labels exactly f molecules, exact barcode graphs form the class of f-interval graphs; finally, under the additional

1 We justify this assumption as such molecules could be seen as a single molecule defined by the union of m
1 
and

m
2
; moreover, simulations with realistic sequencing parameters show that this situation occurs rarely and most

often with molecules that share a small intersection.
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assumption that all sequenced molecules have exactly the same length, exact barcode graphs are equivalent

to the class of unit f-interval graph. We are not aware of any study of the equivalent graph classes for circular

chromosomes, i.e. arcs around a circle, and from now on we concentrate on the case of linear chromosomes.

We describe below the formulation of several algorithmic problems related to barcode graphs and how they

translate into problems on the aforementioned graph classes. Note that an exact barcode graph can be a multi-

graph (a graph where multiple edges may have the same endpoints) in the case where there exist molecules

m1, m2, m3, m4 with b(m1) = b(m3), b(m2) = b(m4) and m1,m2 (resp. m3,m4) do intersect.

Recognizing exact barcode graphs. The link with unit f-interval graph, although it assumes an unrealistic

uniformity in the sequencing process (uniform molecules length and uniform number of molecules per barcode)

sheds a light on the computational hardness of analyzing barcoded sequencing data. Indeed, recognizing 2-

interval graphs is NP-complete [30], while the complexity of recognizing unit f-interval graphs is still open,

the only positive recognition result being for depth-2 unit f-interval graphs [18], corresponding to the case

where no chromosome base is covered by more than two molecules, an unrealistic assumption for  sequencing

experiments. To the best of our knowledge, given a graph on a barcode alphabet whose edges represent

possible molecules intersections, deciding if it is an exact barcode graph, even in the setting of molecules of

uniform length and barcodes of uniform size, is open.

Realizing an exact barcode graph. A barcode sequence is a sequence b
1
 . . . b

n
 over the barcode alphabet. Given

a barcode graph BG, a barcode sequence realizes BG if every edge of BG can be assigned to two barcodes of the

sequence in such a way that if b
j
 is covered by an edge between bi and bk (i.e. i < j < k) then there are also edges

between b
i
 and b

j
 and between b

j 
and b

k
. The molecules ordering problem applied to an exact barcode graph BG

is then equivalent to finding a barcode sequence realizing BG. This problem is tractable in the case of interval

graphs (F = 1); note that if intervals lengths are also fixed, then the problem becomes NP-complete [24], while

it solvable in polynomial time if additionally the intersection lengths are provided [19]. We are not aware of

similar tractability results for multiple-interval graphs. However, existing algorithms to realize interval graphs

are mainly based on the property that such a realization can be obtained by a sequence of overlapping maximal

cliques. While maximal cliques are easy to find in an interval graph, it is not the case in multiple-interval graph,

as the problem of finding the maximum clique in multiple-interval graphs is NP-complete, even for unit 2-

interval graphs [13], although approximation and  parameterized algorithms do exist [7, 12]. Moreover a

structural property of interval graphs that is important toward the realization through maximal cliques, the

existence of a vertex whose neighbourhood is a clique, does not hold for multiple interval graphs [2]. Finally,

it is easy to see that a maximal clique of size c in an exact barcode graph might not correspond to a set of c

pairwise intersecting molecules. This leads us to conjecture that realizing an exact barcode graph is difficult.

Handling inexact barcode graphs. Constructing an exact barcode graph implies to detect intersecting barcodes

from sequenced barcoded reads and it is thus likely unrealistic to expect perfectly obtaining such a graph from

sequencing data. It follows that solving the molecules ordering problem would then implicitly assumes to

solve a graph modification problem, aimed at transforming a graph into a multiple-interval graph, with additional

constraints about the number of occurrences of barcodes in a realization. Graph modification problems that

aim to minimize the number of modifications are generally hard, even in the case of interval graph, [10], and

so for multiple-interval graphs; note however that it was recently shown to be fixed-parameter tractable [27,

5, 10]. Such problems naturally translates into vertex ordering optimization problems (also known as graph

layout problems) that can, in principle, be addressed with combinatorial optimization techniques such as

Integer Linear Programming (ILP). However, ILP approaches to vertex ordering currently do not scale to the
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size of instances corresponding to sequencing experiments [9].

