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ABSTRACT: Modeling and performance analysis of the media access control layer are extremely significant. Therefore, the
performance evaluation helps a researcher in discovering the inherent cause of many problems, and may even suggest
possible solutions. This is why much of the research work aimed to achieve an accurate evaluation. However, a lot of work
does not consider the main difference between the busy probability and the collision probability in analytical mathematical
models. Some of them consider both probabilities to be the same or ignore the busy probability and consider only the
collision probability, which is not accurate. This paper proposes a new performance evaluation by creating a new math-
ematical model to compute a packet transmission probability for IEEE 802.11 DCF. Therefore, we enhance Bianchi’s model
by adding a new state to represent the busy probability in the mathematical model, which helps to achieve the highest
accuracy performance evaluation of IEEE 802.11 DCF.
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1. Introduction

The IEEE 802.11 (WLANs) standard still presents many challenges, most of them related to the Media Access Control (MAC)
layer. The mechanism for accessing the media is based on two types of MAC mechanisms. Basic type is called the distributed
coordination function (DCF) that represents the primary MAC mechanism for IEEE 802.11[1]. The DCF is based on the Listening
Before Transmit (LBT) mechanism to detect whether a channel is idle or busy so as to avoid a collision [2]. The secondary part
of DCF is called four-way hand-shaking technique or known as request to send/clear to send (RTS/CTS) mechanism. This
mechanism helps the protocol reduce a collision by reserving the transmission media channel when the channel becomes idle [1]
and also avoid the hidden station problem.

The DCF uses a control frame called acknowledgment (ACK) frame. This helps the sender station to detect whether a data frame
has been successfully received or resulted in a collision. The optional type for MAC is called point coordination function (PCF).
The MAC in PCF is centralized and able to avoid collision by using point inter frame space duration (PIFS) rather than
distribution inter frame space duration (DIFS) [2]. In this paper, we focus on the basic mechanism (DCF) rather than the optional
mechanism (PCF).
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In DCF, the sender station first listens to the channel until it becomes idle for at least a DIFS. After that the station generates the
back-off timer between intervals (0, W

i 
−1). If the channel remains idle, the back-off timer will decrement to zero and then the

station can transmit. Otherwise, the channel becomes busy during the back-off timer process, and then the station would freeze
the back-off timer until the channel becomes idle again[2]. After each successful transmission, the station must receive an ACK
frame after a short inter frame space duration (SIFS). In cases when the sender station does not receive an ACK, it will detect that
a collision has occurred, and will need to repeat the transmission [3].

The remaining part of the paper is organized as follows- Section 2 summarizes and evaluates number of popular related work;
Section 3 presents a new mathematical model by considering busy probability through the analytical model; Section 4 presents
and analyses the simulation results in comparison with Bianchi’s model; Section 5 concludes our proposal.

2. Related Work

The famous performance analytical model for IEEE 802.11 DCF under saturation traffic is the Bianchi model [1]. It is based on the
bi-dimensional Markov chain (b

i, k 
) to describe the behaviour of single station [4], where is the back-off stage and is the back-

off timer [1]. There are several different ways to propose or extend the analytical model. For instance, in [5], the authors
proposed a new analytical performance model under non-saturation traffic by using Equilibrium Point Analysis (EPA). This
method is applicable only to a system in EP. Therefore, it is not suitable for the general case and is difficult to extend. In [6], the
authors proposed the analytical model for IEEE 802.11 DCF by using virtual slot time under saturation traffic. However, the
authors assumed all stations can hear each other. Therefore, this method did not consider a hidden station. On the other hand,
many researchers pay great attention to enhance the protocol. Such as in [7], work was shown on an enhancement protocol to
propose a performance analytical model for IEEE 802.11e by using mean value analysis (MVA). This method provides less
computation overhead than the Markov chain. In [8], the authors proposed a unified performance analytical model for IEEE802.11e-
EDCA. This model was based on extending their work to both Bianchi’s model that was based on Markov chain [1] and the Tay’s
model based on the mean value analysis [9]. The authors suggested that their work considered both analysis methods in the
same model which reduces the complexity for the analytical model of a protocol. Our review of the extant literature suggests that
most researchers have extended Bianchi’s model so as to improve the quality of service (QoS) for wireless network protocol.
Therefore, in [10] the authors argued that the assumption where the collision probability and the busy probability are similar is
not valid. Therefore, considering the difference helps to achieve the most accurate prediction of throughput and access delay.
Some researchers, such as in [11], mentioned the difference between the collision and the busy probabilities in their model
diagram, but without considering it in a mathematical analysis.

