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ABSTRACT: In this document, we study the construction of codes LDPC quasi cyclic based on a protograph. In addition to
their large perimeters, the presented codes take profit from the advantages of bass coding and decoding complexity. The aim
of this article is to make an improvement on the implementation of quasi-cyclic LDPC codes. Thus to respect the structure of
the basic protograph we use an arithmetic progression to determine in advance the positions of certain nodes of control in
the derived graph, which turn to some extent amounts generating a new model while proceeding to an enlarging of the basic
protograph. Once this new model conceived we apply the usual techniques to build in an optimal way the derived graph.
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1. Introduction

The low density parity check codes (LDPC) were proposed for the first time in 1963 by Gallager [1]. At that time, even if it was
found very interesting on the theoretical level, these work found little echo, that was mainly due to the limits of material
architectures at the time. Put aside for a long time, it is thirty years later, with the advent of the turbo-codes [2] and the
description of the “turbo” principle related to iterative decoding that these codes re-appeared in 1996 [3]. It is especially the
work of Thomas J. Richardson and Rudiger Urbanke [4, 5] who allowed a notorious projection on the knowledge and the
optimization of the structure of these codes. For ten years now, the whole of undertaken research have made it possible to reach
the same degree of maturity as the turbo-codes [6] and make them good candidates in the standards. Currently, LDPC codes from
their increasingly powerful capacity and their low complexity of decoding continue to draw the attention of the scientific
community of research on coding. However, the implementation of such codes turn out very complex, and in general the
complexity of coding develops quadratically (or slower [7]) with the length of the block. A LDPC code is described by its hollow
matrix of parity check (P.C.M) or by its tan graph[8].This document is mainly based on the construction of quasi-cyclic LDPC
codes proposed by Nicholas Bonello and al [9]. More explicitly we propose a new approach to generate a regular PCM built on
blocks matrix of Vandermonde [10]. The advantage of studied construction is to obtain a quasi-cyclic (QC) form [11] which
significantly reduces the complexity of coding in the length of the block [12]. In addition the associated complexity of decoding
is reduced by adopting a construction based on a descriptor, which is also indicated under the name of protograph by J. Thorpe
[13]. These codes can be decoded by semi-parallel, as proposed by Lee and al. in [14]. The contribution brought in this document
is to propose a new construction of the PCM based on an new approach which not only makes it possible to build codes regular
quasi-cyclic protograph, but in addition conforms to the nature even of architectures used in particular those of the shift registers.
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The document is structured as follows: section 2 introduced the basic principles of structured codes LDPC and codes LDPC built
on a protograph. Section 3 described and explains construction proposed. Finally the section 4 presents the results obtained.

2. Structured Binary LDPC Codes

For LDPC codes the structure of the PCM (matrix of parity check) can be regular or irregular.

A code is regular if the number of elements per line (respectively by column) is constant. A code is irregular if it is not, by definition,
regular. We consider a binary LDPC code of PCM H built on GF (2), then, suppose the PCM made up of m lines and of N columns, the
density of this code becomes R =1 - m/n. This can also be represented by means of a binodal graph, commonly called factorial graph
[15] or bipartite Tanner graph [16, 17], being composed of the m nodes of control and N nodes of variable. More explicitly, we consider
aregular code having a uniform degree of edges emerging from each node of control and variable. The degrees of the nodes of variable
and control will be respectively indicated by y and p, which also corresponds to the weight of column and line of the PCM. LDPC
Codes are typically decoded by using the algorithm nap-product (SPA) [18], where messages are permuted between the nodes residing
on the two sides of the graph. The independence of these messages is characterized by the length of the shortest cycle on the graph,
which is typically indicated under the name of “girth” G,

2.1 Codes LDPC based on the protographs

The protograph codes were introduced by J. Thorpe [13]. By definition, a protograph is a bipartite graph of small size from which
we build a larger graph by a procedure known as “copies and permutations”, during which the protograph is duplicated in
certain number of times, then the branches of the duplicated graphs are permuted by complying with certain structural rules. The
protograph is generally described by its matrix of H adjacency, also called basic matrix [19] [20], where the coefficients H (I, J)
represent the number of branches between the i-th node of control Ci and the j-th node of Vj variable of the protograph. The
procedure of construction of a binary LDPC code based on a protograph illustrated by figure 1. This procedure perhaps
recapitulated as follows:

* Stage of copy: The protograph is recopied T time to obtain T counterparts. T is selected in an arbitrary way to obtain the desired size
of the word of code. On the example illustrated by figure 2 T = 3.

* Stage of permutation: The branches of the various counterparts are permuted between the various counterparts in order to obtain
a larger graph. Figure 3 illustrates perfectly the operation of permutation between T = 3 copies of the protograph.