From the link we described above between barcode graphs and multiple-interval graphs,and the current

state-of-the art in multiple-interval graphs algorithms, it does not appear that the problem of realizing a

barcode graph can be addressed by existing algorithms, and we actually conjecture that this problem is

difficult, whether the provided barcode graph is exact or not. Nevertheless, toward application to real

sequencing data, additional assumptions about the sought realization, such as the expected length of intervals

or the expected size of the barcodes, lead to specific open problems of interest in the field of multiple-interval

graphs algorithms that deserves further research.

2.2 The Local Clique-Pairs Graph
In this section, we assume that we are given a barcode graph BG. The barcode graph needs not be perfect: it

might contain additional (wrong) edges that do not correspond to true overlaps between molecules of two barcodes,

or even have missing edges. We will describe the construction of another graph based on the BG: the local clique-

pairs (lcp) graph. We will then use the lcp graph to identify a sequence of barcodes that reflects the true order of

molecules.

The idea behind the lcp graph will be that, similarly to interval graphs, a realization of an exact barcode graph

can be described as a succession of overlapping maximal cliques. Intuitively, these maximal cliques correspond

to a set of barcodes that each contain at least one molecule coming from a common genomic region. The task is

made more difficult by the fact that not all maximal cliques in a barcode graph satisfy this property. We observed

that one can identify and skip such ’wrong’ maximal cliques by instead considering a slightly more advanced

object: pairs of co-localized maximal cliques, that we name local clique-pairs.

Definition 2 Let c be a vertex of a barcode graph BG. A neighbour of c is a vertexadjacent to c. The

neighbourhood of c is the subgraph induced by the set of neighbours of c. A local clique-pair (lcp) is a triplet (c;

C
1
, C

2
) where C

1
 and C

2
 are maximal cliques in the neighbourhood of c. If there are k edges between vertices of

C
1
 and vertices of C

2
 and d is the maximum number of vertices in either C

1
 or C

2
, the weight of the lcp (c, C

1
, C

2
)

is defined by w(c; C
1
, C

2
) = |d(d - 1)/2 - k|.2

The definition of the weight of an lcp follows from the following observation: when molecules are all of the same

length and are evenly spaced along the chromosome, if both cliques C
1 
and C

2
 are of size d and do indeed correspond

to the d barcodes of the molecules preceding (resp. following) the molecule of barcode c, then one expects to

observe d(d-1)/2 edges between them in the barcode graph. So the weight measures the divergence between the

observed number of edges between C
1
 and C

2 
and the expected number of edges in the case of uniform sequencing

(see Figure 1).

To motivate the introduction of lcps, we ran an experiment described in Appendix 5.1, showing that the rate

2 The weight is presented for an ideal case where no node is shared between the cliques. If C
1 
and C

2 
share nodes,

there are two modifications. For each node shared, 1 is added to the weight because the shared node is due to a

barcode collision. Each shared edge between C
1
 and C

2
 counts for 2 additional points in the score instead of 1,

because 2 edges can be merged inside.
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Figure 1. (Top) linear representation of a barcode graph obtained from 7 molecules of uniform

length. (Bottom) The local clique-pair associated to c. In black, the edges from the side cliques of

the unit 3-graph. In blue, the edges between the central nodes and the other nodes. In red, the

edges between the cliques

We now present our algorithm to compute lcps. Given a barcode c, there can be many maximal cliques among

nodes in its neighbourhood, especially cliques that involve the two barcodes that respectively precede and follow

c in the true barcode sequence. Given the set of all maximal cliques C in the neighbourhood of c, we thus need to

extract a matching defining pairs of cliques C
1 
and C

2
 forming lcps. To do so, we consider the complete graph of

size |C| whose vertices are maximal cliques and edges are putative lcps. Edges are weighted by the previously-

defined lcp weights. Let W be the maximum observed edge weight. We replace the weight w of each lcp by W - w

and apply a maximum-weight matching to clique pairs in order to obtain the set of lcps associated to c (Algorithm

1, illustrated in Fig. 2).

