Progress in Computing Applications
, gw g puting App Print ISSN: 2278 — 6465
s) Online ISSN: 2278 — 6473
\ - 4
PN PCA 2025: 14 (2)
DLINE JOURNALS https://doi.org/10.6025/pca/2025/14/2/69-76

Context-Aware and Resilient System Architecture for
Autonomous Vehicles

Tobias Kain
Volkswagen AG, Wolfsburg. Germany

Philipp Mundhenk
Autonomous Intelligent Driving GmbH, Miinchen. Germany

Julian-Steffen Miiller
Volkswagen AG, Wolfsburg. Germany

Hans Tompits
Technische Universitdt Wien. Austria

Maximilian Wesche
Volkswagen AG, Wolfsburg. Germany

Hendrik Decke
Volkswagen AG, Wolfsburg. Germany

ABSTRACT

This paper presents a novel, three-layered system architecture designed to enhance the reliability and safety
of autonomous vehicles by dynamically adapting to contextual changes. The architecture consists of the context
layer, reconfiguration layer, and architecture layer. The context layer extracts environmental and operational
data, such as weather, traffic, and user preferences, and derives requirements from these inputs. The
reconfiguration layer uses these requirements to plan adaptive actions, such as selecting software applications,
assigning redundancy levels, and optimizing hardware deployment. The architecture layer then implements
these changes on the vehicle’s computing infrastructure, ensuring operational safety through monitoring and
validation.

Two illustrative use cases demonstrate how distinct driving scenarios—like premium highway rides or budget
urban rides—influence application needs and redundancy levels. The application placement problem, which
involves mapping applications to computing nodes while optimizing for constraints like CPU demand and
safety, is tackled using techniques such as linear programming and reinforcement learning. System self-
awareness is maintained through continuous monitoring, enabling swift reconfiguration in the event of failures.
The proposed approach is unique in its application of full-stack context awareness to autonomous systems,
drawing inspiration from strategies in aerospace fault management. Future work includes implementing a
stmulator to validate the architecture’s real-world feasibility.

69 dline.info/pca

Progress in Computing Applications Volume 14 Number 2 September 2025

Keywords: Autonomous Vehicles, Context-Aware Architecture, Resilient System
Received: 10 January 2025, Revised 4 March 2025, Accepted 18 March 2025
Copyright: with Authors

1. Introduction

Currently, automobiles come equipped with a range of sophisticated driver assistance technologies that aid
individuals while driving. Features that contemporary vehicles can perform include maintaining a safe distance
from the car ahead, parking autonomously, and changing lanes on highways. Although these capabilities are
highly dependable and rigorously tested, drivers are still required to oversee their functioning and regain control
if necessary. When it comes to fully autonomous vehicles, such interventions from passengers are not anticipated.
Consequently, to ensure the safety of both passengers and other road users in the event of a malfunction affecting
a critical driving function, the system managing the vehicle must be designed to operate reliably in the face of
failures, meaning it must autonomously manage both hardware and software malfunctions. In this document,
we introduce a strategy that can swiftly restore a safe operating state following a hardware or software failure,
allowing the driving task to be resumed. Since various aspects of a system’s configuration rely on the context the
vehicle is currently experiencing, our reconfiguration strategy is centered on system optimization activities that
adapt the system to the current context. Among the multiple factors considered, our context-aware reconfiguration
method enables dynamic adjustment of safety requirements to fit the existing circumstances, enhancing the
overall safety of the system.

Should a failure occur that results in the system’s safety level falling below a specific threshold, our method
initiates an emergency stop. The context-based reconfiguration aspect of our approach is structured around a
layered framework, which consists of three interrelated layers that vary in their awareness level: The highest
layer, known as the context layer, extracts contextual information from the provided input. The output from the
context layer is subsequently utilized as input for the reconfiguration layer, which is responsible for determining
the system’s configuration. Finally, the architecture layer handles the placement of applications, that is, assigning
application instances to computing nodes, and it also includes mechanisms for monitoring the system’s state.

The structure of this paper is as follows: Section 2 presents our overall approach for a dependable context-
based system architecture intended for autonomous vehicles. Section 3 elaborates on the techniques utilized for
extracting and representing context. Section 4 highlights the features and challenges associated with context-
based reconfiguration. Section 5 provides an overview of the difficulties related to implementing new
configurations and monitoring system alterations. The paper concludes in Section 6 with a review of related
methodologies and directions for future research.

