
 Progress in Computing Applications Volume 2 Number 2 September 2013 55

E-Learning Tool for Backpropagation Neural Network Architecture

Reddy, G. N., Gurpreet Singh
Drayer Department of Electrical Engineering
Lamar University
Beaumont, Texas, USA
gnreddy@lamar.edu

ABSTRACT: This paper presents an e-Learning tool for mastering the back-propagation neural network architecture. A
short review of the existing tools is presented. It is developed using MS Visual C++. The tool’s functionality can be summarized
as: First, at its highest-level, it operates two basic modes: the training mode and the recall mode. Second, while it is in
training, it has two sub-modes: the learning-mode and the application-mode. In learning mode, the software generates text-
output traces corresponding to the top-down design steps of the NN-architecture. The generated numeric traces have dual-
usage, either they can be used learning purposes or for generating class room tests. While in application-training mode, the
tool displays only the input-output relations – the values before and after the training. In this mode the tool also generates
a cumulative error-index to monitor the progress of the network training. Third, it enables the user to enter the network
training termination criteria. Fourth, at the end of the network training, it is stores the trained network into a text-file. Fifth,
in the test or recall mode, the trained network is retrieved from a stored-file, it then generates the network response
corresponding to the entered test input. The e-Learning tool is tailored for mastering, class room teaching, and test generation
of the BP-NN-architecture.

Keywords: Neural Network Architectures, Back-propagation Nueral Network, Modeling and Simulation, e-Leaning Tool,
Educational Software

Received: 18 May 2013, Revised 26 June 2013, Accepted 30 June 2013.

 © 2013 DLINE. All rights reserved

1. Introduction

Back propagation neural network architecture is complex and it requires a good e-learning tool to master its understanding [1].
Some of the commercial and open-source BP-NNA software packages include: 1. MathWorks Neural Network Toolbox [2] -- it
has built-in features to view the intermediate results to explore the BP-NNA. One needs to consider its price-tag on licensing; 2.
Back-propagation neural network software from soft112 [2] -- it is a matlab code specific application – face recognition; 3. BP-
C#-program by McCaffrey [4] -- it has all features that you look for in e-Learning tool. It describes step-by-execution of the
overall Bp-architecture and the corresponding C#-code. Only thing one might look for is the mathematical descriptions of each
of these steps; 4. Neural network C#-libraries from codeproject [5] -- the applications are GUI-based and provide text and chart
displays, the display system dynamic equations used in the individual steps will be nicer to have. The tool developed generates

 56 Progress in Computing Applications Volume 2 Number 2 September 2013

an output simulation trace similar to the Griiffith’s-trace [6]. Wikipedia has excellent review on neural network software [7]. This
is a partial list of tools one finds frequently in a web-search. It is hard to compare one tool with the other, as each has its own
unique features. One needs to generate a figure of merit index, as the weighted sum all its features, to compare one tool with the
other. Some of the features one looking for include: Numeric trace generation; context sensitive display of the system dynamic
equations; GUI-interface; learning-mode and application development mode; if it is conducive for test generation; language
used to develop the tool; and finally open source or licensed. The tool presented in this paper excels for learning and teaching.
The following sections describe the BP-architecture and the simulation system.

2. Back-Propagation Neural Network Architecture

Figure 1 shows the architecture of the back-propagation neural network architecture with one hidden layer. One can have any
number of hidden layers in the back-propagation network [1]. Typically there are two hidden layers, but one is sufficient for
majority of the applications. In this software we have used one hidden layer to simplify overall network complexity. As shown,
it is a multi-layer, fully-connected, feed-forward network. The three layers are: the input layer (in), the hidden-layer (hl), and the
output-layer (ol).