Algorithm 1. Determination of a set of lcps centered at a barcode c.

of lcps that actually encode the barcodes of consecutive molecules is higher than the rate of maximal cliques

having the same property (Table A1).
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Figure 2. Top left: barcode graph; bottom left: max-cliques of the barcode graph; right: max-clique

graph construction and maximum weight matching to construct lcps. The resulting maximum-weight

matching is the edge A-D, yielding a single lcp with clique-pair (A,D)

The time complexity of enumerating all maximal cliques of a graph is exponential [26], while computing a

maximum-weight matching is polynomial-time solvable [14]. We implemented Algorithm 1 in Python using the

output-sensitive cliques enumeration and maximumweight matching methods implemented in the Networkx

library [17]. Its complexity is O(max(C3, M(n)C)) with n the number of graph nodes, C the number of maximal

cliques in the graph, and M(n) the cost of multiplying two n × n matrices.

Local search for linked cliques are akin to local graph community detection. Soft clustering is being performed

with maximal clique detection, i.e. a node may belong to multiple communities. This property leads to a lcp

detection algorithm that, intuitively, is resilient to the situation where a barcode corresponds to two or more

molecules. Yet it is not perfect: some of the generated lcps may not reflect a collection of overlapping molecules

(due to additional artifactual maximal cliques); and also, missing edges in the barcode graph may lead to missing

lcps. In the ideal case, lcps can be totally ordered according to their overlaps.But because of artefactual and

missing lcps, a total order is not always self-evident.

Figure 3. Left: barcode graph (3k nodes and 98k edges) of a simulated interval graph.  Right:

Resulting lcp graph (13k nodes and 23k edges). Graphs are drawn using Gephi,  ForceAtlas 2

layout [3]
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Definition 3
Let BG be a barcode graph and V a set of lcps obtained from BG. The lcp graph lcp(BG) is the weighted graph

with V for vertex set and where there is an edge between two lcps (b;B
1
, B

2
) and (c; C

1
, C

2
) such that some

barcode belongs to both one of the Ci cliques and one of the Bi cliques. The weight of an edge is the size of the

symmetric differences of the barcodes content of (b;B
1
, B

2
) and (c; C

1
, C

2
).

The lcp graph is a framework for determining which lcps are consecutive, also enabling to identify lcps that are

not overlapping with others. Figure 3 shows a simulated barcode graph where the corresponding lcp graph has

a linear structure, similar to the original interval graph among molecules. This makes the task of finding a

suitable path within the lcp graph, which reflects the ordering of molecules, easier than in the barcode graph.

In the following, we will describe how we determine a barcode ordering based on finding a path in the lcp

graph.

2.3 Finding a Suitable path in the lcp graph
Recall that the molecule counting problem amounts to finding how many molecules were merged in each

barcode. The molecule ordering problem asks for a sequence of barcodes that reflects the order of molecules.