2. The General Approach
Figure 1 shows the general framework of our approach for a reliable context-based system architecture, which

defines three interconnected logical layers, whereby each layer comprises a set of interrelated tasks, providing
distinct levels of awareness, viz. context awareness, safety awareness, and self-awareness.

70 dline.info/pca

Progress in Computing Applications Volume 14 Number 2 September 2025

The top layer, dealing with the first type of awareness, is accordingly referred to as the context layer. This layer
determines the current context the vehicle is in and extracts requirements affecting the actions of lower layers.
Mission goals, like the target destination or the level of entertainment requested by the driver, or environment
information, like the current weather situation or road and traffic conditions, are examples for parameters
influencing action decisions.

The requirements determined by the context layer are used as input for the reconfiguration layer. This layer
evaluates the received requirements and plans further actions considering the current context. These actions
include, for example,

e Selecting a set of applications,

® Determining their redundancy and hardware segregation requirements,

e Computing valid reconfiguration actions, as well as

e Optimizing the entire system architecture.

Requirements Reconfigurations
Context Layer Reconfiguration Layer Architecture Layer
What are the system requirements? Which configuration can meet the What is the current status of the
(Context Awareness) requirements? (Safety Awareness) configuration? (Self Awareness)
User-Defined Environment Safety Reconfiguration System Reconfigure Health Monitoring

Goals Observations Rating ~ Computation Optimization

@{ ®) OOy | [rr .gc N

qe

Figure 1. The three logical layers used in our approach and their relationships. The layers provide
distinct levels of awareness

A [S] (4[]

Computing Node 1 [—| Computing Node 2

[EmricI=in|

Computing Node 3 Computing Node 4

System Changes

The reconfiguration measures determined by the reconfiguration layer are then executed by the architecture
layer. This layer is responsible for distributing application instances among the available computing nodes as
instructed by the layer situated above, whereby a minimum level of safety has to be preserved. Furthermore, this
layer also implements monitor mechanisms that control the health of the hardware and software components
the car is equipped with. In case a system change is observed, the reconfiguration layer is informed such that a
new configuration is determined.

dline.info/pca 71

Progress in Computing Applications Volume 14 Number 2 September 2025

3. Context Extraction

Adjusting the system configuration according to the current context first requires the extraction of context
observations from environmental parameters. These observations then imply a set of requirements, which are
used as input for the subsequent reconfiguration actions.

Figure 2 illustrates two use cases that show that distinct sets of context observations imply distinct sets of
requirements.

In the first use case, depicted in Figure 2a, the passenger of an autonomous taxi booked a premium ride.
Furthermore, we assume that the vehicle is currently driving in snowy weather on a highway. From these context
observations, a set of required software applications can be implied. This set may, for example, include
applications for detecting pedestrians, planning trajectories taking the rough weather conditions into account,
as well as entertainment applications that are included in the ride due to a booked premium package. Moreover,
from the context observations, we can imply the safety-criticality of the respective applications and thus the
required level of redundancy, as well as other performance parameters.

The use case illustrated in Figure 2b, on the other hand, assumes a low-budget ride in an urban environment
under good weather conditions. Consequently, the set of required applications include, for example, a pedestrian
detection module. The demanded level of redundancy of this application is high, as this application is considered
safety-critical in the current context since many pedestrians are present in urban environments. Note that in the
first use case, the required level of redundancy of the same application is lower since on highways, encountering
pedestrians is unlikely. For the pedestrian detection module, a medium level of redundancy can be, for example,
satisfied in case one redundant module is executed. On the other hand, the level of redundancy can be considered
high if two redundant instances of this module are executed.

Context
Observations

Requirements

App | Redundancy || Memory

'y middle [0.7 GB
annnn
v high 1.3GB

(a) A premium ride on a highway in wintry conditions. These context observations imply, for example,
that the set of required applications include a passenger detection, a trajectory planner which takes the rough
weather conditions into account, and an entertainment application

72 dline.info/pca

Progress in Computing Applications Volume 14 Number 2 September 2025

Context
Observations

Requirements

Redundancy ||Memory

high 1 GB
high 0.9 GB
low 80 MB

(b) A low-budget ride in an urban environment under good weather conditions. These context observations
imply, for example, that the set of required applications include a passenger detection, a trajectory planner
which takes the good weather conditions into account, and an application for computing tasks received from
cloud services

Figure 2. Two use cases showing the correlation between context observations and requirements. The two
distinct scenarios imply a distinct set of requirements

The discussed use cases illustrate the two main challenges of the context layer: Extracting context
observations and implying requirements.