However, Bianchi’s model is built on many assumptions. One of them assumed that the analytical model is based only on a
collision probability during the frozen period, which we need to improve. In this paper we extend Bianchi’s model by proposing
the busy probability. Therefore, we modify Bianchi’s model to cover all the possible transmission probabilities during the back-
off process, by introducing a new state (b

i, k 
) which considers a busy probability. Our modification considers the busy

probability at all possible stages, where i ∈ (0, m) but k must be greater than zero because if k = 0, then a transmission has
occurred.

In Bianchi’s model we replace the assumption that the stations have only conditional collision probability with a packet
transmission on the channel. Therefore, we consider the difference between a busy probability and a collision probability (P

b
,

P
c
) during the back-off process as shown in figure 1.

Thus, we consider the station when it wants to transmit but sensed the channel is busy for some reason. We are of the view that
we cannot ignore any probability or assume that both have the same process.

3. Throughput Analysis

First, we obtain a new formula to compute the packet transmission probability (τ ) in a given slot time. The new formula includes
all the possible states in the back-off process (b

i, k 
). Then we use τ to compute the saturation throughput (S), and compare the

result with Bianchi’s model.
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3.1 Packet Transmission Probability
We consider the discrete-time Markov chain (i, k), whose nonzero transition probabilities are as described in table (1) below
where:
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Figure 1. Markov chain for representing our model
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The stationary probabilities (if they exist)

b
i, k

 = lim t → ∞ p{s (t) = i, b (t) = k}

satisfy the forward Kolmogorov equation:

b
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 = Σ Σ
m
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W
j
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), are the transition probabilities. As we have seen from figure (1), we can

divide the calculation process into several states:
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    Equations                  Conditional         Description

P [(i, k) | (i, k + 1)] =
1 − p

b
 / W

i

P [(0, k) | (i, 0)] =
(1 − p

b
) / W

0

k ∈  (0,  W
i
 − 2),

i ∈  (0,  m).

The back-off counter is
decremented at the beginning
of each slot time1.

k ∈  (0,  W
0
− 1),

i ∈  (0,  m).

Successful transmission and
the station is ready to transmit
again with the back-off stage
zero1.

P [(i, k) | (i, k)] =

W
i

 p
b

k ∈  (1,  W
i
− 1),

i ∈  (0,  m).

Frozen period and busy
channel occurred at back-off
counter k > 0.

P [(i, k) | (i − 1, 0)] =
 p

c
k ∈  (0,  W

i
− 1),

i ∈  (1,  m).W
i

Unsuccessful transmission
and collision occurred at back
off stage i and the back-off
stage increases to retransmit
a frame1.

P [(m, k) | (m, 0)] =

 p
c

k ∈  (0,  W
m
− 1),

i = m.
W

m

Unsuccessful transmission
and the collision is still active
untill the back-off stage
reaches the value m1.

Table 1. Description for Equations

1 We use the same assumption in [1] but with introducing the
busy probability into account.

As a result of deriving the formulae for these states, we can compute τ. For the network depicted in the model diagram in figure
(1), we have:

bi , W
i − 1

= bi , W
i − 1

p
b

W
i

+ bi −1 , 0

p
c

W
i

∀i ∈  (1,  m
 
− 1)

From (1), (3), and (4) in table (1) we can derive the probability for transmission, collision and busy in one equation:

b
i
 
, k 

=
p

b

W
i

+ b
i
 
, k  +1

p
b

W
i

b
i
 
, k 1 −(             ) +

p
c

W
i

b
i − 1, 0 ∀k ∈  (1, W

i 
− 2), k ∈  (1, m

 
− 1)

(1)

(2)