As these two problems are centered on barcodes and not lcps, we need a way to convert a lcp path into an

ordered list of barcodes. We do this as follows: i) each lcp in the path is replaced by its central barcode, ii) an

edge reduction step is applied to the lcp graph, and finally iii) a path is found using a branch-and-bound

algorithm. Formally, the algorithmic problem we address heuristically in this section is to find a path in the lcp

graph that maximizes the sum of the weight of the selected lcps and of the selected edges between lcps, under

the constraint that the union of the selected lcps covering sets contains all edges of the initial barcode graphs.

lcp Graph Simplification
We simplify the lcp graph by performing transitive reduction over triplets. Given an edge (a, b) of weight wab,

we remove this edge from the graph if there exist 2 edges (a, c) of weight wac and (b, c) of weight wbc such that

w
ab

  w
ac

 + w
bc

. This operation does not change the node set (lcps) but reduces the number of possible paths

to explore. Intuitively, requiring to go through lcp c when going from lcp a to lcp b forces to select two higher-

confidence lcp overlaps instead of one lower-confidence overlap between two lcps.

lcp Path Construction
Assuming the barcode graph has been obtained by merging nodes of an exact interval graph  defined by the

molecules intersections, every edge of the barcode graph corresponds to one (or potentially several) edges of

the interval graph; we show in Section 3.3 that barcode graphs created from reads have nearly all correct

edges corresponding to such molecules intersections. This observation motivates to require that a walk in the

lcp graph that reflects the true order of molecules should be composed of lcps that contain most of the edges

of the original barcode graph. Each lcp is an induced subgraph of the barcode graph, and we associate to it a

covering set defined as the set of edges of the barcode graph it contains. We will seek a path such that the union

of covering sets over all its constituent lcps is as close as possible to the set of all edges of the barcode graph.

Our lcp path construction strategy is a local branch & bound algorithm. Assuming we have already constructed

a path of lcps p = l
1
, . . . , l

i
, we consider as candidates for l

i+1
 all the neighbours of l

i
 in the lcp graph such that l

i+1

 p. Those neighbours are sorted by priority over three criteria: first if one or more lcp(s) cover at least one

uncovered edge of the original barcode graph, we prioritize those lcps. For the second sorting criterion, we
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sort the candidate li+1’s by increasing lcp weight (Def. 3). Last, if multiple candidates have equal clique pair

weights, we sort them by increasing l
i
  l

i+1 
edge weight in the lcp graph. Selecting the first element in the

sorted neighbours at each step defines a greedy heuristic for the path computation. The above algorithm

might result in a short path due to tips in the lcp graph, i.e. nodes of degree 1. In order to address this issue, we

use a local branch and bound algorithm and backtrack a few nodes when a dead end is reached. This can result

in several paths and we use the size of the union of covering sets in the path as a score to keep only the best

solutions according to that score.

The last part of the algorithm is the selection of the first node l
1
 of the path. We initially select a l

1 
at random

among all lcps, and compute a path using the above procedure which ends at some node l
e
. We then discard this

path and restart again our algorithm from l
1 

= l
e
 to create a new path, where l

e
 has a higher chance to be an

endpoint of the true lcp path than l
1
.

We will show in the next section that despite this heuristic being very simple and likely leaving room for

improvement, it does work very well on simulated data, suggesting the lcp graph does actually capture a

robust signal toward recovering the correct barcode sequence.

3 Results

3.1 Overview
Simulated Data
We will examine three types of barcode graphs ordered by increasing level of realism. They will

be generated from either:

1. entirely synthetic sets of intervals (i.e. interval graphs) with randomly identified vertices

2. intersections of molecules sampled from a genome

3. directly from simulated linked-read sequencing data

Analysis Pipeline
Our complete analysis pipeline performs the following steps:

1. Generate all the lcps from the barcode graph (Algorithm 1)

2. Generate the lcp graph

3. Simplify the graph by transitive reduction of the triplets (Section 2.3)

4. Generate the lcp path using the hybrid greedy/branch and bound algorithm (Section 2.3)

5. Replace all the lcp by their central barcodes

6. Evaluate the accuracy of the resulting barcode sequence

In the remaining of the Results sections, all the graphs and paths are generated by the above pipeline,

implemented
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using Snakemake [20] and available at https://gitlab. pasteur.fr/ydufresne/linkedreadsmoleculeordering.