The weight-matrices of the input-layers, hidden-layer, and the output-layer are correspondingly denoted as Win, Whl, and Wout.
Initially all its weight matrices are initialized with small adaptive random weights (Ad-Rnd-Wts) between ± 0.1. A bias-elements
B (the 0th-element) is added to the input and the hidden-layer. How information is processed within each of the neural elements
is specified by their neurodynamics. The neurodynamics is a combination of a summation function SF followed by a transfer
function TF. All of the layers use the weighted summation function (weighted-sum). The transfer function, however, can be
different for each layer. Input and the hidden-layers can have sine or sigmoid or tanh transfer functions (S/G/T). Output layer can
also have above three transfer functions; however, we have fixed it as sigmoid to simplify the complexity of the network training
algorithm. One can have any number of elements in each layer (INmax, HLmax, OLmax). This educational version of the software
number of elements is limited to 25. For each layer the internal activations are denoted by I or sum (Iin, Ihl, Iout) and the
corresponding output activations denoted as Y or act (Yin, Yhl, Yout).

OLmax
Output Layer: OL

Iol, Yol, Wol

HLmax
Hidden Layer: HL

Ihl, Yhl, Whl

Inmax
Input Layer: HL

Iin, Yin, Win

Yol (continuous)

SF = Weighted Sum
TF = Sine/SiGmoid/Tanh
LR = Delta Rule

SF = Weighted Sum
TF = Sine/SiGmoid/Tanh
LR = Delta Rule

SF = Weighted Sum
TF = Sine/SiGmoid/Tanh
LR = Delta Rule

Fully connected,
Ad-Rnd-Wts (−0.1, +0.1)

X (N, Primary Inputs: PI)

Fully connected,
Ad-Rnd-Wts (−0.1, +0.1)

Yin (continuous)

Fully connected,
Ad-Rnd-Wts (−0.1, +0.1)

Yhl (continuous)

B

Figure 1. Back-propagation Neural Network Architecture

 Progress in Computing Applications Volume 2 Number 2 September 2013 57

3. BP Network Training Procedure

The training of BP-network involves the following steps:

1a. Initialize the network weights with small random weights:

W k
ij = r and (−0.1, +0.1) (1)

where, k is the layer number: k = 0, is the primary input layer PI; k = 1, is the input-layer IL; k = 2, is the hidden layer HL; and k
= 3, is the output layer OL. W

ij
k , is the weight from i-thelement in (k − 1)-th layer to the j-th-element in k-th layer.

1b. Set initial values: Initialize the training cycle number to zero: n = 0; and tolerable error-level to a desirable value: TssTh =
typically 0.1.

2. Set initial values for each epoch of training cycle: Initialize pattern number to zero: p = 0; Global and local error-flags to zero:
flagG = 0, flagL = 0. An error occurs when the computed value is different from the desired value.

3. Do a forward-pass: Apply the primary input vector Xp to the network and compute the corresponding output vector Yout. The
generalized equations to compute internal activations Is and corresponding output activations Ys for any layer is given by:

I
k

j =Σ
N

k

i = 0

W k
ij ∗ X k − 1

i
(2)

Y = TF
k ∗ I

k
j

(3)

Here, X0 represents primary input vector X; TF3 is the TF for the output layer which is fixed as sigmoid in this software; and TF1
and TF2 are the TFs for the input and the hidden layer TFs which can be any one of sine or sigmoid or tanh. Individual layer
internal activations corresponding outputs are given by the following sets of equations.

Input layer sums Is and acts Ys are given by:

Iinj = Σ
PImax

i = 0

Win
piij X

(5)Yin
j
 = TF

1
∗ Iin

j

(4)∗

With TF1 = sigmoid, Yin is given by:

1 + e
Yin

j
 = − (Iin

j
∗ G)

1
(6)

where G is the gain factor which usually vary between 1 and 10.

Hidden layer sums and acts are given by:

Ihlj = Σ
ILmax

i = 0

Whl
iij Yin

Yhl
j
 = TF

2
∗ Ihl

j

∗ (7)

(8)

Output layer sums and acts are given by:

Iolj = Σ
i = 0

Wol
iij Yhl

Yol
j
 = TF

3
∗ Iol

j

∗
HLmax

(9)

(10)

In this software TF
3
 is sigmoid.

4. Compute Tssp: find the mean square error of the current pattern:

k

j

 58 Progress in Computing Applications Volume 2 Number 2 September 2013

Tss
p
= (D

pj
 − Y

j
)23 3

Here, Dp and Y are desired and the correspondingly computed values at the output layer.
If (D

pj
 − Y

j
) > TssTh x, for any j = 1,..N3

then set flagL = flagG = 1;
else Go to step 6.