We can consider (2) as the following:

b
i
 
, k 
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i
 
, k  +1 
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W
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1 −

With considering the Contention Window (W) through the equation, then

b
i
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= b    
          

+ (W
i 
− 1 − k) b
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p
c

W
i

P
b
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We can consider(1) as the following:
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On the other hand,

b
i
 
, k 

= b
i − 1, 0 

(W
i 
− k) ∀k ∈  (1, W

i 
− 1), i ∈  (1, m

 
− 1)

p
c

W
i

P
b

W
i

1 −
(3)

Further, from a zero stage in the model diagram in figure (1), we can consider the back-off procedure as follows:
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m
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= b 0 , W
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(4)

(5)

Equation (4) can be defined as:
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)
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Consequently,

b
0
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=
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)

b
j , 0ΣW

0

j = 0

m

P
b

W
0
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b 0 , W
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From (5),

=

(1 − p
c 
)

b
j , 0ΣW

0

j = 0

m

P
b

W
0

1 −
b 0 , W

0 − 1

We can work horizontally in the back-off counter direction (i) and vertically in the back-off stage direction (k) to obtain all states
for b

i
 
, k 

as shown in figures 1 and 2.
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1 −(             )

+
p

b

W
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1 −(             ) b
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∀i ∈  (1, m
 
− 1) (8)

Where k = 1, then:

b
0
 
, 0 
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0 
− 1) b

j , 0Σ
j = 0
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c

W
0

+ b
j , 0Σ

j = 0

m
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c 
) b

j , 0Σ
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m
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b
j , 0Σ

j = 0

m
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0
 
, 0 1 − p

c

1
(9)

1 − p
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W
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Now, we are in a position to derive the mathematical equations for all the parts in the model diagram.

First, we can consider (6) as follows:

p
b

W
0

1 −
b

0
 
, k 

= b
0
 
, 0

1 (1 − k / W
0 
) ∀k ∈  (1, W

0 
− 1) (10)

However, (3) where k = 1,

b
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From (8) we can consider:

b
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Second, we can compute:

b
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Third, we can compute b
i
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from (3) as follows:
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Where ∀k ∈  (1, W
0 
− 1), i ∈  (1, m

  
− 1) (12)

When (i ) achieve the final back-off stage (m), as a consequence
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(             )
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As a result of considerng W in the equation instead of k,
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(             )
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p
c

W
m
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b
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c

W
m

b
m
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(             )
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p
c

W
m

p
b

W
m

1 −
b

0
 
, 0

1 +
p

c

W
m

b
m
 
, 0

(             )
m

b
m

 
, k 

= 
 
(W

m 
− 1) ∀k ∈  (1, W

m 
− 1) (16)

While the back-off counter k = 1, then (16) is represented as:
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b
m
 
, 0 

=
p

c

W
m

+ b
m

 
, 1

p
b

W
m

b
0
 
, 0 1 −(             ) +

p
c

W
m

b
m , 0

m
p

c

W
m

b
0
 
, 0 +

p
c

W
m

b
m
 
, 0

(             )
m

 + (W
m 

− 1)
p

c

W
m

b
0
 
, 0

m

= +
p

c

W
m

b
m

 
, 0

= b
0
 
, 0 

 p
c 
   +
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Fourth,we can compute:

b
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Fifth,from (16) we can compute:
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The only unknown quantity is, b
0
 
, 0 

which can be found from the normalization condition:
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Where we have used (10), (11), (12), (17) and (18). We note that:
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Finally, we can compute:
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)−11

Once b
0
 
, 0 

is found, all the stationary probabilities are obtained through formulae (10), (11), (12), (17), and (18). Therefore, the
packet transmission probability can be computed from the following formula:
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τ  = Σ
m

i = 0

b
i
 
, 0
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, 0 Σ

m − 1

i = 0

p
c
i

 
+

p
c
m

1 − p
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⎛
⎝

⎞
⎠

= b
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, 0  

+
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c
m
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c

⎛
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⎞
⎠

p
c
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= b
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, 0

1 .