Quality Metrics
We design quality metrics that are applicable to both barcode graphs and lcp graphs. To do so, in lcp graphs we

identify each lcp to its central barcode. We consider three metrics over the graphs: accuracy, sensitivity and

longest correct path. The first two metrics are estimated by randomly sampling paths having l  {2, 4, 10, 100}

edges from the graph. To measure accuracy, a path having barcodes (b
0
, b

1
, . . . , b

l
) is considered to be correct if

there exists m
0
, m

1
, . . . , m

l 
overlapping (but not necessarily consecutive) molecules such that m

i
  m(b

i
), 0 

i  l. Accuracy is then defined as the number of correct paths over the total number of sampled paths. To

measure sensitivity, we determined for all (l+1)-tuples m
i
, m

i+1
, . . . ,m

i
+l of consecutive molecules in the

genome, whether there exist a path b(m
i
), b(m

i+1
), . . . , b(m

i+l
) in the graph. Sensitivity is then the ratio of such

paths that are found in the graph. Finally, the Longest Correct path (LC) metric is defined as the longest path

that can be found in the lcp graph that is correct, i.e. corresponding to a barcode sequence equal to the

barcodes of a sequence of overlapping molecules. This measure is not informative on barcode graphs; it

measures the conservation of molecule overlap information in a lcp graph. Two additional quality metrics are

defined on lcp paths found by our branch-and-bound algorithm: Undercounted/Overcounted (U/O) molecules

and Longest Common Subsequence (LCS). The U/O metric is computed by recording two counters, U and O

initialized at 0. Given each barcode b that appears within a lcp path, we compare the number of occurrences of

b to Mb, the true number of molecules having barcode b. If b occurs in the lcp path strictly more (resp. less)

than Mb times, U (resp. O) is incremented by the absolute difference. U and O should both be as close to zero as

possible, and they indicate how well we solve the molecule counting problem. For the LCS metric, we compute

the longest common subsequence between central nodes of the lcp path and the molecule path where each

molecule is replaced by its barcode. The LCS reflects how well we solve the molecule ordering problem.

3.2 Simulated Data from Interval Graphs
Dataset Generation
At first we focus on purely synthetic interval graphs, where a genome is conceptually a real line and molecules

are intervals on this line. We make the simplifying assumption that molecules all have the same size, and are

evenly distributed along the genome. To simulate barcode graphs, we start from an intersection graph of molecules

and perform so-called merges of molecules. A merge is defined as follows: given two nodes a and b that will be

merged,create a new node c; for all neighbours v of either a or b, create edges (c, v), and finally delete a and b.

Merging two nodes in the graph is equivalent to replacing two molecules by one barcode corresponding to those

two molecules. A succession of merge operation creates an exact barcode graph as defined in Section 2.

We created 8 synthetic test datasets, using the following grid of parameters: 5, 000 or  10, 000 molecules, average

number of merges (i.e. molecules per barcode) of 2 or 3, standard deviation in the number of merges of 0 or 1.

Quality of lcp Graphs
Table 1 shows the accuracy and sensitivity of barcode graphs and their corresponding lcp graphs. Recall that

accuracy measures whether a random path in the graph has a correct order of barcodes. As expected, paths in

the barcode graph are mostly inaccurate, as one may jump from one genome location to another due to barcode

3 Available at https://github.com/natir/mapping2barcode
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merges. Conversely paths in the lcp graph are very accurate (100% for nearly all l = 10 paths), with a slight

decrease at l = 100 (95%-100%). The sensitivity metric measures how much of the true barcode ordering is present

in short paths of the graph. It is (unsurprisingly) high for barcode graphs, as they indeed record alloverlaps

between molecules. Note that some merges collapse consecutive molecules by chance, hence the sensitivity of

barcode graphs can sometimes be lower than 1. On lcp graphs, sensitivity is high for short paths (> 93% for l = 10)

and drops for long ones (54%- 98% for l = 100). Nevertheless, this shows that at least partial molecule order can

be inferred through looking at central nodes of lcps in the lcp graph, and that the lcp graph shows a better

balance between accuracy and sensitivity than the barcode graph. Note that central nodes are not the only way to

infer molecule order, as one could also extract information from clique-pairs, yet we leave this direction for

future work.

