

DLINE JOURNALS

Progress in Computing Applications

Philipp Mundhenk

Autonomous Intelligent Driving GmbH, München. Germany

Enrique Parodi

Autonomous Intelligent Driving GmbH, München. Germany

Roland Schabenberger

Autonomous Intelligent Driving GmbH, München. Germany

ABSTRACT

This paper introduces Fusion, a next-generation software platform designed to meet the complex safety,

performance, and architectural demands of autonomous driving systems. Fusion uses a microkernel approach

and blends service-oriented with component-based designs to ensure modularity, scalability, and robustness.

It features an Object Specification Language (OSL) to define object behaviors and interactions, which are

instantiated and configured through manifests, enabling clear and flexible system modeling. The architecture

supports concurrency via execution contexts and offers transparent communication across distributed systems

using a pluggable transport mechanism. Key challenges addressed include managing system complexity,

achieving high performance with low latency, ensuring safety and fault tolerance in Level 4 autonomy, and

securing sensitive data and communication. Design-time verification, enabled by Fusion’s modeling capabilities,

aids in early error detection and system optimization. Fusion also incorporates built-in services for health

monitoring, logging, and scheduling, supporting a wide range of deployment environments from vehicles to

simulation and cloud platforms. Currently used by Autonomous Intelligent Driving GmbH (AID), Fusion lays

a foundational framework for developing safe, efficient, and adaptable autonomous driving applications.

Future work aims to enhance the platform’s predictability, real-time capabilities, and resilience to support

continued evolution in autonomous vehicle technology.

Keywords: Autonomous Vehicle, Driving Systems, Software Platform, Software Security, Driving Safety

Received: 19 January 2025, Revised 9 March 2025, Accepted 25 March 2025

Copyright: with Authors

1. Introduction

Historically, automotive software has been closely linked with hardware, commonly referred to as Electronic

Print ISSN: 2278 – 6465
Online ISSN: 2278 – 6473

PCA 2025: 14 (2)
https://doi.org/10.6025/pca/2025/14/2/77-83

A Modular and Secure Software Fusion Platform for Autonom
-ous Driving Systems

dline.info/pca 77

dline.info/pca 78

Progress in Computing Applications Volume 14 Number 2 September 2025

Control Units (ECUs). All interactions take place through signals, whether between software components (e.g.,

AUTOSAR Classic) or among ECUs [2]. In more contemporary software architectures, particularly those uti-

lized in intricate systems like vehicles equipped with driver assistance features, service-oriented communication

has been adopted (e.g., AUTOSAR Adaptive) [1]. This transition is facilitated by new communication methods,

along with various other advancements in the automotive sector, such as Automotive Ethernet [4].

These modern architectures are generally constructed on real-time capable POSIX operating systems, utilizing

operating system processes as the fundamental elements for applications. Communication is established and

executed between processes and devices. However, within the processes, there is minimal to no assistance available

for developers regarding coordination (multi-threading), introspection, and communication among different

components of the software. The software frameworks for autonomous driving are considerably larger and more

intricate than all existing software in vehicles, with a noticeable trend towards increasing size and complexity

over time. An illustration of the architecture of such a stack, encompassing its internal and external interfaces, is

presented in 1.

For developers to be able to focus on advancing functionality, some support is required. This is especially relevant

for performance reasons. Autonomous driving software requires a large amount of performance and the hardware

needs to be utilized to the maximum possible degree. Additionally, when running an autonomous vehicle without

supervision, the correctness of the software is fundamental.

Figure 1. High-level view of a self-driving system and its interfaces

2. Fusion Software Platform

In this paper, we propose the Fusion Software Platform to combat the complexity and performance requirements

of autonomous driving software. As shown in Figure 2, each instance of Fusion is running inside a single operating

system process. Through the use of a dedicated Operating System Abstraction Layer (OSAL), support for different

operating systems is possible and has been implemented in the past. Fusion instances can communicate with

each other, across processes and across devices, such as processors or hypervisor partitions, by the help of a

pluggable transport mechanism (e.g., using Data Distribution Service (DDS)). All communication means are

abstracted by Fusion, so that all application software is independent of the used transport mechanism.

dline.info/pca 79

Progress in Computing Applications Volume 14 Number 2 September 2025

Internally, Fusion improves upon existing software platforms by using a microkernel approach, and combining

the benefits of service-oriented and component-based design. The atomic building block is an Object. Fusion

objects contain properties, methods and events, defined in a dedicated Object Specification Language (OSL).

Additionally, custom data structures can be defined. Properties allow the storage of data, whereas events and

methods are used to connect to other objects with (method) or without (method) return path. Changes of properties

can automatically result in events being fired. Timers are objects, which can emit events at configurable times.

OSL is generated into the target code (e.g., C++) to be used by developers when building their functionality (see

Figure 3). Developers can implement the functionality, and for this use the full set of features in their target

language (e.g., C++) if they wish to do so.

