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Identification of a Fractional Order Model by a Least Squares Technique: Hn Model
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ABSTRACT: We report on fractional modeling and identification of non-integer systems by least squares method (LS). A new
approach to identify fractional differentials equations (FDE) is proposed. Such a technique presents a linear model to
estimate system parameters, as well as non-integer orders from temporal data (Hn model). The identified parameters provide
original solution to the Output Error method initialization (OE), and demonstrate validity and effectiveness of the proposed
approach.
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1. Introduction

Fractional calculus has attracted a great deal of attention of researchers and mathematicians and there has been a rapid grow in
the number of applications where fractional calculus has been used. Indeed, this technique has been applied to physics and
engineering science problems and has been widely studied in different fields of science such as the electrotechnical, automation,
image processing, and chemicals whether for modeling problems of identification or control.

The high quality of the description of physical phenomena, provided by the fractional modeling compared to the entire modeling
for asynchronous machines is the main motivation of this work.

In this context, we present a new identification approach that extend the method of least squares to non-integer order systems
after determining a linear model with respect to parameters, based on repeated fractional integration. The obtained parameters
constitute an original solution to the initialization of Output Error Method problem. A comparative study with arbitrary initialization
was also proposed to highlight the interest of the present study.

In part 2, 3 and 4, we refer to more details and results about the fractional integration operator, FDE simulation. Then the least
squares method (LS) is used to identify the FDE after model linearization (part 5, 6 and 7). Results of LS method are used to
initialize the OE technique in part 8 and demonstrate the improvement of this technique compared to the arbitrary initialization
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parameters. Finally, we achieve by the numerical simulation to justify validity and effectiveness and validity of the proposed
method.

2. Fractional Integration

The nth fractional order Riemann–Liouville integral (n real positive) of a function f (t) is defined by the relation (1):

I
n 
( f ( t )) = Γ (n)

1 (t − τ ) n − 1∫ t

0
(1)

Where Γ (n) is the gamma function.

∫0
Γ (n) =

∞
x n − 1 e− x dx (2)

I
n 

( f (t)) is the convolution of the function f (t) with the impulse response:

h
n
(t ) =

t n − 1

Γ (n)
(3)

Of the fractional integration operator whose Laplace transform is:

I
n 
(s) = L{h

n 
(t )} =

1
s n

Notice that in the integer order case (n = 1), the integral is characterized by h
1
(t) = H (t) (unit step function or Heaviside function)

and

I
1 
(s) = L{h

1
(t )} = 1

s

(4)

(5)

Fractional differentiation is the dual operation of fractional integration.

x
 
(t) = I

n 
(v (t )) or X

 
(s) = 1 V

 
(s)

s n

Reciprocally, v (t) is the nth order fractional derivative of x (t) defined as:

v
 
(t) = D

n 
(x (t )) or V

 
(s) = s n X

 
(s)

(6)

(7)

where D
n 
(s) = s n represents the Laplace transform of the fractional differentiation operator (for initial conditions equal to zero).

This fractional derivative definition is based on the operator I
n 
(s), without analytical formulation of D

n 
(x (t)): it is the implicit

definition of the fractional derivative.

3. Synthesis of the Fractional Integration Operator

Simulation and identification of fractional differential equations (FDE) model is fundamentally based on the fractional integration
operator I

n
. At the end to synthesize this key operator a comparative study is presented between two different approaches in the

frequency and temporal domain.

However, the realization of I
n
 (s), either in analog or numerical form, is not a simple task, as in the integer order case. The reader

will refer to [3 and 4] for a more detailed presentation.

3.1 Diffusive representation of the fractional integrator
The impulse response h (t) can be expressed by:

∫0

∞ µ (w) e− wt dwh
n
(t ) = (8)

Where µ (w) is the diffusive representation of I
n 

(s) (or function of frequency representation).

Laplace transform of h (t) is given by:
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H
 
(s) = = L{h

 
(t )}, 0 < n < 11

s

h
 
(t) ≅ c

k

Equation (8) is equivalent to:

ΣK
k = 1

− w
k 
te

(9)

(10)

Where:

c
k
 = µ (w

k 
) ∆

wk

Many approaches can be used to define the conventional fractional operator. In practice, the model which simplifies the
numerical simulation of the integrator is used. The fractional order integrator is an infinite dimensional system. The state space
theoretical model of the integrator can be expressed as [1, 5, and 6]:

∂x
 
(t , w

 
)

∂t
= − wx (w , t ) + u (t)

y (t ) = ∫0

∞ µ (w) x (w , t ) dw

µ (w) =
sin ( nπ )

π w − n, 0 < n < 1

⎧

⎩
⎨

(11)

(12)

(13)

(14)

Where u(t): input, y(t): output, x (w, t): continuously distributed state of I
n 

(s).