Overall, lcp graphs are clearly more informative than barcode graphs for reconstructing accurate barcode

orderings. The hardest instances, in terms of accuracy and sensitivity on lcp graphs, are when the number of

molecules is low and the number of merges is high.

Quality of lcp Paths
Table 2 reports additional metrics on lcp graphs and lcp paths constructed using the branchand- bound

algorithm, over the same 8 datasets. All lcp graphs have a high longest correct path (LC), confirming the

theoretical possibility of reconstructing over 99% of the true barcode order, through central nodes of a

suitable path of lcps. The last two metrics of Table 2 are computed on lcp paths found by the algorithm

# mols

5,000

5,000

5,000

5,000

10,000

10,000

10,000

10,000

Merges

2 ± 0

2 ± 1

3 ± 0

3 ± 1

2 ± 0

2 ± 1

3 ± 0

3 ± 1

Type

Gb

lcp

Gb
lcp

Gb

lcp

Gb

lcp

Gb
lcp

Gb

lcp

Gb

lcp

Gb

lcp

Acc

0.48
1.00

0.46
1.00

0.31
1.00

0.33
1.00

0.48
1.00

0.47
1.00

0.31
1.00

0.31
1.00

Sens

1.00
1.00

1.00
1.00

1.00
0.99

1.00
0.99

1.00
1.00

1.00
1.00

1.00
1.00

1.00
0.99

Acc

0.09
1.00

0.09
1.00

0.03
1.00

0.03
1.00

0.10
1.00

0.09
1.00

0.02
1.00

0.03
1.00

Sens

1.00
0.99

1.00
0.99

1.00
0.98

1.00
0.97

1.00
1.00

1.00
1.00

1.00
0.99

1.00
0.99

Acc

0.00
1.00

0.00
1.00

0.00
0.99

0.00
0.99

0.00
1.00

0.00
1.00

0.00
1.00

0.00
1.00

Sens

0.99
0.98

1.00
0.98

0.99
0.95

1.00
0.93

1.00
1.00

1.00
0.99

1.00
0.99

1.00
0.97

Acc

0.00
1.00

0.00
0.99

0.00
0.99

0.00
0.95

0.00
1.00

0.00
0.99

0.00
1.00

0.00
0.99

Sens

0.94
0.88

0.98
0.84

0.88
0.60

0.96
0.54

1.00
0.98

0.97
0.93

1.00
0.87

0.97
0.78

             Graph           l=2                l=4                          l=10 l=100

Table 1. Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in

lcp graphs generated from merged interval graphs, compared to sampled paths of the same lengths

in barcode graphs (Gb) as a base-line
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# mols

5,000

5,000

5,000

5,000

10,000

10,000

10,000

10,000

Merges

2 ± 0

2 ± 1

3 ± 0

3 ± 1

2 ± 0

2 ± 1

3 ± 0

3 ± 1

# barcodes

2500

2428

1667

1682

5000

4889

3334

3341

LC

4990

4991

4985

4975

9992

9993

9981

9987

U/O Counts

227/56

405/109

549/240

498/665

268/68

418/129

593/184

753/201

LCS

4748

4512

4282

3972

9667

9531

9309

9140

Table 2. Experiments on synthetic barcode graphs. The dataset is described on the first part of

the columns (Number of molecules in the molecule graph, number of merges, resulting number

of barcodes in the barcode graph). The LC column is the length of the longest correct path in the

lcp graph. The U/C column is the number of undercounted and overcounted molecules per

barcode in our computed lcp path, and the LCS column is the length of the longest common