3.2 Throughput
Now, we have already computed τ from the previous section. Therefore, we can evaluate the saturation throughput with the
same formula in Bianchi’s model as follows:

S =
P

s 
P

tr
 E [P]

(1 − P
tr
 ) σ + P

tr
 P

s 
T

S 
+ P

tr
 (1 − P

S
 ) T

C

(19)

4. Model Evaluation

To evaluate the accuracy of our proposed new model we used a MATLAB program to check the mathematical analysis.
Therefore, we confirmed that the total calculation of transmission probabilities packet is an equal one to prove (20).

Σ
m

i = 0
Σ
k = 0

W
i
 − 1

b
i
 
, k 

= 1 (20)

We then use τ to compute for IEEE 802.11 DCF. The analysis calculation was done based on the system parameters for the basic
access mechanism in bits, and in 50 µs slot time units. We also use random values between (0, 1) for the busy probability (P

b 
)

and the collision probability (P
c 
) values as shown in Table 2 and figure 2.

0.3  0.2 0.0462        0.72           0.58         0.45    0.25

0.3  0.3 0.0384        0.74           0.62    0.5    0.32

0.3  0.4 0.0310        0.76           0.67         0.58    0.39

0.3  0.5 0.0246         0.8            0.71         0.62    0.48

0.3  0.6 0.0194         0.81          0.75   0.66    0.55

0.3 0.65 0.0172         0.82          0.76         0.69    0.58

simulation result         0.73          0.67 0.63       0.58

P
cP

b
τ

n = 10 n = 20 n = 30 n = 50
S where: (W = 32, m = 3)

Table 2. Efect of the busy Probaility and the collision Probability on Throughput

As we have seen from table 2, we confirm that S depends on the number of stations in the network which is same as Bianchi’s
model. The experiment shows that large number of stations will produce lower throughput and vice versa as shown in figure 2.
In this case, we agree with Bianchi’s model about the relationship between the throughput and the number of stations, but we
also note that the busy probability makes changing in the throughput.

To validate the model, we have implemented simulation program and compare the results with Bianchi’s simulation. This
simulation runs over the same parameters and assumption for Bianchi’s model as described in Table 3.

Figure 3 shows that the proposed model simulation has slightly less throughput over small network and slightly high throughput
over large network by comparing with Bianchi’s model simulation. The simulation considers the busy probability is constant has
EIFS duration. This duration is the time delay in seconds which a station will face in case of busy channel. The results show that
the busy probability will reduce the collision probability, and therefore our model will lead to increase the throughput over large
network. Thus it is important to consider any parameter which can act on the performance for IEEE 802.11 DCF protocol. On the
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Figure 2. Analytical results under random values of probabilities (Pb, Pc)
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Parameter                                  Value
SIFS                         28 µs

DIFS                        128 µs

EIFS                         DIFS+SIFS+ACK

PHYSICAL SLOT                         50µs

PHYSICAL HEADER                         128 bits

MAC HEADER                         272 bits

ACK                         112bits+PHY HEADER

DATA PACKET                         8184 bits

NETWORK NODES (n)                     50 nodes

CHANNEL BIT RATE                       1 Mbit/s

PROPAGATION DELAY                   1 µs

Table 3. System Parameters

other hand, we cannot ignore busy probability or assume it to be the same as collision probability. In addition, if we aim to
achieve the best evaluation accuracy, we will need to consider all the possible states for the back-off mechanism.

5. Conclusion

We have seen from the CSMA/CA mechanism for IEEE 802.11 DCF that there is a difference between the busy probability and
the collision probability. The difference between probabilities needs to consider in the analysis of a mathematical model for
calculating a packet transmission probability (τ ). In this paper, we propose a simple new mathematical analytical model for
computing Ä to cover all the possible transmission probabilities for a packet during the back-off mechanism. We achieved this
by adding a new probability to Bianchi’s model to represent busy state. This enabled us to achieve the most accurate prediction
of performance evaluation of IEEE 802.11 DCF. The accuracy of evaluation was validated through a MATLAB simulation
program and the results were then compared with those achieved by Bianchi’s model. Possible future extensions of our model
could provide a new estimation for MAC packet delay distribution or creating a new average packet delay model.
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