In order to support concurrency, all objects are assigned to execution contexts. Thus, developers are not required

to use synchronization primitives, such as mutexes, condition variables, etc. Each execution context consists of a

queue and (typically) one or multiple

Figure 2. An example of a software system built with Fusion: Multiple identical instances of the Fusion

engine (Fusion core) run in operating system processes and host components, which are implemented

through Fusion objects (Obj). Execution contexts are used to process messages and services for users are

provided. Artificial Intelligence (AI) frameworks already abstract accelerators

and are running alongside Fusion

operating system threads (worker pool). All events and method calls are enqueued in the queue of the execution

context containing the receiving object and are processed in order of arrival by the worker(s). If the execution

context is located in a different Fusion engine, the pluggable transport mechanism is used. Through this

mechanism, objects can be local or remote to an engine. To the application, this is transparent.

As an additional layer of organization, components are introduced. These define interfaces, timing properties,

etc. Objects are used to implement components. One to multiple objects or components are packed in to plugins,

which are stored as libraries and loaded by the Fusion core.

Each Fusion instance is configured through a manifest. These manifests define plugins to load, execution contexts

to establish, objects to instantiate, as well as their configuration, among many others. Additionally, connections

dline.info/pca 80

Progress in Computing Applications Volume 14 Number 2 September 2025

are explicitly configured in manifests. Connections originate from the event of one object and connect to the

method of another object. This allows the passing of events and data, e.g., the change of a property, including

the new value, between objects.

In addition to the means for communication, scheduling, management, etc., Fusion also provides a set of basic

services, such as distributed Execution Management, Logging, Health Monitoring, Recording, Replay, Storage,

etc. These services are implemented on top of Fusion with the same means and Application Programming

Interfaces (APIs) as the applications. Fusion is currently being used as a software platform for the development

of autonomous driving functionality at the Autonomous Intelligent Driving GmbH (AID).

3. Challenges

Developing a new software platform for complex systems, such as autonomous driving, is a highly complex

endeavor. This holds especially true, as safety and real-time behavior are critical aspects of the system under

development. In the following, we will outline some challenges in the areas of complexity, performance, safety,

and security that such a platform is facing.

3.1 Complexity

While the introduction of the additional layers is increasing the development speed of applications significantly,

while at the same time reducing the number of errors in development, it also introduces complexity. When

building a system using Fusion and applications built on top of it, we have to consider Fusion objects, Fusion

components, Fusion execution contexts, Fusion plugins, Fusion engines, Hypervisor partitions, physical

devices, and potentially multiple systems (e.g., in a fleet of vehicles).

Managing this complexity is not trivial. Objects and components need to be instantiated, often multiple times.

The correctness of connections defined in manifests needs to be ensured. This includes syntactical correctness,

as well as semantical correctness, e.g., are expected and provided update frequencies, latencies, ASIL level

matching, etc. Another aspect of correctness is security: Are all communication participants authenticated

and allowed to communicate? While Fusion makes it much harder for developers to create deadlocks across

threads, due to the messaging approach between components, it is still possible to create deadlocks on a

Figure 3. Process to develop and instantiate an object: (1) Specify in Object Specification

Language (OSL), (2) generate stubs, (3) implement against generated stubs, (4) instantiate, configure

and connect via manifest

dline.info/pca 81

Progress in Computing Applications Volume 14 Number 2 September 2025

 higher layer, through the connection of objects. Also the creation of loops is possible, leading to large increase

of data processing in the system. As Fusion introduces new abstraction levels and means of communication, as

well as offering new usage patterns, new approaches to finding such problems have to be developed.

In terms of scheduling, the additional abstraction layers also need to be considered. Anything being scheduled

in the system needs to consider execution contexts, the operating system scheduler, potentially hypervisors,

etc.

Furthermore, with safety-critical systems and specifically autonomous driving, concepts for redundancy and

fail-operational scenarios are required [3]. As in a level 4 self-driving vehicle, no safety driver is available to

take over in case of a system failure, the system needs to recover from failures whenever possible [5].

In normal operation, as well as in such failures, the system needs to be ensured to operate correctly. This

includes handling crashes of applications, and slow-down due to system load, among many other possible

concerns.

Furthermore, being the platform that all functional applications are based on, Fusion needs to support a large

selection of different target systems, which in turn can benefit from the abstractions provided by Fusion (e.g.,

for simulation). These include, but are not limited to vehicles, hardware-in-the-loop setups, multiple

generations of different processor architectures, virtualized systems, developer laptops, cloud, etc.

3.2 Performance

When building a software platform for autonomous driving, high performance is key. The software system

needs to be able to process large amounts of data from a large number of cameras, LiDARs, radars and other

sensors with high bandwidth, at low latencies. A software platform needs to keep introduced overhead minimal

to avoid slowing down the system, while at the same time requiring all features and benefits listed in Section 2.

Furthermore, due to the complexity and nature of autonomous driving, hundreds of developers in an agile

setup are required. Their objects and components need to be correctly orchestrated and connected in the

system. Any issues need to be detected as early as possible at design time or, if not otherwise possible, at

runtime.