subsequence between the lcp path and the correct barcode order

G
b
, m = 1

lcp, m = 1

G
b
, m = 2

lcp, m = 2

G
b
, m = 3

lcp, m = 3

G
b
, m = 4

lcp, m = 4

1

1

0.50

0.99

0.34

0.99

0.26

0.99

1

1

1

0.99

1

0.99

1

0.99

1

1

0.12

0.99

0.04

0.99

0.02

0.99

1

0.99

0.99

0.99

1

0.99

0.99

0.99

1

1

0.001

0.99

0

0.98

0

0.98

1

0.99

0.99

0.99

1

0.99

0.99

0.99

1

1

0

0.94

0

0.88

0

0.83

1

0.84

0.99

0.84

1

0.88

0.99

0.87

                                    l=2      l=4       l=10                      l=100

Graph           Acc         Sens            Acc    Sens Acc           Sens    Acc          Sens

Table 3. Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in

lcp graphs, compared to sampled paths of the same lengths in barcode graphs (G
b
) as a base-line,

with 15 kbp E. coli molecules, 50X coverage, minimal molecule overlap lengths of 7000
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described in Section 2.3. On 10,000 molecules graphs, the longest common subsequence (LCS) of the computed

lcp path is 90% of the true barcodeorder, indicating that we nearly recovered the correct barcode order. The

5,000 molecules graphs appear   to be more challenging to process as, smaller graphs are more sensitive to

information loss by the merging process, yet LCS values remain above 79%. The U/O metric reports the ability

to count the number of molecules that are present in each barcode, though counting the number of times each

barcode occurs in the computed lcp path. Overall, lcp paths tend to undercount molecules (higher U metric

than O), yet both U and O metrics are around or below 10% of the number of molecules, indicating that lcp path

provides a reliable estimation of the number of molecules per barcode.

3.3 Genome Graphs
Quality of genome LCP graphs
We designed experiments to evaluate the quality of lcp graphs constructed from the barcode graphs that originate

from real molecules. We created a synthetic E.coli molecule graph by simulating molecules of length 15 kbp

using wgsim, corresponding to sequences of the E. coli genome, at 50x coverage of the genome and with no

sequencing errors. Overlaps between all pairs of molecules were computed using minimap2 using default

parameters, and we selected overlaps of lengths greater than 7000 using fpa [22].

Table 3 shows the accuracy and sensitivity on our constructed lcp graphs versus the average number of merges,

i.e. average number of molecules per barcode. As in Section 3.2, barcode graphs have poor accuracy, which is

expected due to the glueing of molecules, and near-perfect sensitivity as all molecule overlaps are found. In

contrast, lcp-graphs manage to keep both near-perfect accuracy and sensitivity (> 0.98) for short paths (< 10)

and have a decrease in accuracy (0.83 -0.94) and sensitivity (0.84-0.87) for paths of length 100.

Construction of genome barcode graphs from reads
In this section we describe a method that constructs an accurate barcode graph directly from linked-read data.

This closes a gap between our theoretical results, that required to already have a barcode graph, and experimental

data which only consist of sequencing reads.

We simulated reads from the E. coli genome at 50X coverage using LRSIM[21]. We assembled these reads using

SPAdes[1] version 3.12.0 without using linked-read information (only using paired-end information), in order to

generate contigs to which linked-reads can be mapped to using the EMA aligner[25]. We designed an algorithm3

to infer molecule overlaps given the set of contigs and the EMA alignments. In brief, the algorithm proceeds as

follows.

For each barcode, and within each contig, we collect and sort the mapping positions of all reads associated that

barcode. We define a molecule interval to be the first and last mapping positions of a group of mapping positions

that are all within a distance < M
d
 than each other. A barcode can be associated to multiple molecule intervals

even within the same contig. We construct the barcode graph by looking at overlapping molecule intervals from

different barcodes. If two intervals share an overlap larger than a parameter M
o
, we add an edge between the

two associated barcodes.