The former task, extracting context observations, necessitates perceiving environment parameters. These
parameters are, for example, determined by sensors the car is equipped with, communicating with backend
services, and interacting with the passengers.

The second task, implying requirements from context observations, requires methods for specifying implication
rules. Therefore, the system architecture designers, as well as the application developers, have to define
requirements for different contexts. A conceivable approach for representing such rules is employing answer-
set programming [2], a declarative problem-solving approach based on logic programming for which sophisticated
solver technology exists [7, 4].

4. Context-Based Reconfiguration
The task of determining a context-based reconfiguration, i.e., a mapping between application instances and
computing nodes that respects the prevailing context, is not trivial since the placement decisions depend on

various parameters. We refer to this problem as the application placement problem.

This problem is not only limited to our problem setting, but the placement of applications on computing nodes is
indeed a well-studied topic in other fields too. In particular, research on cloud and edge computing has addressed

dline.info/pca 73

Progress in Computing Applications Volume 14 Number 2 September 2025

this problem, like, e.g., approaches for optimizing properties like energy consumption [8], network traffic load
[9], and resource utilization [5] have been discussed in the literature.

Generally speaking, the input of the application placement problem is a set of application instances and a set of
resources, like, e.g., computing nodes, operating systems, or communication links. Furthermore, we define for
each application instance and each resource, a set of parameters including, for example, performance parameters
such as the minimum required memory and CPU demand, as well as safety parameters like the minimum required
level of redundancy and hardware segregation. These parameters have to be specified by the system architecture
designers and the application developers. The output of the application placement problem is an assignment
that maps each instance to exactly one node.

In order to restrict the number of valid assignments, constraints based on the specified parameters can be defined.
Depending on the specified constraints, either none, one, or multiple valid assignments exist. In case that there
are different solutions, an optimization function can be defined that specifies which assignments are the most
desired.

This optimization function also depends on the current context. Therefore, an approach allowing a context-
based update of the optimization goal leads to configurations that are well adjusted to the current situation.

For solving the application placement problem, various optimization approaches are applicable. The options
range from integer linear programming and evolutionary game theory [12] to reinforcement learning approaches

[1].
5. Architecture Interaction

The architecture layer of our approach comprises the tasks responsible for interacting with the architecture, i.e.,
the application instances and computing nodes.

One main task of this layer is to apply the reconfiguration actions determined by the reconfiguration layer. The
challenge thereby is to ensure a fast, safe, and organized configuration roll-out. Furthermore, it has always to be
guaranteed that the reconfiguration actions do not decrease the level of safety. Therefore, safety-validation
operations have to be executed prior to the configuration roll-out.

Besides applying reconfiguration actions, also monitoring the state of the computing nodes and the executed
application instances is an important task.

Self-awareness requires monitoring the status of the system to maintain an operational state. Monitoring the
system, in turn, depends in general on the observation of several level-specific data. Concerning safety, different
levels may define different requirements for a minimum operational capability.

Since full vehicle autonomy excludes human takeover actions, classical failure tolerance is not sufficient as errors
may have various causes and interference effects. Failure handling requires knowledge of cross-layer dependencies.

Thus, system monitoring and self-awareness are cross-layer problems [14].

In case a failure is detected, the reconfiguration layer is notified to reconfigure the system to obtain a safe system

74 dline.info/pca

Progress in Computing Applications Volume 14 Number 2 September 2025

sate. If safety-critical applications are affected by the failure, the reconfiguration layer has to ensure that lost
functionality is recovered within a short time. An approach addressing this challenge, called Fdiro, standing for
“fault detection, isolation, recovery, and optimization”, has been introduced in a recent paper [6], adopted from
a similar method from the aerospace domain [16].

6. Conclusion

In this paper, we introduced a three-layered approach towards implementing a reliable and context-based system
architecture in autonomous vehicles. By employing this approach, we anticipate an increase in safety, enabled
by a fast and context-oriented reconfiguration in case a hardware or software failure is detected.

To the best of our knowledge, the introduced safety and context-aware configuration approach for autonomous
vehicles is novel. However, in the past, efforts in the automotive research field focused on developing concepts
for context-aware advanced driver assistance systems [15, 11]. Context-awareness of applications is also pursued
in other research fields [10].

Since the advance of autonomous vehicles is imminent, further work concerning each layer of our approach for
context-based system architecture is necessary. In our future research activities, we plan to implement a simulator
to show the feasibility of our proposed architecture.

References

[1] Bello, Irwan., Pham, Hieu., Le, Quoc V., Norouzi, Mohammad., Bengio, Samy. (2016). Neural combinato-
rial optimization with reinforcement learning. CoRR, abs/1611.09940. arXiv:1611.09940.