The set of permutations must satisfy the topological structure of the initial protograph. Let us note that that build code, can be seen
like a big size projection of the basic model from where the acronym “projected graph”. Consequently, the branches of the graph
obtained correspond to the not null entries of the matrix of parity H associated o this bipartite graph, and thus define a code LDPC said
“structured ”.

Let us consider the basic protograph, G, described by the whole of the nodes of control C ={cti: t=1;i=1,..., m}, the whole of
variable nodes V={vti: t=1;i=1, ... n} and the whole of edges E, where |E|= m.p=n. % m and n respectively indicate the number
of nodes of control and variables of the basic protograph.

The basic photograph will t have a PC size (m, n). After permutation of T copies, we obtain the graph of the resulting code, G’, defined
by the units It, V* and E’, where each unit has a size, which is T time larger than the corresponding whole in the basic protograph. The
permutations of the edges of the nodes in the derived graph obey certain constraints, which will be discussed in section 3.

2.2 Construction of LDPC codes based on a protograph

Two big branches of construction are then possible. The first family returns to techniques of algebraic construction of structured
cyclic or quasi-cyclic codes [12]. The second rests algorithms of pseudo-random construction such as algorithms PEG (Progressive
Edge Growth) [21].

* Construction by PEG: This method simply consists in considering pseudo-random permutations by assigning the branches of the
graph, group’s nodes of variables by nodes group of variables.

* Construction based on circulating matrices This method uses matrices of circulating permutations; the assignment is done either
by branch (edge) but by group of T branches via the assignment of the matrix of permutation.
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Figure 1. Example of “copies and permutation”

The matrix H resultant of this last method is a version known as “lifting /enlarging ” (increased) and the parameter T is often indicated
like the order of enlarging. The matrix H resultant of this last method is a version known as “lifting” and the parameter T is often
indicated like the order of enlarging. Moreover resulting code LDPC will be quasi-cyclic: indeed, any shift of a word of code is again
a word of code. That allows an easy encoding by shift registers what has as a consequence a good degree of parallelism of
architectures of decoding, from where the attraction for these codes known as structured. The structure of quasi-cyclic codes LDPC
builds on a protograph is subjected to two major constraints:

*Drawback (1): The fact of using a regular PCM as basic graph imposes a certain structural regularity on the derived graph with
*Drawback (2): With this first drawback a second is added which is the quasi-cyclicity induced by a construction based on protograph

in other words the manner of permuting the edges.

3. Construction of regular code protograph QC_LDPC

3.1 Construction of the basic protograph
Since we want to build quasi-cyclic codes protograph, we use a construction based on the matrix of Vandermonde. This method stays
primarily on the construction of the matrix of noted permutation P. The matrix P is a matrix whose Pmn elements are such as:

1 ifm=(-1)modq

P :{ @
0 otherwise

withg>(p-1)(y-1),0€m<get0<n<q

Example, for q =3, the P and qurnatrixes of permutations are given by:
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01 0 0 0 1
p,=|0 0 1 andpqz= 100 @)
1 00 0 10
The matrix of permutation as the example shows it above has the following properties:
* Itis a square matrix of order g
. = ' —
Ifr—qthen(pq) = Iq

The basic protograph (PCM based on the construction of the matrix of Vandermonde) with the following configuration:

q q q q
| P p2 pe-D
q q q q
2 4 2(p-1)
H= Iq Pq Pq Pq @)
(r-1) 2(v-1) (-1 (p-1)
Iq Pq Pq Pq

Thus the basic matrix H is of size (yq x pq).

Iq ifxmodg=0

where qu ={ @

xmod g

Pq

otherwise

3.2 Construction of the derived graph
The construction of the derived graph is determined by the basic protograph and can be described in two principal stages:

* The widening of the basic graph “lifted matrix”

In the approach suggested, the choice of the enlarging term is not free, because we seeks for widenning the graph to tan basic while
respecting the two constraints (cf 2.3) related on the construction and the structure even of the basic graph.

* Copy and permutation of the widened graph.

The new basic model obtained after enlarging is projected to give the derived graph. It is important to notice a fundamental property
of the enlarging which imposes systematically on the widened graph the same number of nodes of variables as the basic graph. Thus
to build the derived graph it will occur to parallel place (T-1) copies of new the model conceived. The procedure to be followed is
recapitulated in algorithm 2.

3.3 Description and analyzes of construction’s algorithm
The algorithm is composed of two distinct parts:

The first part (line 1 with line 15) consists of carrying out the enlarging of the basic graph (represented by the matrix G of size (mT,nN).
It is a stage impossible to circumvent of construction suggested. To start one adopts the principle of algorithm PEG [21], i.e. for each
node of variable, one traverses all the incidental nodes of control to this node of variable. This amounts generating the vicinity (under
graph) for each node of variable considered [13].

Thus under graphs on the basis of each variable node are obtained by unfolding the graph To tan basic according to the width [21].
The first constraint makes it possible to pre-empt the positions of the nodes of incidental controls to the node of variable concerned
in the derived graph.