5a. Find error functions, weight-changes; and new weights If flagL = 1, compute error functions ds for each element; the weight-
changes DWs; and the new weights W ’s. The error functions are needed to find weight-changes to the network. Error functions
at the output-layer, with sigmoid TF, are given by:

(11)

3 3

δ
j
 = Y

j
(1 − Y

j
)

 ∗ (D

j
 − Y

3
)3 33 (12)

Here, 3 is the output-layer number. The error function is a product of gradient * error. In (12) the gradient is Y (1 − Y), and the error
is (D − Y). The gradient for different TFs is different, for sigmoid it is Y (1 − Y) [1]. The error in known at the output-layer, as the
desired value D and correspondingly computed value Y are known. For other lower-level layers Ys are known but not the desired
values Ds. The generic error functions for the other-layers are computed as:

δ
j
 = Y

j
(1 − Y

j
)

 ∗k (13)

3

k k
N

k + 1

Σ
m = 1

W k + 1

δ k + 1

mjm

That is, error-functions of the lower-level layers are computed from the upper-level layers.

The error functions for the hidden layer elements are computed as:

δ hl
j
= Σ

m = 1
Wol

jm
 δ ol

m

OLmax

Yhl
j
(1 − Yhl

j
) ∗ (14)

Here, the error of a hidden layer element is computed as the weighted summation of the output-layer error-functions.

The error functions for the input layer elements are computed as:

δ in
j
= Σ

m = 1
Whl

jm
 δ hl

m

HLmax

Yin
j
(1 − Yin

j
) ∗ (15)

Here, the error of an input layer element is computed as the weighted summation of the hidden-layer error-functions.

5b. Find weight changes: Find weight changes from primary inputs to the input-layer elements, DWin:

DWin
ij

= α ∗ δ in
j
∗ X

pi (16)

Here, α is the training coefficient ranging from 0.1 to 1.0; i = 0 ,.., PImax; and j = 1,.. ILmax.

Find weight changes from input-layer-elements to the hiddenlayer elements, DWhl:

DWhl
ij

= α ∗ δ hl
j
∗ Yin

i
(17)

Here, i = 0,.., ILmax; and j = 1,.. HLmax.

Find weight changes from hidden-layer-elements to the output-layer elements, DWol:

DWol
ij

= α ∗ δ ol
j
∗ Yhl

i
(18)

Here, i = 0,.., HLmax; and j = 1,..OLmax.

5c. Find new weights W (n + 1):
New weights W (n + 1) are computed as the old weights W (n) plus the weight-changes DW (n), n being the previous cycle and
n + 1 is the current cycle:

3

N
3

1

 Progress in Computing Applications Volume 2 Number 2 September 2013 59

Win (n + 1)
ij

= Win (n)
ij

+ DWin (n)
ij

Whl (n + 1)
ij

= Whl (n)
ij
+ DWhl (n)

ij

Wol (n + 1)
ij

= Wol (n)
ij

+ DWol (n)
ij

(19)

(20)

(21)

6. Go to next pattern to train:
Set p = p + 1; if (p < pmax) go to Step 3.

7a. Compute TssC:
Normalized cumulative error, in cycle n, of all patterns is given as:

TssC
(n)

 =
1

pmax Σ
i = 0

pmax − 1

Tssp
i (22)

7b. Go to next epoch-training:
If flagG = 0; then Go to Step 8.

Else Set n = n + 1; then Go to Step 2.

That is, repeat Steps 2 through 7 until all patterns are trained with acceptable error.

8. Write trained network to a file; Write cumulative network error TssC to a file; End network training.

4. BP Recall Procedure

In recall or test mode, for given test input X, the network response Yout is estimated. This is by successively computing
activation vectors Yin, Yhl, and Yout. The response will be nearest output-match corresponding to the entered input. You can
enter into the recall mode only after the network is trained. In this mode, first the trained network is read from bp-ckt.txt file which
is generated at the end of training mode. For a test input X it finds the corresponding output Yout. The activation vectors Yin,
Yhl, and Yout are computed as:

Σ
i = 0

Win
ij
 ∗ X

i

PImax

Yin
j
= Y

j
= TF

1
∗ Iin

j
= TF

1
∗

Σ
i = 0

Whl
ij
 ∗ Yin

i

ILmax

Yhl
j
= Y

j
 = TF

2
∗ Ihl

j
= TF

2
∗

Σ
i = 0

Wol
ij
 ∗ Yhl

i

HLmax

Yout
j
= Y

j
 = TF

3
∗ Iol

j
= TF

3
∗

1

2

3

(23)

(24)

(25)

In (23), j = 1,.. ILmax; in (24), j = 1,.. JLmax; and in (25), j = 1,.. OLmax.

