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ABSTRACT

This paper introduces an adaptable demonstrator platform designed to simulate distributed agent-based

automotive systems, addressing the rising complexity of software-defined vehicles. As automotive electronic

control units (ECUs) consolidate, there is a shift toward modular software design with run-time adaptability,

especially to meet fail-operational and safety requirements in autonomous driving. The proposed platform

leverages a distributed, real-time simulation using the SimPy framework, enabling simulation of task execution

and network communication among ECUs via the SOME/IP middleware.

A key feature of the platform is its agent-based graceful degradation approach, which reallocates resources

from non-critical to safety-critical applications during failures. The demonstrator setup, implemented on

Raspberry Pi devices interconnected via Ethernet, effectively models real-world failover scenarios. The

middleware supports decentralized service discovery and publish/subscribe communication, enabling dynamic

task reallocation and reconfiguration.

Experimental results show strong alignment between simulated and actual network traffic, validating the

platform’s realism. Its hardware-agnostic, scalable architecture allows simulation on various configurations

and network topologies. While real-time constraints may limit scalability on low-power hardware, the platform

provides a valuable tool for evaluating emerging distributed automotive strategies in both academic and

industrial contexts. The study concludes that this flexible simulation environment facilitates rapid development

and testing of robust, fail-operational automotive systems.
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1. Introduction

With new automotive functionalities like autonomous driving, automotive companies recognise that customer

needs are increasing, along with the demand for continuous delivery of new features. With the increasing

complexity of the situation, significant changes are occurring in electronic architectures. Whereas in the past an

electronic control unit (ECU) would be added for each new functionality, the software is now integrated into

more powerful ECUs. We expect that this consolidation trend will continue, resulting in future electronic

architectures that essentially have only a few powerful ECUs, much like consumer electronic devices [4].

Figure 1. General structure of the simulator platform

The scheduler executes multiple tasks on the CPU. The tasks use the SOME/IP Middleware and the given network

infrastructure to communicate. The platform simulates the ECUs instances and uses a physical network for

communication.

As software is being decoupled from the hardware, future automotive software will be designed modular. This

separation leads to new system-wide optimization possibilities. At the same time, new software functionality

comes with higher resource demands and safety requirements. As there will be no driver as a fallback solution in

autonomously driving cars, these systems have to be designed to maintain operation in the presence of critical

ECU or software failures. However, such a fail-operational design requires redundancy which imposes an even

higher resource demand and therefore cost. An approach to lower cost is graceful degradation where hardware

resources which were formerly used by non-critical applications are repurposed for the use of critical applications.

With highly customizable software and unique customer configurations, each software system has to be optimized

individually. Furthermore, users will change the configuration frequently and the software requirements might

vary with each software update. Thus, design-time solutions to solve the mapping problem and optimize the
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system are insufficient as they would have to be re-evaluated for each change in the system. Therefore, new

solutions are required that solve the mapping problem at run-time as part of the software platform. We presented

such an agent-based approach in [5], which ensures fail-operational requirements at run-time using graceful

degradation and is able to reconfigure the system after an ECU failure.

To be able to evaluate such emerging approaches, we present an adaptable demonstrator platform in Section 2

that is built on top of a distributed simulation environment. Users of the distributed simulation environment can

configure computing components as distinct ECU instances to simulate task execution. For communication a

physical network infrastructure can be used. This approach combines the advantages of an easily configurable

simulation with a more experimental evaluation. The presented demonstrator platform is easily adaptable to

different hardware configurations and provides a fast and accurate way to evaluate agent based approaches for

distributed systems. We present an exemplary demonstrator setup which runs our agent-based graceful

degradation approach from [5] in Section 3 and discuss the scalability and limitations of the demonstrator

platform in Section 4.

2. Demonstrator Platform

The general structure of our demonstrator platform is presented in Figure 1. We adopted  a process-based Discrete-

Event Simulation (DES) architecture and selected the SimPy framework [2] to simulate the ECU instances. Any

ECU instance includes a task-scheduler to execute multiple tasks and a network interface to connect the ECUs

with the deployed middleware. Using the middleware, the ECUs can subscribe to messages from other ECUs or

publish messages themselves over the physical network. The system can be specified by the user according to our

system model and uses the XML schema for specifications from the Open DSE framework [3]. In the following

sections, we describe the components of the demonstrator platform more precisely.

2.1 Simulation

On a simplified view, SimPy is an asynchronous event dispatcher [2]. SimPy places all events in a heap data

structure. The events are then retrieved and dispatched in an event loop one after the other at discrete points in

time. In SimPy’s default mode the simulations advance as fast as possible, depending on how much computation

power is available. As our demonstrator platform uses physical networks, a real-time simulation is required for

realistic results. SimPy’s real-time mode enforces the time steps of the simulation to be synchronized with the

clock of the operating system: Each step of the simulation amounts to a certain amount of real time.

2.2 Task Execution

Our software is modelled by independent non-critical and safety-critical applications. Each of the applications

might consist of multiple tasks. The communication between the tasks is modelled with messages. Tasks in the

system are triggered by incoming messages or periodically by a timer in case they are the anchor task of an

application. The access to the CPU is granted by an exchangeable scheduler. The execution time on the CPU is

then simulated by passing time according to the resource consumption of the task. Once a task has finished

execution, it sends out messages via the network interface.