The large amount of input from developers to the system also means a large number of changes. Almost all

parameters of the system can change up to hundreds of times per day. Many of these changes might require

new

computations (e.g., schedule computations). To keep development speed high, all computations caused by

such changes need to take a minimum amount of time. To give an order of magnitude: One hour of computation

is considered very long in this context.

3.3 Safety

Despite the increased complexity of the system, no reduction in safety can be permitted. This is in strong

contrast to many other complex automotive software systems, the most complex of which today are found in

the area of infotainment, where safety-requirements are often secondary, due to isolation. On the contrary,

safety and reliability of the system need to increase when moving from a level 2 self-driving vehicle to level 4,

dline.info/pca 82

Progress in Computing Applications Volume 14 Number 2 September 2025

where no driver is available to take over in case of a fault. Thus, ensuring real-time behavior, determinism and

integrity of the system are paramount. This holds for all components, such as hardware, operating system and

also software platform. However, as Fusion adds the new layers described in Section 2, new ways for guarantees

have to be found. Fusion objects might be assigned to the same components and Fusion engine. Furthermore,

execution contexts can be shared, as well as address spaces, when objects and components are running in the

same Fusion engine.

Thus, a trade-off between the performance requirements as listed above, and the safety requirements need to

be found.

3.4 Security

Similar to safety, security is an important topic for any connected vehicle. The same holds for autonomous

vehicles. Some data in the system needs to be specifically secured (e.g., cryptographic keys). To fulfill the

requirements set up in the General Data Protection Regulation (GPDR), additional technical measures need to

be taken. These requirements do not only hold for the driver of the vehicle and the passengers, but also the

pedestrians around the vehicle, potentially recorded on camera. To secure communication, certain, if not all

objects and components need to be authenticated, certain traffic needs to be encrypted.

All of these measures add a potentially very large performance overhead. As in safety, balancing the

performance and security requirements is key.

4. Design-Time Verification

In the automotive domain, like in many industries extensive testing is used to determine the correctness of a

system. However, for such testing approaches, the running system is required. Additionally, there is no

guarantee that all cases are covered when using testing.

For complex systems like autonomous driving, runtime testing on the system level is not efficient. Instead,

wherever possible, the system should be described in a model at design time, where the consistency and

correctness can also be checked. This can solve some of the complexity challenges listed above. Furthermore,

optimizations can be performed based on the model (e.g., assignment of software to hardware components).

Fusion already offers some means to describe the system at design time through OSL and manifests.

Whenever using modeling approaches, multiple challenges exist. The key is to find the right level of abstraction.

If the model is too detailed, it is difficult to handle and check. If the model is too abstract, the benefit of

modeling vanishes. Additionally, the model needs to be integrated into the development process to avoid

divergence of model and implementation.

With a system as complex as an autonomous driving software stack, the model easily becomes very large. The

additional layers introduced by Fusion add to this challenge. Due to the high frequency of changes and the

checks needing to be performed on the model, computations need to take minimal time (see also Section 3.2).

Furthermore, the model needs to be used by a large number of engineers from different backgrounds (e.g.,

software, safety, systems, security engineering). Without presentation of the model and tools according to the

dline.info/pca 83

Progress in Computing Applications Volume 14 Number 2 September 2025

developers background, the acceptance and usability will be insufficient for a high development speed.

Last, but not least, a model and its tooling face challenges when developed alongside the software (and not

upfront). To increase acceptance of the approach, it is essential to maximize the benefit and prioritize parts of

the model. E.g., for a first Minimum Viable Product (MVP) of a software, modeling the exact resource

consumption to the last bit in memory does not add value, while this might differ when moving closer to the

release especially a safety-critical, software.

5. Conclusion

In this work, we presented Fusion, a new generation of software platform, lowering the size of atomic building

blocks for complex autonomous driving systems. Furthermore, we raised a number of challenges, which are

relevant for Fusion, as well as other, similar systems, targeting complex software systems, such as those used

in autonomous driving.

In future, the fine-grained defined building blocks of Fusion will be enhanced to increase predictability, free-

dom from interference, as well as real-time behavior. Initial proofs of concepts have been built and develop-

ment is ongoing. Fusion is actively being used for the development of level 4 autonomous driving in AID.

References

[1] AUTOSAR Consortium. (2019). Specification of Communication Management (Document Identification

No 717, Release R19-11).

[2] AUTOSAR Consortium. (2019). Specification of RTE Software (Document Identification No 84, Release

R19-11).

[3] Koopman, Philip., Wagner, Michael. (2016, April). Challenges in autonomous vehicle testing and valida-

tion. SAE International Journal of Transportation Safety, 4, 15–24. https://doi.org/10.4271/2016-01-0128

[4] OPEN Alliance Special Interest Group. (2017). 100BASE-T1 System Implementation Specification (Ver-

sion 1.0).

[5] SAE International. (2018). Taxonomy and definitions for terms related to on-road motor vehicle auto-

mated driving systems J3016 (Release 201806).