The algorithm has two key parameters: M
d
, the maximal distance between two reads in an inferred molecule

3Available at https://github.com/natir/mapping2barcode
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interval, and M
o
, the minimal overlap length between molecules. As we used simulated data, we were able to

generate a ground-truth barcode graph given that molecule intervals in the underlying genome are known for

each barcode. Figure 4 shows the performance of the algorithm in terms of F1-score (combining both sensitivity

and precision, compute d by comparing the edge set of the inferred barcode graph versus the edge set of the

ground truth). We observe that the best F1-score (0.953) is reached for (M
o
, M

d
) = (5000, 9000), with otherwise

consistently high F1-scores (  0.9) whenever M
o 

> 2000 and M
d
 > 7000.

4. Conclusion

In this paper, we introduced novel approaches to analyze linked-reads sequencing data. We introduced the

problem of recovering a barcode sequence from the barcode graph, and described its link with natural algorithmic

problems on multiple-interval graphs; we believe that the potential applications in sequencing data analysis

motivate further research on these algorithmic questions. Moreover, motivated by classic algorithmic techniques

in interval graph realization, we introduced the concept of local clique pairs (lcp) and lcp graph. Our experiments

on simulated data suggests that the lcp graph exhibits a much more linear structure than the barcode graph and

is likely a relevant intermediate structure between the barcode graph and the barcode sequence.

This work casts a spotlight on a couple open problems in graph theory, for which linkedreads bring an additional

practical application: recognizing perfect barcode graphs, realizing multiple-interval graphs, and the complexity

of recognizing unit f-interval graphs. We suspect also that more effective algorithms than the ones proposed

here may exist for constructing lcp graphs and finding lcp paths.

While our treatment of synthetic barcode graphs demonstrates the feasibility of recovering barcode orders, we

encountered difficulties going further in our analyses of realistic instances (e.g. real E. coli reads). First, a more

advanced path(s) discovery procedure will be needed to deal with lcp graphs constructed from real molecule

intersections (Section 3.3), which have inferior accuracy than those in Section 3.2. Second, refinements to

Algorithm 1, potentially  in the form of post-processing, will be needed to avoid outputting too many artefactual

lcps in barcode graphs of high-coverage molecules, such as the one produced in Section 3.3.

Finally, the proposed barcode graph construction approach has potential to be applied to larger instances, but

Figure 4. Quality of barcode graph construction from a set of reads and corresponding paired-end

assembly. Each square represents the F1-score given parameters M
d
 (read mapping distance) and

M
o
 (minimal molecule overlap length), from purple (low F1-score) to yellow (high F1-score)
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so far we only tested it on simulated data and is merely a proof of concept. The current method relies on having

sufficient assembly contiguity (longer contigs than molecules). A potential direction that we leave for future

work is to determine molecule intervals using the structure of an assembly graph instead of contigs.
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5. Appendix

5.1 Experiment on perfect cliques versus perfect lcps
Given an interval graph with m vertices, and an integer parameter f, we repeated for each vertex x the following

process f times: pick another unmerged node y at random and merge vertices x and y. This generates a simulated

barcode graph where all barcodes correspond to exactly f molecules. Then on this graph we computed all maximal

cliques and all lcps and call such a set of vertices perfect if it corresponds to a set of consecutive intervals in the

original interval graph.

m f cliques perfect cliques lcp perfect lcp

5000 2 5318.5 54645.2 (9.73%) 4600.2 12763 (36.04%)

5000 3 6361.8 76569.4 (8.31%) 4054.3 29924.8 (13.55%)

10000 2 10344.8 104817.5 (9.87%) 9586.2 18958.4 (50,56%)

10000 3 12070.6 130092.4 (9.28%) 9031.2 44276 (20.40%)

Table A1. Average number of perfect maximal clique vs perfect lcps, averaged over 10

runs for each setting defined by m and f
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