In fact the determination of the whole nodes of variables in the final configuration is established according to an arithmetic
progression of reason T and so that the first term of this progression is the incidental node of control having the low degree.
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Algorithme 2. Construction of derived graph

Inputs: H, T
Output: G’
H (m, n), G’=matrix (mT, nT)
P =matrix (mT, nT), G =matrix (mT, n)
BEGIN
1forj=lan
C={i}ouC(1)<C(2)<...C(n)
andl<ism/H (i,j)«1
fork=[(-1).T+1]ajT
fori=1amT
if k=(j-1) T+1 alors
for x =1 a cardinal (C)
P(1+T(C(X)-1)],k)«1
End
End
0 End
11  End
12 fori=lamT
13 9(i,)) < P(, [(-1) T +1])
14  End
15 End
16 forj=lan
17 fork« ((j-1) T+1)ajT

P OoO~~NO UL WN

18 fori=lamT

19 if k=(j-1) T+1 alors
20 G (i,k)«<g(,]))
21 End

22 End

23 End

24 End

25 establishing connections between nodes
of control and variables not yet connected
similarly to PEG (modified) [9]
END

The fundamental idea is to find the node of the most distant control then to place a new edge formed by the node of symbol and this
node of control while taking account of the constraints. The interest of such a process is to determine a new structure which the form
approaches more that of the basic protograph in an environment where MT nodes of control are present instead of m nodes.

Thus in a general way the new position of the node of control is given by the following arithmetic progression:

C, =1
C, = ©)
" {Cn:CO+T(n-1)

Where T represents the reason of the continuation, N is the position of the node of incidental control to the node of variable concerned
in the basic graph and Cn indicates the new position of the node of control in the derived graph. By fixing the edges of the top spin
graph we obtain a derived graph which respects the structure of the basic PCM initially built on the matrix of Vandermonde. Thus the
top spin graph counts n.y edges which will be fixed, in other words n.y nodes of control from which the positions in the graph derived
are given by the arithmetic progression defined by (Cn).
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If we take the example of the node of V13 variable of the basic graph G the whole of the nodes of control which are incidental for him
is C = {C11, C14} respectively occupying the positions n =1 and n = 4.

Thus the positions of these nodes in the derived graph are given by: C1 =1 and C4 =10 what is illustrated perfectly by figure 1 (b).

The second part of the algorithm (line 16 with line 30) allows projecting the basic graph top spin. This projection consists in parallel
laying out T-1 counterparts of the new model. Since the final graph represents an enlarging of order T of the basic graph itis necessary
to pre-empt the position of the nodes of variable in the final configuration. These new positions are given by considering T blocks of
N nodes of variables where the j-th node of variable of the basic graph occupies the first position of the j-th block. The last stage of
construction consists in placing the remaining edges. Since the top spin graph count n.yfixed edges and that the derived graph must
be made up of (n..T) then the number of connection to establish will be equal to n.p.(T-1). These connections will be established
between the n.y. (T-1) free nodes of variables and nodes of control remaining by using the algorithm of the PEG modified [9] in order
to optimize the parameter of the derived graph.

In short this new approach allows a construction not requiring traversing all the edges to determine the “edges of them allowed ” and
the “prohibited edges” it is based on the combination of the principles of the PEG and construction per block of circulating matrices.

4. Results and Simulations

4.1 Construction of the matrix of parity

The results of simulation presented were obtained by implementing algorithm 2 proposed in section 3. We consider a basic protograph
H of size (27, 45) having for weight y= 3, y=5 and which will be copied 5 times to obtain a quasi-cyclic PCM noted G’. H is the PCM
of the code protograph LDPC, G’ is obtained by copy and permutation of 5 identical protographs H (figure 2) thus the number of edges
of G’ (many edges = 675) is 5 times more important than that of H (many edges = 135). H and G’ have the same structure (figure 3).
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Figure 2. Fives copies of H (y=3; p =5)

4.2 Evaluation of Complexity
To evaluate the complexity of the algorithm 2 several measurements were taken starting from a computer equipped with a processor
Intel Pentium 4 CPU 3.06GHz and equipped with a physical memory total of 1015 Mo.

The results obtained are represented by curves of complexity. Each curve specifically represents the execution time of N derived
graphs having jointly the same basic protographe.

Thus to each value of N (1 < N < 15) corresponds a graph derived built starting from N copies from a basic graph whose matrix
is noted H, the execution time of the process is expressed in second. The results of simulation show a linear complexity for
protographes of weight column vy < 4 and one quadratic complexity for a weight of column y > 4. The longest the execution time
(about 6s) corresponds to that of the implementation of a graph derived from perimeter 8 of size (2790, 3255) made up of 19530
edges.
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Figure 3. Derived graph G’(y=3; p=5)
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