3.2 Frequency discretized distributed model
In practice, in order to obtain a finite dimensional approximation, one proceed to a frequency discretization of the distribution
function µ (w) as reported in Figure 1. Such solution is related to the impossibility to use directly the continuous frequency
weighted model given by relations 12, 13 and 14.

∆w
1

∆w
2

∆w
k

w
1

w
2 w

k
w0

µ (w)

Figure 1. Frequency discretization of µ (w)

By replacing x (w) by a multiple step function (with K steps) x (w
k 
, t) in Equation 12 and 13, one obtain after discretization [1, 2

and 7]:

dx
k = − w

k 
x

k
 (t ) + u (t)

y (t ) = µ
 
(w

k 
) x

k 
(t) ∆

wk

⎧

⎩
⎨

dt

c
k 
x

k 
(t)

Σ
K

k = 1

=Σ
K

k = 1

(15)

For an elementary step, its height is µ (w
k 
), and its with is ∆w

k
. Let c

k
 be the weight of the kth element:

c
k 
= µ (w

k 
) ∆

wk (16)
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Or equivalently to:

⎨
⎩

⎧ X
 
(t ) = AX (t) + Bu (t)

.

y (t ) = C TX (t)

Where:

(17)

X (t) =
x

1

x
K

; A =
−w

1

−w
K

0

0
; B T = [1    1  ...  1] ; C T = [c

1
  ...  c

K 
]

This approach is characterized by the simplicity of its state representation. w
K
 represents modes of the state representation.

These modes are ranging from w
1
 (<< 1) up to w

K 
(>> 1).

The Infinite State representation can be schematized by the graph of Figure 2, where the frequencies ω
k 
, ranging from ω

0 
= 0 to

ω
K
, are the modes of the fractional integrator which act in parallel. Notice that the integer order integrator is characterized by only

one model located in ω
0 
= 0.

x
0′1
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1
s

1
s

x
K
′

c
k

− w
K
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1
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Figure 2. The modal representation (Infinite State representation) of fractional integrator

4. FDE Simulation

Before resolving identification problem of fractional systems, we should firstly take into account both modeling and simulation
of FDE. Fractional integration (order n) is based on representative state system with n-ordinary differential equations. This
approach will be generalized for FDE based on fractional integrator, considered as a key for fractional system simulation [8 and
9].

For this purpose, let consider following elementary FDE (18) corresponding to non-integer system given by Equation 19:

d n
 
y (t)

dt n
+ a

0
 y (t) = b

0
 u (t)

Y (s)
U (s)

=
b

0

a
0 

+ sn Pour 0 < n < 1

(18)

(19)
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d n
 
x (t)⎧

⎨ dt n

y (t ) = b
0
 x (t)

+ a
0
 x (t) = u (t)

⎩
(20)

Based on fractional integrator I
n
(s), simulation with block representation scheme (see Figure 3) are performed [10, 11 and12].

u (t)
I
n

x
int b

0

−a
0

y(t)

Figure 2. Block representation scheme of non-integer system (0 < n < 1)

5. Least Squares Method and FDE

The least squares method (LS) applied to the identification consider the linear model with respect to parameters (LP Model)
given by equation (21):

~

y
k 
(t) = ϕ

k
T θ (21)

Where: ϕ 
Τ, θ and y

k
 are regression vector, estimated parameters and estimated measure respectively.

By minimizing the quadratic criterion function J, estimation of θ
MC

 can be obtained (Equation 23) [13].

J =ΣK
1  

(y
k 
− y

k 
) 2*

Where y
k
  represents the measure (k varies from 1 to K).

Alternately, the least squares method (LS) handles with linear models, which is not the case for fractional differential equations.
To overcome such restriction, the FDE was linearized in order to estimate parameters model with mentioned method (LS).

6. Determination of LP Model with FDE

The idea proposed in this section is to determine a linear model with respect to parameters, based on repeated integration.
Indeed, the fractional system for the Hn model can be expressed by:

D
n 
(y) + a

0 
y = b

0 
u

θ
MC 

= 
(        ϕ

k 
ϕ

k
Τ

 
 )− 1ΣK

1
ϕ

k 
 y

kΣK
1

*

(22)

(23)

(24)

Then by integration of the differential equation one obtains:

I
n 
(D

n 
(y)) + a

0 
I
n 
(y) = b

0 
I
n 
(u) (25)

By considering Laplace transform of D
n 
(y) expressed by Equation 26, we obtain L (I

n 
D

n 
(y)) (Equation 27).