5. The BP-Software Architecture

Figure 2 shows the overall architecture of the BP-software.

bp-infile.txt

BP-NNA Simulator
Back-Propagation Neural Network Architecture Simulator

bp-outfile-recall-mode.txt

bp-outfile-ckt.txt
bp-outfile-TssC

bp-outfile-training-mode.txt - learning mode trace and application

Figure 2. The BP-Software Architecture

 60 Progress in Computing Applications Volume 2 Number 2 September 2013

In Figure 2, bp-infile.txt is the input data text file; bp-outfiletraining-mode.txt is the output simulation trace generated during the
network training; bp-outfile-ckt.txt is the output file that contains the trained bp-network; bp-outfile-recallmode. txt is the output
simulation trace generated during the network testing.

6. The BP-Simulator: Output Simulation Trace: Training Mode

Tables 1 through 7 are the input data files or the generated output files in different BP-simulator modes of operation. Table 1 is
the input data file to run the network in learning mode. The input data file contains: network specification – number of elements
in each layer of the BP-network; their transfer functions; level of weight changes to make in each successive cycle of training;
training termination criteria; and the patterns to train. Table 2 is the corresponding output simulation trace while network is in
learning-training-mode; this trace is useful for learning about the BP-network; it can also be used for test generation – formulation
of numeric problems on BP-NNA. Major phases of training include: 1. the forward-pass – where activations of each element of
the network are computed for a given input vector X; 2. find the error functions for each element of the network; 3. Find weight-
changes to the network weights; 4. find new weights of the network; and 5. find cumulative network error TssC. Table 3 contains
the trained BP-network. The network specification include: the number elements in each layer; each-layer’s transfer functions;
and the trained network weights. Table 4 gives the cumulative RMS-error in successive cycles of training. This is also shown in
a chart-form in Figure 3. The network is continues to be trained until the network’s cumulative error TssC is less than the set
threshold error TssTh. For the trained network shown in Tables 2; it took 61 cycles to train with an initial error of 0.51. Table 5
contains an input-data file to use BP-network in application-development mode. Table 6 is the corresponding output simulation
while the patters are trained. Here the details of training are disabled; the emphasis is placed on the application development.
Table 7 contains the output simulation while BP is in recall mode or test mode. Various phases of network recall include: 1. Read
and print the trained network; 2. For a given input vector X, do the forward-pass to find Yout; and 3. Prompt the way to terminate
recall session.

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0 20 40 60 80 100 120

Cycles

T
ss

C

Figure 3. Cumulative network RMS-error in successive training cycles: TssC

7. Conclusions

This paper presents an e-Learning tool that can aid in depth understanding of the Back-Propagation Neural Network Architecture.
The tool is developed for class teaching and test generation.

 Progress in Computing Applications Volume 2 Number 2 September 2013 61

 62 Progress in Computing Applications Volume 2 Number 2 September 2013

 Progress in Computing Applications Volume 2 Number 2 September 2013 63

References

[1] Stephen T. Welstead. (1994). Neural Network and Fuzzy Logic Applications in C/C++, Wiley.

[2] MathWorks.com, Neural Network Toolbox, Novi, Michigan, (2013).

[3] Soft112.com, Backpropagation neural network, (2013).

[4] James McCaffrey. (2013). Neural Network Back-Propagation Using C#.

[5] Codeproject.com, Andrew Kirillov, Neural Networks on C#, November, (2006).

[6] Niall Griffith. (2013). Backpropagation algorthm, MIT Computer Scienec and Artificial Intelligence, CIS, Tutorial 10.

[7] Wikipedia.org, Neural network software, July, (2013). Update 2.5, 11/1/13