[2] Brewka, Gerhard., Eiter, Thomas., Truszczynski, Miros3aw. (2011). Answer set programming at a glance.
Communications of the ACM, 54(12), 92—103.

[3] Brookhuis, Karel A., de Waard, Dick., Janssen, Wiel H. (2019). Behavioural impacts of advanced driver
assistance systems—An overview. European Journal of Transport and Infrastructure Research, 1(3).

[4] Gebser, Martin., Kaufmann, Benjamin., Neumann, André., Schaub, Torsten. (2007). clasp: A conflict-
driven answer set solver. In: Proceedings of 9th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2007), Lecture Notes in Computer Science, 4483, 260—265. Springer.

[5] Ben Jemaa, Fatma., Pujolle, Guy., Pariente, Michel. (2016). QoS-aware VNF placement optimization in
edge-central carrier cloud architecture. In: Proceedings of the 2016 IEEE Global Communications Confer-
ence (GLOBECOM 2016) (pp. 1-7).

[6] Kain, Tobias., Tompits, Hans., Miiller, Julian-Steffen., Mundhenk, Philipp., Wesche, Maximilan., Decke,
Hendrik. (2020). Fdiro: A general approach for a fail-operational system design. Submitted draft. Abstract

accepted for presentation at 3oth European Safety and Reliability Conference (ESREL 2020).

[7] Leone, Nicola., Pfeifer, Gerald., Faber, Wolfgang., Eiter, Thomas., Gottlob, Georg., Perri, Simona., Scarcello,

dline.info/pca 75

Progress in Computing Applications Volume 14 Number 2 September 2025

Francesco. (2006). The DLV system for knowledge representation and reasoning. ACM Transactions on Com-
putational Logic, 7(3), 499—562.

[8] Li, Bo., Li, Jianxin., Huai, Jinpeng., Wo, Tianyu., Li, Qin., Zhong, Liang. (2009). EnaCloud: An energy-
saving application live placement approach for cloud computing environments. In: Proceedings of the 2009
IEEE International Conference on Cloud Computing (CLOUD-II 2009) (pp. 17—24).

[9] Meng, Xiaogiao., Pappas, Vasileios., Zhang, Li. (2010). Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: Proceedings of the 2010 IEEE International Conference on
Computer Communications (INFOCOM 2010) (pp. 1-9).

[10] Mori, Marco., Li, Fei., Dorn, Christoph., Inverardi, Paola., Dustdar, Schahram. (2011). Leveraging state-
based user preferences in context-aware reconfigurations for self-adaptive systems. In: Proceedings of the
gth International Conference on Software Engineering and Formal Methods (SEFM 2011), Lecture Notes in
Computer Science, 7041, 286—301. Springer.

[11] Rakotonirainy, Andry. (2005). Design of context-aware systems for vehicles using complex system para-
digms. In: Proceedings of the CONTEXT 2005 Workshop on Safety and Context, CEUR Workshop Proceedings,
158. CEUR-WS.org.

[12] Ren, Yi., Suzuki, Junichi., Vasilakos, Athanasios., Omura, Shingo., Oba, Katsuya. (2014). Cielo: An evolu-
tionary game theoretic framework for virtual machine placement in clouds. In: Proceedings of 2014 Interna-
tional Conference on Future Internet of Things and Cloud (FiCloud 2014) (pp. 1-8).

[13] SAE International. (2014). Taxonomy and definitions for terms related to on-road motor vehicle auto-
mated driving systems (SAE Standard J3016).

[14] Schlatow, Johannes., Mé6stl, Mischa., Ernst, Rolf., Nolte, Marcus., Jatzkowski, Inga., Maurer, Markus.,
Herber, Christian., Herkersdorf, Andreas. (2017). Self-awareness in autonomous automotive systems. In:
Proceedings of the 20th Conference & Exhibition on Design, Automation & Test in Europe (DATE 2017) (pp.
1050—-1055). European Design and Automation Association.

[15] Weiss, Gereon., Grigoleit, Florian., Struss, Peter. (2013). Context modeling for dynamic configuration of
automotive functions. In: Proceedings of the 16th International IEEE Conference on Intelligent Transporta-
tion Systems (ITSC 2013) (pp. 839—844).

[16] Zolghadri, Ali. (2012). Advanced model-based FDIR techniques for aerospace systems: Today challenges
and opportunities. Progress in Aerospace Sciences, 53, 18—29.

76 dline.info/pca