L(D
n 
(y)) = s n Y (s) − s n ∫0

∞ µ 
n
 (ω ) z (ω , 0 )

s + ω (26)

L(I
n 
D

n 
(y)) = Y (s) −∫0

∞ µ 
n
 (ω ) z (ω , 0 )

s + ω
(27)

Where z(ω, 0) is the initial condition of FDE referred as y (0) for ordinary differential equation. Then, the inverse Laplace

In that case the corresponding state representation is given by:

*

dω

dω
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transform is given by:

L−1 (I
n 
D

n 
(y)) = y (t) − ∫0

∞ µ 
n
 (ω ) z (ω , 0) e − ω t dω (28)

Where:
∫0

∞ µ 
n
 (ω ) z (ω , 0) e − ω t dω (29)

is the fractional equivalent of y (0).

It is supposed that the system is at rest at all frequencies, which can approximate z (ω, 0) = 0, whatever the value of the pulsation
ω .

This allows us to write:

I
n 
(D

n 
(y)) = y (t) (30)

Consequently:

y (t) + a
0 
I
n 
(y) = b

0 
I
n 
(u) (31)

The corresponding matrix transformation is given by:

y (t) = [−
 
I
n 
(y)     

 
I
n 
(u)]

a
0

b
0

= ϕ T θ (32)

Equation 32 shows that we get a linear model with respect to parameters, based on repeated integration. These results allow
applying the LS method and estimating parameters model.

7. Numerical Simulation

The estimated parameters θ (n) corresponding to each imposed value n is determined by LS method. Then the quadratic criterion
relative J is deduced. The θ

MC
 values containing a

MC
 and b

MC
 corresponding to the minimum value of J are the estimated

parameters. The sampling period of n is 0.1 and it can be refined further. Measurement data for identification is considered firstly
noiseless and then as a noisy signal generated by superposition of the Gaussian white noise. Simulations are performed with
Matlab software.

7.1 Noiseless identification results of fractional model (Hn )
In this part, results of noiseless identification results of Hn model are investigated by LS method. Simulated fractional model are
performed by the following parameters a

0
 = 2, b

0 
= 1, n = 0.6. These selected parameters must ensure system stability.

The fractional integrator is simulated for a number Nb_sim cells, valid in a frequency band [wb_sim, wh_sim], and a sampling
period Te_sim where Nb_sim = 15, wb_sim = 10−3 rd/s and wh_sim = 103 rd/s.

The fractional integrator of regression calculation is simulated for a number of cells Nb_reg, valid in a frequency band [wb_reg,
wh_reg] and a sampling period Te_reg.

The system is excited by a pseudo-random binary signal (PRBS) (amplitude equal to 3). The sampling period is set to Te_sim =
10−3s.

Measured output of the system and those estimated by LS method, excited by the same input are shown in Figure (3). The insert
in figure 3 represent the area of zoom.

Figures (4) and (5) respectively represent the variation of the mean squares error as a function of the order n of the system and
the variation in the error between the exact response and the estimated models. The insert in figure 4 represent the area of zoom.

Results of the identification of H
n
 model are presented in Table (1) for Te_reg = Te_sim and Te_reg = 5Te _sim.

The parameters a and b estimated for the two tests (for Te_reg = Te_sim and Te_reg = 5Te_sim) are relatively close and accurate,
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comparaison de la reponse exacte et la reponse estimé
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Treg = 5Tesim
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Figure 3. Measured output of the system and those estimated
by LS method Te_reg = Te_sim and Te _reg = 5 Te_sim

variation du critere quadratique en fonction de n
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Figure 4. Variation of the mean squares error, Te_reg = Te_sim and Te _reg = 5 Te_sim
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Treg = Tesim

Treg = 5Tesim
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Figure 5. Error variation between the exact response and
the estimated models: Te _reg  = Te_sim et Te_reg = 5 Te_sim

        Te_reg = Te_sim             Te_reg = 5Te_sim

Parameters           a0 b0   n      a0         b0      n

Simulation                 2             1          0.6        2            1           0.6

Estimation               1.994      0.997      0.6          2.008     1.004       0.6

Quadratic error 0.01                   1.3165

Table 1. Noiseless Identification of H
n
 Model Estimated by the

Least Squares Method for Te_Reg = Te_Sim And Te_Reg = 5te_Sim

it is similar to the order n. In addition, the temporal response of both simulated and estimated model reveals a great similarity.

Commitantly, we observe a small periodic error in the range of 0.05 and − 0.05, due to modes truncation. On the other hand, the
quadratic error increases gradually as one move away from the exact order and rapidly decreases when it approaches.