2.3 Middleware

Our framework uses a middleware, which handles the communication and which is based on SOME/IP [1], an

automotive middleware solution. Such a middleware is necessary to enable the dynamic behaviour for moving
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tasks at run-time on the system. Tasks and agents exclusively communicate via this middleware and are modelled

as services and/or clients. The middleware includes a decentralized service-discovery to dynamically find offered

service sat run-time. Furthermore, a publish/subscribe scheme is used to configure which data is sent between

services and clients. Tasks that have outgoing edges in the application graph Ga are offered as a service whose

events can be subscribed by the clients with incoming edges. In addition, remote procedure calls can be used

for non-event-based communication.

2.4 Communication

The SOME/IP protocol specification recommends UDP as a transport layer protocol for cyclic data and for hard

latency requirements in case of errors [1]. Therefore to receive messages from the underlying network, we use a

multi-threaded UDP Server. The UDP

Figure 2. Our demonstrator setup consisting of 4 Raspberry Pis, which are connected over a

switch and Ethernet links

Each of the hardware nodes is running a single simulation instance with our agent-based graceful-degradation

approach from [5]. The graphical user interface presents the simulated CPU utilization and the status of the

agents and tasks.

server does not handle the incoming messages synchronously but instead dispatches a handler thread whenever

it receives a new message. The handler thread post-processes the message and schedules the message in the

SimPy simulation of the ECU. The correct scheduling of the incoming message is essential to avoid time deviations

in the communication between the ECUs. To transmit data on the link-level, the sending entity serializes the

data upfront in the network interface, and the receiving entity deserializes the data in the receive handler.

3. Case Study

We implemented our platform with the 4 simulation instances HC
1
-HC

4
, each running on a dedicated Raspberry

Pi
4
, which are depicted in Figure 2. The Raspberry Pis are connected via an Ethernet link to a central switch. The

graphical user interface presents the simulated CPU utilization and the status of agents and tasks on the
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corresponding simulation instance.

The presented example is running our agent-based graceful degradation approach from [5]. The system, which

consists of a safety-critical task FC
1 
and seven non-critical tasks FC

2
 - FC

8
, depicts the situation after the failure of

simulation instance HC
1 
and the first degradation. The safety-critical agent is marked with blue, while its passive

task agent is marked with grey.

In the first phase of our approach, each task gets assigned to an agent that allocates required CPU and link

resources for it, migrates to the corresponding ECU and starts the task. This ramp-up can be observed with the

CPU utilization at the beginning of the simulation.

To ensure fail-operational behaviour, our approach uses passive redundancy combined with graceful degradation.

In a critical ECU failure scenario, the passive redundant tasks of safety-critical applications can be reactivated.

Using graceful degradation, safety-critical tasks can then take over the resources of non-critical tasks, which

have to be shut down.

As it has to be ensured that sufficient resources are available prior to an ECU failure, the agents of the passive

tasks can reserve resources at the ECU and the agents of non-critical tasks. The reservation process ensures that

it can be predicted if sufficient resources are available prior to a failure scenario. In our example the agent of FC
1

has cloned itself at the beginning of the simulation and the corresponding passive task agent then reserved the

resources at the agent of task FC
4
. After the failure of HC

1
, the passive task agent on HC

2 
detected the failure by a

heartbeat timeout, claimed its resources at the agent of task FC
4
 and reactivated FC

1
. The degradation can be

observed as FC
4
 is marked with red and the task status ’deactivated’.

After an ECU failure and the immediate failure reaction, the fail-operational behaviour of the safety-critical

tasks can be re-established. The advantage of the agent-based approach is that no additional algorithm is required

for the reconfiguration and the same mapping procedure can be repeated. In our example, after the immediate

failure reaction on HC
2
, the task agent of FC

1
 cloned itself again to re-establish its fail-operational behaviour.

The corresponding passive task agent is marked with grey on HC
4
. The agent status ’active’ indicates that it has

successfully reserved its resources and the system is able to endure another ECU failure without losing its

safety-critical functionality.

4. Discussion

We have compared simulated network traffic from our framework described in [5] with the physical network

traffic of the demonstrator platform (Figure 3). The results validate that the previously simulated network is

realistic and comes close to what we observe when using real network infrastructure. However, the simulated

and observed behaviour is not entirely the same. For our future and current studies, the more realistic approach

ensures that we do not miss any critical network behaviour, which we did not capture in our simulation.

The demonstrator platform is independent of the hardware, the operating system (OS) and the network

architecture that the internet protocol suite (IP) uses on the link layer. It is extensible to any common computing

platform. Also, the platform can simulate multiple ECU instances on a single hardware node in the network. The

platform is, therefore, very flexible and scalable to assist in the rapid exploration and evaluation of distributed
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systems on various hardware setups and network topologies.

However, the scalability of the simulation is limited by the available computational power the nodes have: If a

hardware node is not able to process its entire simulation workload within the foreseen real-time interval, the

real-time constraint is violated leading to simulation delays.

5. Conclusion

In this paper we have introduced an adaptable demonstrator platform where multiple simulation instances can

be used to simulate a distributed automotive system. Using a physical network, the platform combines the

advantages of a rapid simulation configuration with a more realistic communication. The simulation instances

provide a middleware for communication and a task execution model for computation. An exemplary

implementation has been presented which runs an agent-based graceful degradation approach to achieve fail-

operational behaviour. As long as the real-time factor of the simulations can be met, the demonstrator platform

can be used to easily demonstrate emerging decentralized approaches on different hardware architectures.
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