7.2 Noisy identification results of fractional model (Hn )
In this section we introduce a white Gaussian noise to the measurement data and we will take over the identification. The
identification of Hn model is carried out of 100 noisy realizations. The output of the exact model and the estimated model are
shown in Figure (6). Results show good agreement between the two models.

Table (2 and 3) shows the average of each identified parameter and the standard deviation (distribution of Monte Carlo) for
Te_reg = Te_sim and Te_reg = 5Te_sim respectively.
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modèle exacte

modèle estimé

comparaison de la reponse exacte et la reponse estimé
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Figure 6. Output of the exact model and the estimated model: Te _reg = 5Te_sim and SB = 30

 SB = 30                          SB = 20

Parameters      a
0

    b
0

          n               a
0

   b
0

         n

Simulation      2      1          0.6                2     1         0.6

Average 1.9940 0.9975          0.6            1.9937       0.9973         0.6

Variance 0.0029 0.0010 8.926e − 16      0.0085        0.0032   8.926e −16

Table 2. Noisy Identification of H
n
 Model Estimated

by the Least Squares Method for Te_Reg = Te_Sim

 SB = 30                          SB = 20

Parameters      a
0

    b
0

          n               a
0

   b
0

         n

Simulation      2      1          0.6                2     1         0.6

Average 2.0090 1.0040          0.6            2.0037       1.0021       0.5990

Variance 0.0063 0.0025 8.926e − 16      0.0477        0.0164        0.01

Table 3. Noisy Identification of H
n
 Model Estimated

by the Least Squares Method for Te_Reg = 5te_Sim

8. Iinitialization of output Error Method

As a first step, we will proceed to the identification by the output error method of H
n
 model associated to the Levenberg-



   100                   Progress in Computing Applications   Volume  2   Number  2   September  2013

Marquardt optimization procedure which considering a direct initialization (arbitrary initialization) [6]. The measurement data
used in the identification is assumed noiseless. Thereafter, it will take over the identification using the values provided by LS
method for parameter initialization.

The simulation evidences that the direct initialization method of the model is very delicate, and highlights the utility of the LS
initialization. Before addressing the identification procedure by the output error method.

The H
n
 model (Equation 19) is simulated with the parameters found in paragraph (7), and we verified model stability. The

identification by output error method is carried out at the beginning, with arbitrary initial values. Thereafter, we will extract initial
parameters range of ai, bi and ni that permit estimated values convergence to the correct one. Accordingly, we give a simulation
example.

The initial value (a
i
) is fixed among the three parameters to be estimated, the second one (b

i
) is varied, and the range of last

parameter (n
i
) is determined to ensure algorithm convergence of output error toward the correct value. Tables 4 summarize

simulation results.

Parameters                 Initial values of a
i
, b

i
 and n

i

              
a

i
                        5                     5                          5

    b
i

   0.2        1            4

    n
i
                 [0.17 ; 1.2]      [0.13 ; 1.1]   [0.13 ; 0.89]

Table 4. Range of Initial Parameter N
i

As it can be seen that a slight variation in the value of one parameter modify the range of the other one. Indeed, we cannot
identify initialization parameters range separately, but we are talking about a domain combination.

The problem here is simple, but it is accentuated when the system order increases. In addition, the range which ensures the
convergence criterion becomes very close when it comes to a three or four fractional integrators. This prevents any manual
initialization especially when ignores all exact orders.

For this reason, the H
n 

model is identified using the initialization parameters provided by the LS method. The output y(t) is
considered firstly. Identification results are shown in Figure 7.
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1.99
0                 5                                      10                                     15

a estimation

b estimation

n estimation
0                 5                                      10                                     15

0                 5                                      10                                     15

1.005

1

0.995

0.6005

0.6

0.5995

0.599
iterations

Figure 7. Initialization by the least squares method
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Initialization by the least squares method avoids the arbitrary initialization that does not always offers good results. It
simplifies very well process initialization, which is considered as difficult problem especially when the order of the system
increases.

9. Conclusion

To summarize, we report on non-integer integration operator to modeling and simulation of fractional systems. Based on
repeated fractional integration, a new identification approach that extends least squares method to non-integer order systems is
proposed. This allows identifying, not only the coefficients of the system, but also non-integer orders from Hn temporal data.
On the other hand, estimated parameters constitute an original solution to the initialization of Output Error Method problem. A
comparative study with arbitrary initialization is also performed in order to underline the interest of the present study.

Finally, simulation results show good agreements between the exact model output and the estimated model and demonstrate
validity and effectiveness of the proposed approach. Future work will address parameters identification of an asynchronous
machine.
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